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Phase-field framework with constraints and its applications to
ductile fracture in polycrystals and fatigue
Fei Xue 1,2✉, Tian-Le Cheng1,2, Yinkai Lei1,2 and You-Hai Wen1

Modeling of ductile fracture in polycrystalline structures is challenging, since it requires integrated modeling of cracks, crystal
plasticity, and grains. Here we extend the typical phase-field framework to the situations with constraints on the order parameters,
and formulate two types of phase-field models on ductile fracture. The Type-I model incorporates three sets of order parameters,
which describe the distributions of cracks, plastic strain, and grains, respectively. Crystal plasticity is employed within grain interiors
accommodated by J2 plasticity at grain boundaries. The applications of the Type-I model to single crystals and bicrystals
demonstrate the influences of grain orientations and grain boundaries on crack growth. In the Type-II model, J2 plasticity is
assumed for the whole system and grain structures are neglected. Taking advantage of the efficiency of the fast Fourier transform,
our Type-II model is employed to study low cycle fatigue. Crack closure and striation-like patterning of plastic strain are observed in
the simulations. Crack growth rate is analyzed as a function of the J-integral, and the simulated fatigue life as a function of plastic
strain agrees with the Coffin–Manson relation without a priori assumption.
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INTRODUCTION
Modeling of crack initiation and propagation is critical to
understand different failure modes of structural materials such
as cleavage fracture and fatigue1. Traditionally, fracture is modeled
by treating crack surfaces as sharp interfaces, which often requires
remeshing after crack propagation. Recently, the phase-field
method has emerged as a powerful tool to model crack initiation
and propagation2–6. In contrast to the sharp interface models, the
phase-field model utilizes a diffused interface to describe the
transition from intact to fully damaged regions that can
conveniently handle the evolution of complex crack patterns with
no need for remeshing nor ad hoc criteria for crack propagation7,8.
The phase-field modeling has first been applied to brittle
fractures2,3,9,10. Later, phase-field ductile fracture models were
also constructed by considering the interaction between plasticity
and fracture4,11–14, starting from the small strain framework, which
successfully capture a variety of anticipated ductile fracture
responses at the macroscale. Subsequently, the ductile fracture
model has been successfully extended to finite strain regime15.
At the mesoscale, the growth of short cracks depends on the

heterogeneous plastic/elastic deformation in a polycrystalline
structure, characterized by grain orientations and grain bound-
aries1. A phase-field model incorporating brittle fracture with grain
structures is developed to describe the intergranular cracking due
to the reduced fracture toughness at grain boundaries, whereas
no plasticity is considered16. On the other hand, a coupled crystal
plasticity-phase field fracture model is developed in which a finite
element model of crystal plasticity is applied to grain structures
reconstructed from experimental images17,18. However, in this
finite element model, the grain boundaries are modeled as sharp
interfaces, and the distinct physical properties of grain boundaries
are ignored. A phase-field model with diffuse interfaces between
grains is thus desired for polycrystalline ductile fracture in which
the evolutions of plasticity, cracks, and grains are consistently
governed by the minimization of a unified free energy functional.

When considering J2 plasticity or crystal plasticity, the plastic
strain is constrained by the volume conservation or orientation of
the dislocation slip directions, which requires the modification of
the evolution equations19,20. In fact, certain constraints also exist
on other order parameters such as chemical compositions in
electrochemical reactions21 and the quaternion representation of
crystallographic orientations22. In addition to the constraints that
need to be satisfied everywhere, there exist constraints on system
boundaries, i.e., boundary conditions of partial differential
equations (PDE)23. Conventionally, the Lagrange multiplier
method is employed to obtain the minimum of a function/
functional under constraints, which represents the equilibrium
state of the system. However, the phase-field models also describe
the kinetic process from non-equilibrium states to the equilibrium
state, which is important in materials science due to the various
time scales of different kinetics. In this case, the constraints need
to be maintained throughout the kinetic process, and a general
method for solving the Lagrange multipliers in the non-
equilibrium states is required for the derivation of kinetic
equations.
To solve PDE in the mechanical problems, different numerical

methods can be employed, including the finite element method
(FEM)2,4,9, the finite difference method (FDM)16, the fast Fourier
transform (FFT)19,20,24, and the recently developed nonlocal
operator method (NOM)25–27. The FDM and FFT work on the
differential form of PDE. Since the spatial differentiation can be
transformed into multiplication in the Fourier space, the FFT
method possesses distinct advantages in efficiency if periodic
boundary conditions can be employed. On the other hand, the
FEM and NOM work on the integral form of PDE, which can
effectively relieve the possible numerical singularities near the
crack surfaces. Note that due to the diffuse-interface nature of the
phase-field method, such singularities are mostly avoided. It is
demonstrated that the FFT method is more than 10 times faster
than the classical FEM for the same regular grids28,29, and thus the
FFT method is employed in this work.
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Thanks to the efficient FFT algorithm, we are able to investigate
crack growth in ductile materials under cyclic loading. The fatigue
process is traditionally described by two types of empirical
models: the stress/strain life (S-N or ε-N) approach such as the
Wöhler curve and the Coffin–Manson relation30,31, and the
damage tolerance approach based on fracture mechanics such
as the Paris law32. The phase-field fracture models, as an emerged
type of models which easily track the fatigue paths, has also been
used to investigate fatigue7,33,34. The basic idea of the fatigue
models is that the repetitive loading reduces the fracture
toughness based on the magnitude of locally accumulative
elastic energy density and plastic strain. Applying the phase-field
model of brittle fracture to fatigue allows the successful
reproduction of the Paris law7,33. The calculated Wöhler curves
are also consistent with experimental observations33,34. The
phase-field fracture models coupled with cyclic plasticity are
formulated and successfully validated using several numerical
examples35,36. To reduce the immense computational cost in the
elastoplastic solver based on the finite element method (FEM)
under high numbers of cycles, an effective method is developed
by combining the phase-field method for brittle fracture with a
classic durability concept37.
In this paper, we first develop a framework in which the kinetic

equations in a phase-field model are subject to a general type of
constraints on the order parameters. It is demonstrated that the
introduced Lagrange multipliers can be solved from the time
invariance of the constraints, resulting in modified time-
dependent Ginsburg-Landau (TDGL) equations. The applications
of the framework to J2 plasticity and crystal plasticity recover the
flow equations from classical plasticity theories.
Based on the framework, we formulate two types of phase-field

models on ductile fracture. The Type-I model is constructed with
the capability of describing crystal plasticity and crack growth in a
polycrystalline structure, as sketched in Fig. 1. Specifically, the
grain structure is described by phase-field order parameters, and
the grain boundaries could possess distinct physical properties

including fracture toughness and yield strength. The Type-I model
is applied to single crystals and bicrystals with face centered cubic
(FCC) lattices, and the simulation results demonstrate that the
crack paths are determined by crystal orientations and grain
boundary locations. In the Type-II model, J2 plasticity is assumed
for the whole system and the grain structure is neglected for
simplicity. The Type-II model is applied to study low cycle fatigue
(LCF), by direct simulation of coupled plastic flow and fatigue
crack propagation. Our simulation results reproduce the phenom-
ena of crack closure and striation-like deformation patterning38,39.
The calculated fatigue life versus plastic strain predictions agree
with the Coffin–Manson relation, and the underlying mechanism
is discussed.

