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Unexpected thermal conductivity enhancement in aperiodic
superlattices discovered using active machine learning
Prabudhya Roy Chowdhury1 and Xiulin Ruan 1✉

While machine learning (ML) has shown increasing effectiveness in optimizing materials properties under known physics, its
application in discovering new physics remains challenging due to its interpolative nature. In this work, we demonstrate a general-
purpose adaptive ML-accelerated search process that can discover unexpected lattice thermal conductivity (κl) enhancement in
aperiodic superlattices (SLs) as compared to periodic superlattices, with implications for thermal management of multilayer-based
electronic devices. We use molecular dynamics simulations for high-fidelity calculations of κl, along with a convolutional neural
network (CNN) which can rapidly predict κl for a large number of structures. To ensure accurate prediction for the target unknown
SLs, we iteratively identify aperiodic SLs with structural features leading to locally enhanced thermal transport and include them as
additional training data for the CNN. The identified structures exhibit increased coherent phonon transport owing to the presence
of closely spaced interfaces.
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INTRODUCTION
The demand for efficient energy systems and high-performance
electronic devices has created the challenging requirement to
rapidly identify new materials and design nanostructures with
extreme transport properties. As the limitations of traditional
intuition-driven trial-and-error search methods become more
prominent, machine learning (ML) and data informatics have
emerged as powerful tools for solving these design and
optimization problems. In thermal transport, ML methods have
found success in predicting material properties and accelerating
design of nanostructures with target thermal transport1–9.
However, the applications of ML to solve thermal engineering
problems till date have been limited to finding solutions that show
optimization of a well understood effect, such as maximization of
disorder-induced Anderson phonon localization. In contrast, ML
has not been used to explore and discover exceptional solutions,
which exhibit unexpected or unknown phonon transport physics.
This can be attributed to the ‘interpolative’ nature of traditional
ML algorithms which allows for accurate prediction and explora-
tion within the subspace spanned by known data points (and,
therefore, known physics), but fails for excursions outside the
training dataset. Consequently, suitable adaptations are needed to
use ML methods in the identification of materials or nanostruc-
tures showing exceptional physical properties.
In this work, we demonstrate the potential of an adaptive

machine learning approach to identify unexpected thermal
transport behavior in aperiodic superlattices. Binary superlattices
(SLs), composed of periodically alternating layers of two materials,
have received widespread attention in the recent decades due to
their lower lattice thermal conductivity (κl) compared to the
constituent materials10–13, which makes them greatly attractive for
applications such as thermoelectric devices14–16. Recent studies
have shown that randomizing the constituent layer thicknesses in
periodic SLs further reduces κl, even below the random alloy
limit7,17–23. In the resulting aperiodic superlattices or random
multilayers (RMLs), destructive interference of coherent phonons
due to reflections at the randomly spaced interfaces can cause

Anderson localization, thereby limiting thermal transport by these
long wavelength phonon modes18,24. Additionally, ML methods
such as Bayesian optimization3 and genetic algorithms (GA)7 have
allowed efficient identification of RML structures with ultra-low
thermal conductivities at a fraction of the computational cost
associated with exhaustively searching the prohibitively large set
of candidate structures. However, it has not yet been elucidated
whether certain random distributions of SL layer thicknesses can
actually lead to higher κl than the periodic SLs. Interestingly, in a
recent study, Wei et al.25 used a GA-based search process to
identify two-dimensional graphene nanomeshes with disordered
pore configurations showing enhanced κl than nanomeshes with
uniformly spaced pores. Their results challenged the previous
understanding that randomness in pore spacings leads to lower κl
in these systems26,27, and motivate the search to find exceptions
for other well understood systems such as 1-D SLs and RMLs. Such
rare examples of multilayered phononic structures showing
enhanced thermal transport can also benefit applications such
as thermal management of quantum cascade lasers28,29. However,
the heuristic GA search method used in Wei et al.’s work25,
although considered to be ‘extrapolative’ due to the ability to
explore the design space outside the initial known dataset, is still
computationally expensive for the identification of very low-
probability-of-occurence solutions as a result of the probabilistic
nature of the GA evolutionary operators of selection, crossover,
and mutation. Therefore, we look to find a systematic approach
that can utilize the advantages of ML while enabling an
extrapolative approach for the efficient identification of excep-
tional solutions.
Here, we identify RML structures with unexpectedly higher κl