RESULTS AND DISCUSSION
General phase-field framework without and with constraints
Materials performance and properties depend on the spatial
distribution of certain physical quantities inside the materials
themselves. The distribution of the physical quantities can be
described by a set of order parameters ηiðxÞ; 1 � i � m, where x is
the spatial coordinates and m is the number of order parameters.
As a function of ηi and their gradients, the total free energy of the
system is given by

F ¼
Z

f ðηi;∇ηiÞdx; (1)

where f ðηi ;∇ηiÞ is the free energy density.
Based on the variational principle, the equilibrium state of the

system corresponds to the situation when the total free energy is
at the minimum with respect to local variations in ηiðxÞ, i.e., the

Fig. 1 Schematics for the order parameters considered in this work. a–c Schematic distributions of plastic strain, cracks, and grains,
respectively.
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variational derivatives equal to zero everywhere40,41

δF
δηi

¼ ∂f
∂ηi

� ∂

∂xk

∂f
∂ð∂ηi=∂xkÞ

¼ 0: (2)

The Einstein summation convention is employed in this work
unless otherwise noted. Equation (2) is referred to as the Euler-
Lagrange equation41.
Next we consider the evolution of the system from a non-

equilibrium state to the equilibrium state, which is described by
the phase-field kinetic equations. S. M. Allen and J. W. Cahn
proposed that if ηiðxÞ is a non-conserved order parameter, its local
change is given by42

∂ηi
∂t

¼ �Lij
δF
δηj

; (3)

where Lij is the kinetic coefficient. Equation (3) is thus named as
the Allen-Cahn equation43. Since its format is the same as the
TDGL equation, Eq. (3) is also referred to as the TDGL equation42,43.
In a system described above, the order parameters are free to

evolve, with the path exclusively described by Eq. (3). However, in
certain situations, the order parameters must satisfy certain
constraints. In this work, the phase-field framework will be
extended to the situation with constraints by introducing
Lagrange multipliers. We restrict our discussions on the con-
straints that are only functions of the order parameters ηi
themselves while independent of the gradient of the order
parameter ∇ηi . This type of constraints is common in various
physical processes, e.g., electrochemical reaction21, grain
growth22, and plasticity19,20, which is analogous to the holonomic
constraints in classical mechanics40. Two typical sub-types of
constraints are considered, i.e., integral constraints and non-
integral constraints40,41. The situation of integral constraints is
discussed in Supplementary Note 1, while the case of non-integral
constraints, typically given by

gjðηiÞ ¼ 0; 1 � j � n; (4)

is discussed here.
The energy minimization problem with local constraints can be

solved by introducing Lagrange multipliers λj, where λj are fields.
The Lagrangian is given by F� ¼ R ðf þ λjgjÞdx, and the equilibrium
condition is that the variational derivatives of F� equal to zero41, i.e.,

δF�

δηi
¼ ∂ðf þ λjgjÞ

∂ηi
� ∂

∂xk

∂f
∂ð∂ηi=∂xkÞ

¼ 0; 1 � i � m; (5)

Analogous to the TDGL Eq. (3), the kinetic equations with non-
integral constraints are assumed to be given by

∂ηi
∂t

¼ �Lηij
δF�

δηj
¼ �Lηij

∂ðf þ λkgkÞ
∂ηj

� ∂

∂xl

∂f
∂ð∂ηi=∂xlÞ

" #
; 1 � i � m; 1 � j � m;

(6)

Next our goal is to solve the n Lagrange multipliers λk in a
general state from the n constraints gk ¼ 0; 1 � k � n. To
guarantee that the constraints in Eq. (4) are always satisfied
during the evolution of ηi , the total derivative of gk with respect to
time should equal zero, i.e., dgkdt ¼ 0. From the chain rule, we have

dgk
dt

¼ ∂gk
∂ηi

∂ηi
∂t

¼ 0; (7)

Substituting Eq. (6) into Eq. (7) will result in a system of linear
equations with n equations and n variables λk , which generally
guarantees the existence of solutions. Thus λk can be solved as
functions of Lηij ,

∂gk
∂ηi
, and δF

δηj
. Substituting the solutions of λk back into

Eq. (6) will give rise to the modified TDGL equations, which describe
the evolution path toward equilibrium and guarantee that the
evolution path is on the surface defined by the constraints.

As a special example, if gk is a linear function of ηi , given by the
expression gk ¼ aikηi þ b ¼ 0, Eq. (6) becomes

∂ηi
∂t

¼ �Lηij
∂f
∂ηj

� ∂

∂xw

∂f
∂ð∂ηj=∂xwÞ

þ λkajk

 !" #
; 1 � i � m; 1 � j � m; 1 � k � n;

(8)

Then Eq. (7) is expressed by

�aikL
η
ij

∂f
∂ηj

� ∂

∂xw

∂f
∂ð∂ηj=∂xwÞ

þ λlajl

 !" #
¼ 0; 1 � k � n; 1 � l � n;

(9)

The closed-form expressions of λl can be derived as functions of
aik , L

η
ij , and

∂f
∂ηj

� ∂
∂xw

∂f
∂ð∂ηj=∂xw Þ. Substituting the close-form expres-

sions into Eq. (8) results in the kinetic equations with λl eliminated.
In the above phase-field framework, the evolution of the systems

with and without constraints is fully described by the respective
kinetic Eqs. (3) and (6), which are derived based on the variational
derivatives of the total free energy or Lagrangian. For the case with
constraints, the Lagrange multipliers λk in a non-equilibrium state
can be solved by combining the time invariance of constraints and
TDGL equations. Note that, strictly speaking, we should not solve λj
from the equilibrium conditions Eq. (5) as in Refs. 19–21, since the
constraints need to be satisfied throughout the kinetic process, not
just the final equilibrium state. Furthermore, Eq. (5) represents a
system of linear equations with m equations and n variables. Since
we usually have m > n (otherwise, the order parameters ηi can be
fully determined by the constraints), i.e., the rank of the coefficient
matrix is larger than the number of variables, there is no way to
solve Eq. (5) directly. Ref. 19 shows such an example in which there
are three equations but only one Lagrange multiplier (m= 3, n= 1).
In this situation the Lagrange multiplier can only be obtained by
summing up all the equations into one. Such an operation,
however, does not have a reasonable basis.