than corresponding SLs with same total length and average
period. To accelerate the search over the prohibitively large
design space, a convolutional neural network (CNN)-based
prediction method is used for obtaining the κl of the candidate
structures. An iterative approach is employed for generating a
representative training dataset that enables the CNN to accurately
predict the high κl of the target RML structures that are absent
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from the initial dataset. Finally, the identified non-intuitive RML
structures are used to gain insight into the heat transport
mechanisms leading to higher κl and its correlation with RML
structural features.

RESULTS AND DISCUSSIONS
Manual search for higher thermal conductivity RMLs
We perform our calculations on the model Si/Ge system using
non-equilibrium molecular dynamics simulations to search for
high κl RML structures. This system has been extensively
investigated in literature, given the wide application of these
semiconductor materials as multilayer systems30–36 and the
simplicity of performing molecular dynamics simulations using
interatomic potential parameters. The SLs and RMLs are con-
structed by stacking the diamond cubic unit cells (UCs) of each
material along the [100] direction. Two different lengths of SL and
RML structures are studied in this work: a shorter 20 UC (11 nm)
system and a longer 40 UC (22 nm) system. Periodic boundary
conditions are maintained in the other two directions, so that our
system results in a superlattice thin film. The smallest layer
thickness allowed along the cross-plane heat transport direction is
set to be 1 UC, and only RMLs with equal number of Si and Ge
layers are studied to ensure meaningful comparison of κl among
all structures. Additionally, the first and last UCs along the RML
length are constrained to be Si and Ge respectively, to prevent
extra interfaces with the heat reservoirs. With these constraints
imposed, the number of possible RML structures is found to be
48620 for the 20 UC system and 35345263800 for the 40 UC
system. Figure 1a shows schematic images of representative
periodic SL and RML structures. Details about the molecular
dynamics simulation methodology and κl calculation can be found
in the Methods section.
First, we search for 20 UC (10 nm) RMLs showing enhanced κl

from the corresponding SL structures. The thermal conductivities
of the 20 UC N− N SL system are calculated, where N is the
number of unit cells of Si or Ge in one period of the SL. To ensure
an integral number of periods within the fixed total length of 20
UCs, N can take values of 1, 2, 5, and 10 only. The thermal
conductivities obtained using NEMD simulations are shown in Fig.

1b, where a minimum of 2W/mK is obtained at an SL period of
~2.2 nm. This characteristic variation of κl with SL period has been
predicted theoretically11,13,37,38 and recently observed experimen-
tally39–42, and is commonly understood to be the result of the
transition from coherent phonon to incoherent phonon domi-
nated transport regimes. Phonons traveling along the cross-plane
direction of SLs with large periods can exhibit particle-like
behavior when anharmonic phonon–phonon scattering causes
them to lose phase information before encountering an interface.
On the other hand, multiple phase-preserved reflections at closely
spaced periodic interfaces can lead to the formation of coherent
phonon modes showing wave-like phonon transport character-
istics. At periods greater than 2.2 nm, the interface density is small
enough to ensure a low coherent phonon contribution. As a result,
the reduction in incoherent phonon scattering by the SL interfaces
leads to a greater thermal conductivity at higher periods. In
contrast, when the SL period is below 2.2 nm, a significant portion
of the thermal transport is contributed by the coherent phonon
modes, which are no longer scattered by the closely spaced
interfaces. In this regime, the increase of thermal conductivity at
lower periods has been attributed to effects such as weaker band
flattening and increased group velocities.
We then attempt the traditional intuition-guided search process