Formulation for J2/crystal plasticity and ductile fracture
In this section, we apply the above phase-field framework to J2
plasticity and crystal plasticity by introducing non-integral
constraints onto the order parameters of local plastic strains.
The models are formulated within the small strain assumption.
Then the grain order parameters are introduced, resulting in a
polycrystalline crystal plasticity model with grain boundaries
described by J2 plasticity. Finally, the fracture order parameter is
incorporated into the model, leading to two types of ductile
fracture models with J2 plasticity and/or crystal plasticity.
In ductile materials, when the stress magnitude is larger than

their yield strength, plastic strain εp begins to develop. The elastic
strain εela is defined as the difference between the total strain and
inelastic strain. If plastic strain is the only inelastic strain, then
εela ¼ ε� εp, and the elastic energy density is given by

f elas ¼ 1
2
cijklðxÞεelasij εelaskl ¼ 1

2
cijklðxÞðεij � εpij Þðεkl � εpklÞ; (10)

where cijklðxÞ is the position-dependent elastic stiffness tensor.
First we consider the J2 plastic strain εpðJÞ , which is driven by the

second invariant of the stress tensor. Due to the volume
conservation during the plastic deformation44, the constraint on
εpðJÞ is given by

ε
pðJÞ
11 þ ε

pðJÞ
22 þ ε

pðJÞ
33 ¼ 0; (11)

Based on Eq. (8), the evolution of εpðJÞij is governed by19

∂ε
pðJÞ
ij

∂t
¼ �LðJÞijkl

∂ðf elas þ λε
pðJÞ
mm Þ

∂ε
pðJÞ
kl

¼ LðJÞijklðσkl � λδklÞ; (12)
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where δkl is the Kronecker delta. Based on Eq. (9), we have

∂ðεpðJÞ11 þε
pðJÞ
22 þε

pðJÞ
33 Þ

∂t ¼ LðJÞ1111ðσ11 � λÞ þ LðJÞ2222ðσ22 � λÞ
þ LðJÞ3333ðσ33 � λÞ ¼ 0;

(13)

from which λ is solved to be λ ¼ LðJÞ1111σ11þLðJÞ2222σ22þLðJÞ3333σ33
LðJÞ1111þLðJÞ2222þLðJÞ3333

. If the system

possesses cubic or higher symmetry, the properties of a forth rank
tensor gives LðJÞ1111 ¼ LðJÞ2222 ¼ LðJÞ3333

45, and then we obtain
λ ¼ 1

3 ðσ11 þ σ22 þ σ33Þ. In this case, Eq. (12) becomes

∂εpij
∂t

¼ LðJÞijklσ0kl; (14)

where σ0
kl is the deviatoric stress expressed by

σ0kl ¼ σkl � σmmδkl=3. K
ðJÞ
ijkl is position dependent given by19

LðJÞijkl ¼
(

0; J2 � σ0
Y þ R

Lpδijδkl; J2 > σ0
Y þ R

; (15)

where J2 ¼ 3
2 σ

0
ijσ

0
ij

� �1=2
is the second invariant of stress tensor, σ0

Y
denotes the initial yield strength, R represents the isotropic
hardening, and Lp is a positive quantity characterizing the kinetics
of plastic flow. Therefore, the plasticity evolution equation derived
from the variational principle with a cubic crystal symmetry agrees
with the classical J2 plasticity theory by choosing a proper LðJÞijkl

19.
Equation (15) is related to the Kuhn–Tucker conditions, which are
used in the phase-field ductile fracture models in earlier
reports4,11. In the derivation of the J2 plastic flow equation, we
employ the constraints of volume conservation. For the non-
associated plasticity model, usually the volume is not conserved
under plastic deformation, which is thus out of the scope of
this work.
Note that the J2 plasticity can be assumed for the whole system

and directly coupled with the fracture model4,11, which is the case
of our Type-II model as will be discussed later. Alternatively, the J2
plasticity can be assumed only at grain boundaries, accommodat-
ing crystal plasticity within each grain20, which will be the case of
our Type-I model.
Next we discuss the plastic flow in a single crystal. Based on the

crystal plasticity theory, the plastic flow within a single crystal is
anisotropic, and contributed from dislocation slips in a total of S
(active) slip systems46. The total plastic strain within a grain g is

given by εpij ¼
PS

α¼1 ε
pðα;gÞ
ij . εpðα;gÞij in each slip system should satisfy

the constraint20

hðα;gÞij ¼ ε
pðα;gÞ
ij � ε

pðα;gÞ
kl mðα;gÞ

kl mðα;gÞ
ij ¼ 0; α ¼ 1; :::; S; (16)

where mðα;gÞ ¼ ðsðα;gÞ � nðα;gÞ þ nðα;gÞ � sðα;gÞÞ= ffiffiffi
2

p
is the sym-

metric Schmid tensor (nðα;gÞ is the normal to the slip plane and
sðα;gÞ the slip direction). Note that mðα;gÞ differs by a factor of

ffiffiffi
2

p
from the one frequently used in crystal plasticity models such that
it satisfies the normalization condition mðα;gÞ

ij mðα;gÞ
ij ¼ 1. In a grain

with arbitrary orientation, the Schmid tensor is calculated by
mðgÞ

ij ¼ RðgÞim RðgÞjn mmn, where mmn is the Schmid tensor in the
reference coordinate system and RðgÞ is the rotation matrix
charactering the crystallographic orientation of the grain relative
to the reference coordinate system45.
Equation (16) indicates that the magnitude of a plastic strain

component is proportional to that of the corresponding Schmid
tensor component, i.e., εpðα;gÞij � mðα;gÞ

ij . Denoting the number of
nonzero independent components of mðα;gÞ

ij as nnic (2 � nnic � 6)
and the last nonzero component as mðα;gÞ

bd ≠0, the number of
independent constraints in Eq. (16) is nnic-1, since the summationP

ij≠bd m
ðα;gÞ
ij hðα;gÞij gives rise to the last constraint hðα;gÞbd ¼ 0 utilizing

the relation mðα;gÞ
ij mðα;gÞ

ij ¼ 1. Therefore, we introduce nnic-1

Lagrange multipliers λðα;gÞij ; ij ≠ bd, and the Lagrangian is given by

F� ¼
Z

1
2
cðgÞijkl ðεij �

XS
α¼1

ε
pðα;gÞ
ij Þðεkl �

XS
α¼1

ε
pðα;gÞ
ij Þ þ

X
ij≠bd

λ
ðα;gÞ
ij hðα;gÞij

" #
dV :

(17)

Here cðgÞijkl ¼ RðgÞim RðgÞjn RðgÞkw R
ðgÞ
lq Cmnwq , where Cmnwq is the elastic

tensor in the reference coordinate system. Based on Eq. (8) and
since that Lpðα;gÞijkl possesses a property that Lpðα;gÞijkl ≠ 0 only if i ¼ k
and j ¼ l (this property is due to the assumption of the TDGL
equation), the kinetic equation for εpðα;gÞij is given by

∂ε
pðα;gÞ
ij

∂t ¼ �Lpðα;gÞijkl �σkl þ λ
ðα;gÞ
kl � P

qw≠bd
λðα;gÞqw mðα;gÞ

qw mðα;gÞ
kl

 !" #
; ij ≠ bd; kl ≠ bd

∂ε
pðα;gÞ
bd
∂t ¼ �Lpðα;gÞbdbd �σbd �

P
qw≠bd

λðα;gÞqw mðα;gÞ
qw mðα;gÞ

bd

 !" #
;

(18)

where the relation ∂f elas
∂ε

pðα;gÞ
kl

¼ �σkl is used24. Instead of taking the

total derivative of Eq. (16) directly, we transform Eq. (16) into

ε
pðα;gÞ
ij mðα;gÞ

bd � ε
pðα;gÞ
bd mðα;gÞ

ij ¼ 0; (19)