to identify possible RMLs showing κl enhancement due to
aperiodicity. Due to the absence of any previous evidence
supporting the existence of enhanced κl RML structures, no
guidance is available to narrow down the search to a computa-
tionally tractable subset of the design space. In this case, a random
search can be considered as a viable search method. To perform
the manual search, we randomly choose 300 candidate RML
structures from the design space and calculate the thermal
conductivities using NEMD simulations. The results of these
calculations are compared with the SL thermal conductivities in
Fig. 1b. We find, as expected, that all of the 300 randomly
generated RMLs have significantly lower thermal conductivities
than the corresponding SLs. We also calculated the histogram of
thermal conductivity values for the 300 randomly generated RML
structures as shown in Fig. 1c. It can be observed that the majority
of RMLs have low thermal conductivities compared to the SLs. This
shows the evident need for an alternative systematic and efficient
way to perform the search and motivates the use of machine
learning for such tasks.

ML accelerated search for higher thermal conductivity RMLs
While NEMD simulations can provide accurate values of thermal
conductivity of the RML structures, they are computationally
expensive when more than hundreds of simulations need to be
performed for a particular system. As a result, exhaustive searches
using MD simulations over design spaces as large as the current
problem become impractical. In order to accelerate the calculation of
thermal conductivity of RMLs and perform a rapid screening of a
large number of candidate solutions, we use a neural network-based
rapid thermal conductivity prediction tool that can replace the time
consuming NEMD simulations. Neural networks (NNs) have emerged
as a powerful tool for regression and classification problems due to
their ability to fit complex multifunctional datasets without the need
for encoded sets of rules which may introduce human bias. Recently,
convolutional neural networks (CNNs) have been successfully used in
predicting material properties including κl from input structure
data5,6, particularly due to their feature detection and translational
invariance characteristics. As a result, we employ a CNN which can
predict the thermal conductivity of an RML by detecting relevant
spatial features in the input RML structure. Since the time taken by
the trained CNN to predict the κl of each RML structure is extremely
small, the entire design space can be evaluated within a few minutes.
As a result, an exhaustive search can be performed over the entire
RML design space using the κl values predicted by the CNN. The
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Fig. 1 Results of a manual search for aperiodic superlattices with
enhanced thermal conductivity. a Schematic of the Si/Ge periodic
SL (left) and aperiodic SL or RML (right). b Variation of κl with
average period at 300 K for RML structures generated during the
manual random search (triangles) and the machine learning
accelerated search (circles). The thermal conductivities of the
reference N− N superlattices are indicated by the diamonds.
c Probability distributions of thermal conductivities (W/mK) of the
RML structures generated by a manual search (blue bars) and the ML
search (yellow bars). The region spanned by the thermal conductiv-
ities of the N− N SLs is shaded in red.
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architecture of the CNN used in this work and the details of the
training process can be found in the Methods section.
A well-known characteristic of neural networks is their ‘inter-

polative’ nature, i.e., they cannot generally be expected to
extrapolate to unknown points outside the region spanned by the
training dataset. This is problematic for our current objective, where
the CNN is required to accurately predict thermal conductivities of

high κl exceptional RMLs which are absent from the initial training
dataset. To resolve this, we utilize the ability of CNNs to extract spatial
features contributing to locally enhanced thermal transport.
Although the training dataset is composed of RML structures with
low to moderate κl, many of these structures contain spatial features
that lead to locally enhanced thermal transport, such as large bulk
regions or short regions of periodic interfaces. By forming feature-
property maps from these structural features, the CNN is able to
assimilate them and accurately predict the high κl of RMLs containing
combinations of these favorable features. On the other hand,
randomly sampling the design space does not automatically ensure
inclusion of RML structures showing enhanced local thermal
transport characteristics within the dataset. This can be seen from
the probability distribution of thermal conductivities of the 300
randomly generated RML structures (Fig. 1c), where the majority of
RMLs have low thermal conductivities compared to the N−N SLs. In
order to overcome this challenge, we adopt an iterative approach to
generate our training dataset comprising RMLs with moderate to
high thermal conductivities while performing the accelerated search.
In the initial step, the CNN is trained on a dataset of the 300
randomly generated RMLs. The trained network is then used to
predict the thermal conductivities (κCNN) of all structures in the search
space. Next, we select 100 RML structures predicted by the CNN to
have the highest thermal conductivities and perform NEMD
calculations of thermal conductivity (κNEMD) to validate the CNN
predicted values. If any of these 100 RML structures identified in the
search show a higher κNEMD than the corresponding SL, the search is
stopped with successful identification of the exceptional RML
structures. Otherwise, these RML structures are included in the
training data with their κNEMD values, and the CNN is retrained to fit

Optimized structures achieved

Any higher then that of SL? 

Initialization: Randomly generate 300 structures 
and calculate via NEMD simulation

Fit the CNN to training data

Predict of all other remaining 
structures in the design space

Choose 100 structures with the highest
and validate via NEMD simulation

Put results in the training data set

Yes

No

Fig. 2 Schematic of the iterative search algorithm used to discover
unexpected thermal conductivity (κl) enhancement in aperiodic
superlattice systems.
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Fig. 3 Results of the machine learning based search for periodic superlattices with enhanced thermal conductivity. a Variation of testing
MAPE (black squares, left axis) and RMSE (red squares, right axis) with each iteration of the iterative search process for the 20 UC RML system.
The top axis indicates the size of the dataset on which the CNN is trained in that iteration of the search.
b Comparison of CNN predicted κl and NEMD calculated κl (true value) for the dataset of RML structures. The shaded area represents a
±0.1 W/mK bound from y= x. c Thermal conductivities of 20 UC RMLs sampled by the random search (squares), a Genetic Algorithm search
(triangles), and the CNN accelerated search (circles) with total computational time spent in CPU hours. The dashed line represents the κl of the
5-5 SL structure, with error bounds from MD simulations as defined in the main text. Error bars are also shown for the identified exceptional
structure. d The 20 UC and 40 UC RML structures with higher thermal conductivities than the corresponding SLs which were identified by the
CNN accelerated search.
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the augmented data set. Subsequently, the thermal conductivities of
all structures are again predicted (with potentially higher accuracy)
and the algorithm is progressed in this manner. Figure 2 shows the
complete work flow of the search algorithm followed in our work. In
the initial iteration, the κCNN values are not expected to be accurate
over the entire search space, given the relatively small size of the
training dataset and the absence of representative features. However,
the accuracy of the prediction improves as the size of the training
dataset increases with each successive iteration, and RMLs with high
κl constitute a greater fraction of the training data.
We first evaluate the performance of the CNN in predicting κl of

the 20 UC RML system. Figure 3a shows the variation of the mean
absolute percentage error (MAPE) and the root mean square error
(RMSE) with each iteration of the search process, when evaluated
on a testing set of unknown RML structures not introduced to the
CNN during training. We observe that the CNN is able to predict
thermal conductivities with a very low MAPE varying from 4.6 to
6.4%, or an average RMSE of 0.09 W/mK. The MAPE generally
decreases with each progressing iteration of the search due to the
addition of more RML structures to the training dataset which
increases the representative set of features. The comparison
between the predicted (κCNN) and ‘true’ values (κNEMD) is shown by
the parity plot in Fig. 3b after training the CNN on data from 600
RML structures. It is seen that the CNN can provide accurate
predictions over a wide range of thermal conductivities from 1 to
2.5 W/mK, thus demonstrating the capability of the CNN to extract
suitable spatial features governing low and high κl. The progress
of the ML-enabled search for 20 UC RMLs with enhanced κ is
shown in Fig. 3c, in comparison to a manually performed random
search. We also compared our ML accelerated search process with
a Genetic Algorithm (GA) based search, which is a heuristic
method that uses probability-based genetic operators (selection,
crossover, and mutation) to explore the design space efficiently
and find optimal solutions to a given loss function. The
implementation of the GA search process is similar to our previous
work7, with the only difference being the objective function which
is maximization of thermal conductivity for the current problem.
We only compare RML structures against the corresponding SL