Taking the total derivative of Eq. (19), substituting Eq. (18), and
assuming that Lpðα;gÞijkl can be written as Lpðα;gÞijkl ¼ χδikδjl with χ a
constant scalar, we obtain

mðα;gÞ
bd λij ¼ mðα;gÞ

bd σij �mðα;gÞ
ij σbd ; (20)

The solution to Eq. (20) is

λij ¼ σij �
mðα;gÞ

ij

mðα;gÞ
bd

σbd; (21)

Substituting Eq. (21) into Eq. (18) and utilizing the relation
mðα;gÞ

ij mðα;gÞ
ij ¼ 1, we obtain the kinetic equation

∂ε
pðα;gÞ
ij

∂t
¼ Lpðα;gÞijkl σqwm

ðα;gÞ
qw mðα;gÞ

kl ; (22)

which is basically the same as Eq. 10 in ref. 20. Here we strictly
derive the Lagrange multipliers in the kinetic equations by using
the time invariance of the constraints, without using the
equilibrium conditions. Lpðα;gÞijkl is chosen as20,47

Lpðα;gÞijkl ¼
(
0; jτðα;gÞj � Rðα;gÞ

Lp
τðα;gÞ

jτðα;gÞj�Rðα;gÞ

Dslip

� �ϖ
signðτðα;gÞÞδikδjl; jτðα;gÞj>Rðα;gÞ

; (23)

where τðα;gÞ ¼ σqwm
ðα;gÞ
qw is the resolved shear stress on each slip

plane, and Dslip, Rðα;gÞ, and ϖ are the temperature dependent drag,
slip resistance, and rate sensitivity of slip, respectively. Substituting
Eq. (23) into Eq. (22), the common crystal plasticity flow rule
(phenomenological constitutive model) is recovered20,47. There-
fore, both the J2 and crystal plasticity flow rules can be derived
from the phase-field framework with appropriate constraints,
which makes it convenient to couple plasticity with other order
parameters under a common and unified free energy functional.
The grain structure in a polycrystal is described by a set of order

parameters ηgð1 � g � NÞ, which represents the distribution of
the grain g, respectively (Fig. 1c). The plasticity within each grain
interior is described by crystal plasticity, accommodated by J2
plasticity near grain boundaries20. The total plastic strain is given
by the summation of two types of plastic strains, i.e.,

εpij ¼ ε
pðJÞ
ij þ

XN
g¼1

XSg
α¼1

ε
pðα;gÞ
ij ; (24)
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The order parameters ε
pðJÞ
ij and ε

pðα;gÞ
ij should satisfy the

constraints Eqs. (11) and (16), respectively. Following similar
approaches as described above, we can derive the kinetic
equation for the total plastic strain,

∂εpij
∂t

¼ LðJÞijklσ
0
kl þ

XN
g¼1

XSg
α¼1

LpðαÞijkl σqwm
ðαÞ
qwm

ðαÞ
kl ; (25)

The kinetic coefficients are given as functions of the grain order
parameters,

LðJÞijkl ¼
( 0; J2 � σGB

Y

Lpδijδkl½1�
PN
g¼1

yðηgÞ�; J2 > σGB
Y

; (26)

Lpðα;gÞijkl ¼
(
0; jτðα;gÞj � Rðα;gÞ

Lp
τðα;gÞ ð

jτðα;gÞj�Rðα;gÞ

K Þnsignðτðα;gÞÞyðηgÞδikδjl; jτðα;gÞj>Rðα;gÞ
;

(27)

where yðηgÞ is the interpolation function defined by20

yðηgÞ ¼ η12g ð3� 2η6gÞ. The elastic tensor in a polycrystalline

structure is given by cijklðηgÞ ¼
P

g yðηgÞcðgÞijklþ ½1�Pg yðηgÞ�cðGBÞijkl ,

where cðGBÞijkl is the elastic tensor at the grain boundary.
The spatial distribution of cracks is described by a scalar

parameter ϕ, where ϕ= 0 indicates the undamaged region, and
ϕ= 1 refers to the fully cracked region, as illustrated in Fig. 1b. The
order parameter ϕ continuously changes from 0 to 1, and
the width of the transition region is determined by a length scale
parameter l0. Rigorous analysis shows that the phase-field brittle
fracture model converges to Griffith’s theory of brittle fracture in
the sense of Γ-convergence when l0 ! 02,3,48.
In the presence of cracks, the total free energy is given by2,9

F ¼
Z

Ω

½f elas þ f frac þ f g�dΩ ¼
Z

Ω

½ð1� ϕÞ2fþelas þ f�elas þ f frac þ f g�dΩ;
(28)

In Eq. (28), fþelas and f�elas are the tensile and compressive parts of
the elastic energy density, respectively, f frac is the fracture energy
density, and f g is the grain energy density. In the absence of
cracks, f elas ¼ fþelas þ f�elas. The elastic energy is split into the tensile
and compressive parts since only the tensile elastic energy can be
released by crack growth. Volumetric/deviatoric split5 and spectral
split10 are two popular methods to split the elastic energy. In most
cases, numerical results based on these two methods are similar2.
However, when the three principal strains are all negative, only
the spectral split method produces reasonable results6, which is
therefore adopted in this work. Note that the spectral split method
does not consider the influence of the crack orientation, which
requires more complex decomposition methods of the stress
tensor49,50.
In the spectral split method, the elastic strain tensor is

decomposed as εelas± ¼P3
I¼1 <ε

elas
I >±nI � nI , where

< � >± :¼ ð�± j � jÞ=2, and εelasI and nI are the eigenvalues and
eigenvectors of the elastic strain tensor. The split of the elastic
energy density associated with a general elastic stiffness tensor
can be found in the Supplementary Note 2. For the isotropic
elasticity, the expression for the tensile and compressive elastic
energy density is simply9

f ±elas ¼
λ

2
htrðεelasÞi2± þ μ trððεelasÞ2± Þ; (29)

where λ and μ are the Lamé constants.
To describe the influence of cracks on the stress distribution, an

effective stiffness tensor ceffijklðηg;ϕÞ is introduced, which can be

obtained by taking the partial derivatives45,

ceffijklðηg;ϕÞ ¼
∂2½ð1� ϕÞ2fþelas þ f�elas�

∂εelasij ∂εelaskl

: (30)

The expression for each component of ceffijklðηg;ϕÞ for the
isotropic elasticity is provided in ref. 9. Utilizing ceffijklðηg;ϕÞ, the
elastic energy density is rewritten as

f elas ¼ 1
2
ceffijklðηg;ϕÞεelasij εelaskl ¼ 1

2
ceffijklðηg;ϕÞðεij � εpij Þðεkl � εpklÞ; (31)

which is in the same format with Eq. (10) except that the effective
elastic tensor changes from cijklðηgÞ to ceffijklðηg;ϕÞ. Therefore, the
plastic flow equations derived above are still valid in the presence
of cracks, and the only change is that currently the elastic tensor is
a function of ϕ.
The fracture energy density is expressed by9

f frac ¼ GcðxÞ ϕ2

2l0
þ l0

2
∂ϕ

∂xi

∂ϕ

∂xi

� �
; (32)

where GcðxÞ is the fracture toughness. Since GcðxÞ and l0 are both
positive, the fracture energy in Eq. (32) is zero in the regions with
ϕ= 0, and becomes positive in the vicinity of cracked regions with
0 < ϕ ≤ 1. Thus cracks are energetically unfavored when only
considering the fracture energy expressed by Eq. (32). When the
load is larger than the critical value, cracks grow since the increase
of the fracture energy can be compensated by the decrease of the
tensile elastic energy through the coupling term ð1� ϕÞ2fþelas in
Eq. (28). When ϕ increases to the value of 1, the driving force from
the coupling term ð1� ϕÞ2fþelas vanishes, and the further increase
of ϕ beyond 1 is unfavored by the fracture energy. Thus the value
of ϕ is confined within the range 0 < ϕ ≤ 1. When the load is
removed, cracks (the regions with ϕ ≥ 0.5) are maintained by the
irreversible conditions as discussed below.
In our model, the fracture toughness GcðxÞ is a function of grain

structures16 and plastic strain11. First we only consider the
influence of grain structures, which is expressed by

GcðηgÞ ¼
X
g

yðηgÞGinðgÞ
c þ 1�

X
g

yðηgÞ
" #

GGB
c ; (33)

where GinðgÞ
c and GGB

c are the fracture toughness in the grain
interior and at grain boundaries, respectively. In the previous
brittle fracture model for polygrains16, the fracture toughness only
depends on GinðgÞ

c , and the decrease of fracture toughness at grain
boundaries is modeled by introducing an interface weakening
coefficient. Here, the fracture toughness is a function of both GinðgÞ

c
and GGB

c , which are summed through the interpolation function, in
the same format as yield strength and elastic tensor. Equation (33)
clearly defines the dependence of the overall fracture toughness
on GGB

c , compared to the previous method by introducing the
interface weakening coefficient16.
Next the influence of plastic strain on fracture toughness is

incorporated. It is assumed that Gc is decreased as a function of
the von Mises equivalent plastic strain εeq, which is defined by

εeq ¼
ffiffi
2
3

q R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_εp : _εp

p
dτ11. Here a smoothed degradation function is

proposed as

Gcðηg; εeqÞ ¼ GcðηgÞ 0:5� gres
2

� �
tanh 2 1� εeq

εhalf

� �	 

þ 0:5þ gres

2

� �� �
;

(34)

where gres is the residual fracture toughness with a large plastic
strain, and εhalf denotes the strain value when the fracture
toughness decreases to about half of the initial value. The value of
εhalf controls the decreasing rate of GcðxÞ as εeq increases, and thus
εhalf describes the coupling strength between plastic strain and
fracture toughness. Based on the comparison between phase-field
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simulations and experiments11, the value of εhalf is between 0.05
and 0.15, and the crack morphologies at different values of εhalf is
discussed in Supplementary Note 4. In ref. 11, the toughness
degradation function is written as a piecewise function of εeq, and
the profile based on the proposed tanh function in Eq. (34) is
similar to that described by a piecewise function, as shown in
Supplementary Fig. 1. Note that the fracture toughness is
independent of elastic strain in this work, and thus the simulations
under cyclic loads correspond to the LCF with plasticity dominant
in the fatigue process.
For simplicity, here εeq is treated as a history variable, which

depends on the value of εpij in all the previous time steps and
independent of the current value of εpij . To derive the same plastic
flow equations as in the presence of cracks, the relation ∂εeq

∂εpij
¼ 0 is

employed. A similar assumption is used in ref. 11.
The free energy density for the grain structure part is given by51

f g ¼ B 1� 4
XN
g¼1

η3g þ 3
XN
g¼1

η2g

 !2" #
þ 1
2
βη
XN
g¼1

j∇ηgj2; (35)

where B and βη are the coefficients for the bulk term and gradient
term, respectively.
The grain structure is relaxed at high temperatures in the

absence of plastic strain and cracks, i.e., εpij and ϕ are maintained
zero. Therefore, the evolution of the grain order parameter ηg is
described by a typical TDGL equation

∂ηg
∂t

¼ �Lg
δF
δηg

¼ �Lg 12B �η2g þ ηg
X
g

η2g

" #
� βη∇

2ηg

( )
; (36)

On the other hand, the evolution of ϕ and εpij is assumed to
occur at room temperature, with the grain structure frozen. The
evolution of ϕ is described by solving a TDGL equation

∂ϕ

∂t
¼ �Lφ

δF
δϕ

; (37)

where Lϕ is the kinetic coefficient.
The quasi-static state is assumed so that the system is in the

mechanical equilibrium at every time step, i.e.

∂σij

∂xj
¼ 0; (38)

Based on the above derivations, we construct two types of
phase-field models on ductile fracture. In the Type-I model, the
grain structure and crystal plasticity are considered, and the plastic
strain is evolved by solving Eq. (25). Compared to previous ductile
fracture models with crystal plasticity17,18, our Type-I model
describes the grain structure by phase-field order parameters.
The introduction of the grain order parameters has two
advantages. First, the grain boundaries become diffuse interfaces,
and by utilizing the interpolation function, our model can naturally
describe the distinct properties of grain boundaries such as elastic
stiffness, yield strength, and fracture toughness. Second, the
evolution of grain structures can be described by solving the grain
order parameters from the kinetic equations, and thus our model
can be readily extended to simulate the kinematic hardening. It is
noted that, although kinematic hardening is not explicitly
included in our formulation, since it is caused by heterogeneous
plastic deformation and microstructure change52,53, macroscopi-
cally the simulated structure can automatically exhibit kinematic
hardening behaviors. The fidelity depends on how many factors
that contribute to the heterogeneity are incorporated into the
model. In classical plasticity theories, kinematic hardening is
introduced by directly defining a phenomenological non-convex
dissipation potential, which however does not have a clear
physical meaning consistent with the defined phase-field free
energy.

The simulations based on the Type-I model are time consuming
when the model is applied to a polycrystalline structure with many
grains. At a length scale much larger than the grain size, the
influence of grain structures could be mostly averaged out, and
then J2 plasticity becomes a reasonable approximation for the
whole system.
Based on pure J2 plasticity, we construct the Type-II model,

where the grain structure is neglected, and the plastic strain is
evolved by solving Eq. (14). In our Type-II model, the plastic strain
and crack order parameter are treated equally, all governed by
TDGL-type equations, which are obtained from the variational
derivatives of the same free energy functional, i.e. Equation (28).
On the other hand, in previous ductile fracture models with only J2
plasticity, the plastic strain is evolved by an elastic predictor and
plastic corrector (return-mapping) algorithm utilizing the
Kuhn–Tucker relations4,11. From numerical perspective, our Type-
II model and the J2 ductile fracture model produce similar final
results. However, the TDGL equation for plasticity in our model fits
better to a typical phase-field framework as discussed above.
In previous ductile fracture models4,11, the elastic energy is split

based on volumetric/deviatoric split, which is easier to implement
compared to the spectral split2. However, the volumetric/
deviatoric split cannot correctly deal with the case when all the
three principal strain components are negative6. Here we employ
the spectral split method for the elastic energy split when
modeling ductile fracture, which could produce reasonable results
even when the principal strain components are all negative. To
implement the spectral split, the effective stiffness tensor
ceffijklðηg;ϕÞ is used in the elasticity and plasticity solvers, as will
be shown below.