having the same average period. As a result, the contribution of
interface scattering of incoherent phonons to the thermal
transport is the same in the compared multilayer structures, and
any difference in κl is purely the result of coherent phonon
transport. We find that our ML-based search process is able to
identify RML structures with higher κ than the corresponding SL
within two iterations of the search utilizing 200 CPU hours. In
contrast, the manual random search returns far lower κl than
periodic SLs even after double the simulation hours spent.
Although the GA search is able to identify structures with
reasonably high thermal conductivity, none of the identified RMLs
can exceed the reference SL thermal conductivity. The thermal
conductivities of the RMLs scanned by the ML search process are
plotted with respect to average period in Fig. 1b. By searching
through RML structures with different average periods, the κl of
RML structures are found to exceed the superlattice κl at a
relatively higher average period of 5.4 nm, corresponding to the
5− 5 SL. The identified RML κ of 2.36 W/mK is found to be higher
than the SL κ of 2.28 W/mK by 3.5%, which is above the statistical
uncertainty as confirmed by averaging these values over multiple
independent runs. The error bounds for the 5− 5 SL and the
identified RML are shown in the figure and are calculated from the
standard deviation of the independent runs for each structure.
The structures of the 5− 5 SL and the RML showing enhanced κl
are shown in Fig. 3d.
We also perform a similar ML accelerated search for a larger

RML system with a total length of 40 UCs. Since the number of
possible RML structures for this system is several orders of
magnitude larger than the 20 UC system, we limit our search to a
tractable subset of the design space by using the knowledge

gained from the results of the search on the 20 UC RML system. In
particular, only RMLs with the relatively larger average period of
5.4 nm, corresponding to perturbations of the 5− 5 SL, are
sampled. With this constraint, the reduced design space consists
of 938961 RML structures which can be efficiently handled by our
ML search framework. Similar to the previous search process, the
CNN accelerated search method can successfully identify an RML
structure with higher κ than the corresponding SL within the
validation of 612 RMLs which constitute less than 0.1% of the
design space. The identified structure, shown in Fig. 3d, has a κl
exceeding that of the SL by 5.5% which is also confirmed by
averaging over multiple runs. Interestingly, the 40 UC RML
structure identified by our search is found to be a composite SL
which can be created by the combination of the single interface
structure and the shorter period 2− 2 SL. As a result, the structure
has the features of a local periodicity which enhances thermal
transport despite having a globally random layer thickness
distribution.

Contribution of interfacial resistance to κl enhancement
Finally, the identified exceptional RML structures shown in Fig. 3d
are studied to understand the underlying phonon transport
characteristics leading to the disorder-induced enhancement of κl.
We observe the presence of small layer thicknesses due to closely
spaced interfaces in these structures, which we attribute as the
cause for the increased thermal transport. At an SL period of 5.4
nm, the relatively large layer thicknesses are above the coherence
length of most phonons, as a result of which the contribution of
coherent phonon transport to the SL κl is quite low. However, the
reduced thicknesses of some layers in the identified RMLs lead to
an increased coherent phonon contribution, whereby the
apparent thermal resistance of the interfaces are lowered. To
verify our hypothesis, we calculated the total resistance across the
RML as well as the contribution of the apparent interface
resistances for three different 40 UC structures: (i) the RML with
κl higher than the 5− 5 SL identified through our search process,
(ii) the 5− 5 SL and (iii) a RML with low κl identified by the random
search. The apparent interfacial thermal resistances at each of the
interfaces in the RML structure are shown in Fig. 4a–c,
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Fig. 4 Calculated thermal resistances at all interfaces (yellow
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κ identified by the ML-enabled search b 5-5 SL c RML with low κ
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superimposed on the visual representation of the RML structure.
We can see that compared to the 5− 5 SL (Fig. 4b), the apparent
interfacial resistances are visibly reduced in the high κ RML (Fig.
4a), which is the effect of a higher amount of coherent phonon
transport. As a result, the RML shows a lower total interfacial
thermal resistance and total thermal resistance than the SL, as
seen in Fig. 4d. Finally, the localization of coherent phonon modes
due to sufficient layer thickness randomization in the RML
structure shown in Fig. 4c and the absence of many closely
spaced interfaces leads to a higher interfacial resistance and lower
κl, which is in accordance to the previously accepted hypothesis.
Our results indicate that randomness of layer thicknesses in SLs
can be engineered to have dual effects via tuning the contribution
of coherent phonons, which can either decrease or enhance
thermal conductivities. Generally, in short period SLs, randomness
can cause localization of coherent phonons and reduce κl. On the
other hand, certain forms of aperiodicity in large period SLs can
enable stronger coherent phonon transport that is not localized,
thus enhancing κl.
In summary, we demonstrate an iterative machine learning