Numerical scheme and simulation setup
The numerical scheme is developed within the quasi-static regime,
i.e., the loading rate is assumed to be small enough that all the
mechanical processes reach their equilibria. The goal of the
numerical scheme is to obtain the distribution of plastic strain εp,
total strain ε, and crack order parameter ϕ. A staggered method is
adopted, which leads to significantly improved robustness
compared to the monolithic scheme2,9,10.
Mode-I fracture is studied in this work, and the system setting is

sketched in Fig. 2a, where we change the displacement on the top
surface with the bottom surface fixed. The flow chart of the
staggered method is illustrated in Fig. 2b. First, the surface
displacement is updated in each loop. Second, the elasticity solver
provides the updated distribution of total strain and stress based
on the distributions of plastic strain and crack from the previous
time step. Third, the updated stress is used to obtain the
distribution of plastic strain with the fixed crack distribution.
Finally, the crack order parameter is updated using the new total
strain and new plastic strain. The details of each solver are
provided below, and all the three solvers are iterative in nature.
Note that there are two types of time steps in the staggered
scheme, i.e. the real physical time step where the surface
displacement is updated and the iteration time steps in the three
solvers that do not have physical meaning given the quasi-static
assumption. In the three iterative solvers, the time step is set as
Δt ¼ 1.
In the numerical solver, the elastic energy is rewritten as

f effelas ¼ ½ð1� kÞð1� ϕÞ2 þ k�fþelas þ f�elas; (39)

where k is a small quantity to avoid numerical singularity9.
In this work, we assume that the elastic tensors of both grain

interior and grain boundaries are isotropic, and the close-form
expression of ceffijklðηg;ϕÞ as a function of ϕ given by ref. 9 is
employed. The distribution of ceffijklðηg;ϕÞ is calculated based on the
distribution of ϕ from the previous time step. Then the obtained
ceffijklðηg;ϕÞ serves as input to the elasticity solver, which is based on
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a TDGL equation in terms of a virtual strain54. The kinetic
coefficient in the virtual strain TDGL equation is chosen as 0.5.
Note that the elasticity solver is based on the efficient FFT method,
which enables us the simultaneous simulations of plastic flow and
crack evolution under cyclic loads. The final solution from the
heterogeneous elastic solver guarantees the equilibrium condition
given by Eq. (38), and the proof is provided in ref. 54.
Strain controlled boundary conditions are employed. The

surface displacement is controlled by the average strain ε33, and
the other average strain components are maintained zero. During
the loading process, the incremental strain Δϵ33 ¼ 2:4 ´ 10�6, and
during unloading process, the incremental strain
Δϵ33 ¼ �4:8 ´ 10�6. Within the infinitesimal strain theory, the
surface displacement is ut ¼ ε33L3 with L3 the system dimension
along the x3 direction. The outputs of the elasticity solver are the
total strain field ε, elastic strain field εela, and stress field . The
outputs of the elasticity solver are used to update the plastic strain
and cracks as shown below.
An explicit Euler method is employed to solve Eq. (25) for the

Type-I model and Eq. (14) for the Type-II model, respectively. The
kinetic coefficient is chosen as Lp ¼ 1:0 ´ 10�4. We run two test
simulations based on the Type-II model by enlarging and
decreasing the values of Lp by four times, and negligible
differences are present in the resulting displacement-load curves,
as shown in Supplementary Fig. 9. In each iteration step, after εp is
updated, the elastic strain εelasand stress are updated based on
the following expressions

εelas ¼ ε� εp; σij ¼ ceffijklðηg;ϕÞϵelaskl ; (40)

The convergence is considered achieved if at the nth iteration
Max ½ϵpnðxÞ � ϵpn�1ðxÞ� � 10�7is satisfied, where n denotes the
iteration step.
An explicit Euler scheme is adopted for the temporal evolution

of Eq. (37). The kinetic coefficient is chosen asLϕ ¼ 1:0 ´ 10�2. The
crack order parameter is considered to reach equilibrium when
the criterion Max ½ϕnðxÞ � ϕn�1ðxÞ� � 10�4 is satisfied. The explicit
scheme is adopted in the plasticity and crack solvers for simplicity,
as discussed in ref. 55. Note that the most computationally
intensive part of the simulation is the elasticity solver, and the
smaller time step required in the explicit algorithm does not
significantly increase the computation time. For the spatial
discretization of the crack solver, we employ the FDM since
GcðxÞ is position-dependent.
In our model, the region with ϕnðxÞ> 0:5 is regarded as cracked,

and the irreversible condition ϕnþ1ðxÞ 	 ϕnðxÞ is guaranteed at
cracked regions. In previous fracture models9,16, the irreversible
condition ϕnþ1ðxÞ 	 ϕnðxÞis maintained regardless of the value of
ϕnðxÞ, which considers the increase of the crack order parameter
to any magnitude as dissipation. In our model, we assume that

ϕnðxÞ � 0:5 corresponds to the region with elastic deformation
and the positive value of ϕðxÞ under a small tensile load is allowed
to decrease after the load is removed. We run simulations with
both settings of irreversible condition, and the resulting differ-
ences are negligible in the quasi-static regime.
The simulations employ regular grids nxΔx ´ nyΔx ´ nzΔx where

Δx is the grid spacing with the unit of length. In the above solvers,
several dimensionless parameters are used, i.e., l�0 ¼ l0

Δx, x
�
i ¼ xi

Δx,

G�
c ¼ Gc

c0Δx
, and c�ijkl ¼

ceffijkl

c0
, where c0 is a normalization constant with

the value of 1 GPa. In terms of the dimensionless parameters, Eq.
(32) becomes

f frac ¼ G�
cðxÞ

ϕ2

2l�0
þ l�0

2
∂ϕ

∂x�i

∂ϕ

∂x�i

� �
; (41)

From Eq. (41), the grid number of the cracked region is mainly
determined by the dimensionless factor G�

c l
�
0. When G�

c l
�
0 is set

between 0.89 and 3.5, the grid number of the cracked region is
between 5 and 23, as demonstrated in Supplementary Fig. 2. The
Gibbs phenomenon and grid pinning effect will be reduced with
more grids near the transition region. Therefore, in our simula-
tions, the factor G�

c l
�
0 is set to be 3.5. Since l�0 ¼ l0

Δx and G�
c ¼ Gc

c0Δx
,

the real values of l0 and Gc are proportional to the grid spacing Δx.
Since Gc is a material property independent of sample dimensions,
the dependence of G�

c on Δx indicates that the cracking problem is
size-dependent and samples with the larger dimensions can be
cracked with smaller elastic energy density (the pure elastic
problem is scale independent).
In the following sections, we apply the two types of ductile

fracture models to several numerical examples. All the simulations
are run in one computer node with 32 cores using the Message
Passing Interface (MPI). Under the monotonic loads, the simula-
tions can be finished within ~26 hours. Under cyclic loads, the
simulations can be finished within ~7 days.

Simulation results based on the Type-I model
In this section, the Type-I model is employed. Crack growth with
crystal plasticity is studied with FCC crystal structures as an
example, which possess 12 slip systems56. In a FCC crystal, the slip
plane n is along f111g, and the slip direction s is along <110>.
Based on the parameter setting of previous reports4,11, the material
parameters are set as EðgÞ ¼ EGB ¼ 72GPa, υðgÞ ¼ υGB ¼ 0:33,
l0 ¼ 3 μm, gres ¼ 0:1, εhalf ¼ 0:15, and k ¼ 1:0 ´ 10�9 unless
otherwise noted. The yield strength at grain boundaries is
σGBY ¼ 750MPa. The initial slip resistance is R0 ¼ 200MPa. For
simplicity, it is assumed that the self and latent hardening
parameters are equal, i.e., Hαα ¼ Hαβ ¼ H, and the hardening law
is given by47 Rðα;gÞ ¼ R0 þ Hð1þ bαÞ εeq

1þbαεeq
with H ¼ 10MPa and

bα ¼ 8. The other slip parameters are Dslip ¼ 1GPa and ϖ ¼ 1. The

Fig. 2 Illustrations for numerical implementation. a Schematic for the mechanical boundary conditions. b Flowchart for the staggered
scheme with the updated variables marked in red.
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system dimension is 256Δx × 1Δx × 128Δx with Δx= 0.78 μm. We
assume that the fracture toughness within grain interior and at
grain boundaries are equal, i.e., GinðgÞ

c ¼ GGB
c ¼ 7:02 ´ 102Jm�2. The

purpose of the assumption is to remove the influence of grain
boundary weakening, and exclusively reveal the dependence of
crack paths on the plastic strain in polycrystals. Note that a pre-
damaged region is added in the middle to simulate the system
subjected to tension with single edge notched (see Supplementary
Note 3 for detailed reasons), and the pre-damaged region serves as
the initial crack.
We run simulations with the load applied to different lattice

orientations of a single crystal, choosing the [100] and [111] lattice
orientations as two examples. As seen in Fig. 3a, when the load is
applied along the [111] direction, the maximal load is larger and
the displacement before fully broken is smaller compared to those
along the [100] direction. The crystal is more brittle when the load
is applied along the [111] direction than the [100] direction in the
sense of crack growth.
Our simulation results demonstrate that the anisotropy of

plastic flow leads to anisotropy of crack growth in a single crystal.
As shown in Fig. 3b, when the load is applied along the [100]
direction of the crystal, the distribution of plastic strain is
symmetric with respect to the initial crack, and the crack growth
direction is perpendicular to the load direction. The total plastic
strain is decomposed to contributions from each slip system. As
demonstrated in Supplementary Fig. 4, the plastic strain is mainly
contributed from four slip systems with the slip directions
contained within the 2D plane, consistent with the previous
report57. On the other hand, when the load is applied along the
[111] direction, the distribution of plastic strain is asymmetric with
respect to the initial crack, with the plastic strain concentrated on
the upper-right and lower-left regions of the system as shown in
Fig. 3c. The contributions from each slip system for the (111)-
oriented crystal are shown in Supplementary Fig. 5, which
demonstrates that the slip directions of two dominant slip
systems form an angle of 30° with the 2D plane, and the two
slip systems dominate over the two with the slip directions
contained within the 2D plane. This is because the resolved shear
stress on the dominant slip systems is larger, as illustrated by the
sizes of plastic zones in Supplementary Fig. 6, which are plotted
following an analytical method57. The asymmetric distribution of
the plastic strain results in the deviation of the crack paths from
the horizontal direction, as demonstrated in Fig. 3c. Therefore, the
anisotropy of crystal plasticity could lead to a change from pure

Mode-I cracking to mixed-mode cracking, which is consistent with
experimental observations58.
FCC bicrystals with the alternation of (100)- and (111)-oriented

grains are studied as an example. As shown in Fig. 4b, the
distribution of plastic strain is highly dependent on the grain
structures. Specifically, the plastic strain is concentrated at some
grain boundaries. The heterogeneous plastic deformation in Fig.
4b is a sign of kinematic hardening, which indicates that kinematic
hardening is automatically captured by our phase-field model
with a strong structural inhomogeneity, although it is not explicitly
introduced into the free energy functional.
Since the accumulation of plastic strain reduces the fracture

toughness as indicated by Eq. (34), the crack deflects into the
grain boundaries, resulting in intergranular crack growth, as
demonstrated in Fig. 4a. Note that the crack deflection is purely
caused by the inhomogeneous distribution of plastic strain, rather
than by the lower fracture toughness at grain boundaries as
discussed in previous work16, since here it is set that GinðgÞ

c ¼ GGB
c .

Therefore, our simulation results demonstrate that the crack paths
can be deflected by the underlying grain structures when crystal
plasticity is considered within each grain and J2 plasticity is
assumed near grain boundaries.
As a comparison, crack growth is simulated under the same

system settings except that J2 plasticity is employed within each
grain, as did in ref. 20. As shown in Fig. 4c, d, the crack grows
straightly along the horizontal direction, and the distribution of
plastic strain is symmetric with respect to the crack plane. Both the
crack path and plastic strain distribution with J2 plasticity are
consistent with earlier reports4,11.

Simulation results based on the Type-II model
In this section, we study the crack growth based on the Type-II
model. Ductile fracture growth under monotonic loads is studied
first, followed by the simulations of fatigue crack growth under
cyclic loads.
The elastic constants are E ¼ 72GPa and υ ¼ 0:33. The initial

yield strength is given by σ0Y ¼ 345MPa, and power-law strain
hardening is assumed, with the expression R ¼ E

250 ðεeqÞ1=2
following ref. 59. The length scale parameters are changed to l0 ¼
0:3mm and Δx= 78 μm, and the system dimensions are sketched
in Fig. 5a. The fracture toughness is Gc ¼ 7:02 ´ 104Jm�2.
To demonstrate the influence of J2 plastic strain, we run

simulations with and without plasticity, where the latter is

Fig. 3 Crack growth in (100)- and (111)-oriented single crystals. a Load-displacement curves with the load applied to (100)- and (111)-
oriented single crystals. b, c Distribution of equivalent plastic strain in (100)- and (111)-oriented single crystals, respectively. The red lines
indicate the newly grown cracks and the green lines represent the initial crack.
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achieved by maintaining εp as 0. As shown in Fig. 5b, the system
can endure a larger displacement before fully broken with J2
plasticity compared to the case without plasticity. The influence of
plastic strain on crack growth is manifested in two aspects. First,
the development of plastic strain reduces the stress magnitude
ahead of the crack tip. As demonstrated in Fig. 5c, d, under the

same displacement, the stress component ahead of the crack tip
with plasticity is roughly half of that without plasticity. From this
aspect, the development of plasticity slows down crack growth,
since both can release the elastic energy under tension. Second,
the accumulation of the equivalent plastic strain reduces the
fracture toughness based on Eq. (34). As shown in Fig. 5e, the

Fig. 4 Crack growth in FCC bicrystals. a, b Distribution of grains, cracks, and equivalent plastic strain considering crystal plasticity within each
grain. c, d Distribution of grains, cracks, and equivalent plastic strain assuming J2 plasticity within each grain. The green lines indicate the
position of the initial crack.