approach for discovering exceptional thermal transport physics.
Although it is generally accepted that randomization of layer
thicknesses of a binary periodic superlattice lowers its cross-plane
κl, we aim to find structures showing the opposite trend, i.e., an
enhancement of κl due to disorder. We employ a convolutional
neural network to rapidly predict the thermal conductivities of all
RMLs in the design space. The training dataset is generated in an
iterative method in order to help the CNN dynamically learn the
spatial features leading to locally enhanced phonon transmission.
Our CNN accelerated search is able to identify RML structures with
higher κl than the superlattice at an average period of 5.4 nm,
which is attributed to an increase in coherent phonon contribu-
tion and decrease in apparent interfacial thermal resistance at
closely spaced RML interfaces as compared to the SL. Our results
demonstrate the ability of machine learning-based methods to
help discover exceptions and low-probability-of-occurrence solu-
tions in a large search space.
An important aspect we wish to highlight here is that the main

computational expense in our iterative search method is the
NEMD evaluation of RML thermal conductivity and training of the
CNN. The exhaustive scanning of the entire design space did not
add any significant computational expense over and above this,
and as a result, we were able to use the exhaustive search without
requiring a more sophisticated optimization algorithm. However,
we note that for a larger number of design variables, the
exponentially increasing size of the design space will make an
exhaustive search impracticable. In such cases, the use of a more
sophisticated optimization algorithm, such as a GA, in conjunction
with the CNN predictor is an attractive approach that can be
studied in future work.

METHODS
Non-equilibrium molecular dynamics simulations
Thermal conductivity calculations for the multilayered nanostructures are
performed using non-equilibrium molecular dynamics simulations with the
LAMMPS package43. The interatomic interactions are described using the
three-body Tersoff potential44,45, which is commonly used to study
vibrational properties of the Si/Ge system. The unequal equilibrium lattice
constants of Si and Ge in these potential descriptions lead to a symmetric
cross-sectional strain in the system, which can cause large oscillations at
the interface regions33. To eliminate this strain, the lattice constant of Ge is
artificially set to be equal to that of Si within the interatomic Tersoff
potential parameters. A 6 × 6 UC cross-section is used, which is sufficient to
provide converged κl values. The thermal conductivity of the nanostruc-
tures is calculated at a temperature of 300 K. A timestep of 0.5 fs is used to
integrate the equations of motion, which is sufficient to resolve the highest
frequency of phonon vibrations in either material.

A schematic of the NEMD simulation domain for the direct calculation of
thermal conductivity is shown in Fig. 5. Two bulk material regions
consisting of 20 UCs of Si and Ge are attached to either side of the SL or
RML to act as thermal reservoirs. Initially, the entire system is relaxed for
500 ps at 300 K, under a constant pressure and temperature ensemble
(NPT) with periodic boundary conditions applied to all three directions.
Following this, another 250 ps of equilibration under fixed volume and
energy (NVE) is performed. Subsequently, non-equilibrium conditions are
applied by thermostatting the Si and Ge bulk regions on either side at 330
and 270 K respectively, using Langevin thermostats. Two UCs of atoms at
each end of the system are also kept fixed to mimic fixed boundary
conditions along the heat transport direction. The system is allowed to
reach steady state under this imposed temperature gradient over a period
of 500 ps. Following this, the temperatures at equal intervals along the
cross-plane direction are obtained by from the velocities of atoms in one-
dimensional bins. The temperature and heat flux data are collected and
averaged over a period of 4 ns. The cross-plane lattice thermal conductivity
(κl) is then calculated as

κl ¼ q00

ΔT=L
(1)

Here, q″ is the steady state heat flux and L is the length of the SL or RML
along the heat transport direction. The thermal boundary resistance at
each interface of the system (Ri) can also be calculated from the
temperature drop across the interface (ΔTi) as

Ri ¼ ΔT i
q00

(2)

Convolutional neural network-based prediction of thermal
conductivity
The architecture of the CNN used in this work is shown in Fig. 6. The input
layer to the CNN is an N-bit array, corresponding to the number of UCs in
the RML structure (20 or 40). Each bit can take a value of 1 or 2 depending
on whether the corresponding UC at that location along the superlattice
length consists of Si or Ge atoms respectively. This is followed by one or
more one-dimensional convolutional layers, each of which consists of
several kernels or filters to extract the relevant features from the input
array by striding over the length of the input. Here, we use convolutional
layers consisting of 44–50 filters with filter lengths of 5–9 bits, a stride
length of 1, and no-padding. A max pooling layer is used after every two
convolutional layers, which causes down-sampling of the identified
features and incorporates translational invariance in the feature maps.
After multiple convolutional layers, we use a flatten layer to reduce the
dimensionality of the features. Finally, a fully connected or dense layer
consisting of 100 nodes is used to combine the identified features into a
single output thermal conductivity value. Non-linearity is accounted for
within the CNN by using a Rectified Linear Unit (ReLU) as the activation
function throughout the network. For the 20 UC RML system, we use a
CNN consisting of two convolutional layers, 1 max-pooling layer, and 1
fully connected layer. On the other hand, for the 40 UC RML system where
the number of input parameters is much larger, we switch to a CNN
architecture consisting of 4 convolutional layers with 1 max-pooling layer
after every 2 convolutional layers, and 1 fully connected layer as before.
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Fig. 5 Schematic of the NEMD simulation setup. The multilayer
nanostructure (SL or RML) is sandwiched between two thermal
baths. A layer of atoms is fixed at each end to impose fixed
boundary conditions. The corresponding temperature profile is
also shown.
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The weights of the different layers are initiated randomly and need to
be fit to the training data provided to the network. This is done by
calculating a loss function over the entire training set and back-
propagating the errors over the various layers of the network to minimize
the loss. The loss function used to train our CNN is chosen to be the
MAPE, given by

MAPE ¼ 1
N

XN

i¼1

yi � yi
yi

����

����´ 100% (3)

Here, N is the number of training data points provided to the network, yi
is the predicted output and yi is the target output. Apart from the loss
function, the RMSE is also used a metric to evaluate the performance of the
network. We note that these metrics are most commonly associated with
regression problems, instead of others such as accuracy which are
convenient for classification tasks. The training of the network by back-
propagation of errors is performed using the Adamax algorithm46 and the
fitting is performed over 300−500 epochs within which sufficient
convergence of the loss function is observed. Overfitting of the data by
the CNN, which is common occurence in neural network training, is
avoided using early stoppage of the fitting process if the testing loss is
found to become constant or increase.

DATA AVAILABILITY
Data generated from the molecular dynamics simulations and the datasets and code
used for training the machine learning algorithm are available from the correspond-
ing author upon reasonable request.
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