Fig. 5 Crack growth under monotonic displacement-controlled tests. a Schematic for system setup. b Load-displacement curves with and
without plasticity. c, d Stress component along the loading direction with and without plasticity corresponding to Points C and D in (b),
respectively. e Distribution of equivalent plastic strain corresponding to (d).
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equivalent plastic strain is concentrated near the crack tip,
resulting in local degradation of the fracture toughness. From
the second aspect, the development of plasticity facilitates the
crack growth. In our simulation results, the first factor dominates
over the second under monotonic loads. Crack growth behaviors
are further simulated at different values of εhalf, and crack
bifurcation is observed with a small εhalf due to significant plastic
degradation, as demonstrated in Supplementary Fig. 7.
Next, the mechanical boundary condition is changed to cyclic

loads. The surface displacement is varied periodically between 0
and a fixed value, as sketched in Fig. 6(a). Note that the maximal
displacement is large enough to cause significant plasticity, and
thus the fatigue belongs to the LCF.
Figure 6b shows a typical cyclic load-displacement curve with the

maximal displacement of 0.3 mm, which corresponds to an average
strain of 3.0%. The load of the first loading cycle increases from zero
to the maximum value, distinct from those of the following cycles,
which alternate between negative and positive values. The maximal
load decreases cycle by cycle, and after 9 cycles, the maximal load
decreases to zero, indicating that the sample is fully broken. Note
that the maximal displacement of 0.3 mm is about half of the
maximal displacement before fully broken under monotonic
displacement-controlled condition as shown in Fig. 5b. Compared
to the case of monotonic loads, the influence of cyclic loads comes
from two contributions. First, the stress ahead of the crack tip
increases over cycles due to plastic hardening. Second, the fracture
toughness ahead of the crack tip is decreased due to the
accumulation of the equivalent plastic strain.
The evolution of the average equivalent plastic strain during an

exemplary 6th cycle is analyzed in detail. As shown in Fig. 7a, the
plastic flow is not activated in the initial stages of loading and
unloading, i.e., from Point B to C and from D to E. Instead, the
plastic deformation occurs mainly in the late stages of loading and
unloading, i.e., from Point C to D and from E to F. On the other
hand, the crack grows only in the late stage of loading. The
distributions of a plastic strain component at Points B-F are shown
in Fig. 7b–f. Figure 7b demonstrates the periodic distribution of
plastic strain on the flanks of a fatigue crack, and each maximum
corresponds to a cycle. When the displacement increases from
Point B to C, there are almost no changes as shown in Fig. 7b, c.
When the displacement is further increased to its maximum at
Point D, a new peak of plastic strain appears ahead of the crack tip,
as shown in Fig. 7d. Note that the magnitude of the plastic strain at
the new peak is larger than that caused by previous cycles in Fig. 7
(d). When the displacement decreases from Point D to E, there is
no plastic flow from the comparison between Fig. 7d, e. When the
displacement further decreases to its minimum at Point F, the
plastic strain at the new peak decreases, and reaches a value

similar to that from previous cycles, as demonstrated in Fig. 7(f).
Note that the equivalent plastic strain as shown in Fig. 7(a) always
increases over cycles regardless of the increasing or decreasing of
the plastic strain component. Figure 7(b)–(f) demonstrate that the
striped pattern of plastic strain is caused by the stress variation
near the crack tip under cyclic loads. The temporal evolution of
plastic strain as demonstrated in Fig. 7 is qualitatively consistent
with Laird’s plastic blunting concept model1,39.
The plastic strain on the crack flanks results in contacted crack

surfaces, i.e., crack closure. During the unloading process of the
8th cycle, under a positive load, as labeled by a red dot in Fig. 6b,
the distribution of plastic strain is shown in Fig. 8a, which
demonstrates that the plastic strain alternates between negative
to positive. Positive plastic strain leads to local crack closure and
compressive stress, as demonstrated in Fig. 8b.
The simulation results indicate that the cyclic plastic flow is the

origin of the fatigue striations, which are commonly observed as saw-
like marks on the crack faces. We calculate the displacement field

caused by the plastic strain by ui ¼
R d3q

ð2πÞ3 Ωijcijkmnnk~ε
p
mne

iq�rwhere

Ωij ¼ ðcijklnknlÞ�1and ~εpmn ¼
R
εpmne

�iq�rd3x60,61. The result is plotted
in Fig. 8c, which demonstrates a periodic variation along the crack
growth direction. Note that the displacement field is symmetric with
respect to the crack, i.e., the crack surfaces show the patterns of
peak-to-peak and valley-to-valley. The displacement profile along the
purple line in Fig. 8c is shown in Fig. 8d. As can be seen from Fig. 8d,
one load cycle produces one minimum on the displacement profile,
and the striation spacing is equal to the crack growth per cycle,
consistent with the claim of Laird’s Plastic blunting model39.
Crack growth rate is analyzed based on the simulation results.

For the LCF, plasticity dominates and the condition near the crack
tip is described by the J-integral ΔJ, which is defined by1,62

ΔJ ¼
Z

Γ

ðWn1 � njΔσjk
∂Δuk
∂x

Þds; (42)

where n1 is the x1 component of the normal to the path, and Δσjk
and Δuk are the changes in the stress tensor and displacement
between the minimal loads and maximal loads. The quantity W
has the physical meaning of stored elastic energy density, and is
calculated by the expression W ¼ R εmax

0 ðσij � σ0
ijÞdεij with σ0

ij the
stress under the minimal loads. It is proven that ΔJ is path
independence1. Analogous to the Paris law, it is proposed that
under large scale yielding, the crack growth rate is given by10

da
dN

¼ kðΔJÞn; (43)

By changing the magnitude of the surface displacement, we study
the crack growth behavior as a function of ΔJ. As shown by the red

Fig. 6 Displacement and load evolution under cyclic loads. a Schematic for the evolution of the surface displacement. b Load-displacement
curve with the displacement varying between 0.0 mm and 0.3 mm. The number and the color of the curve indicate the number of cycles.
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line in Fig. 9a, the crack growth rate is fitted by da
dN � ðΔJÞn with

n � 1:6. Since ΔJ � ðΔKÞ2 under small scale yielding1, the calculated
growth law corresponds to a Paris exponent of ~3.2, which agrees
with experimental observations (Fig. 10A. 3 of the book1).
The simulation results reveal the influence of different yield

strength on the fatigue crack growth. When the initial yield
strength σ0

Y becomes larger, the material is stiffer, closer to a
brittle material. As shown in Fig. 9a, the exponent of the growth
law becomes larger with increasing σ0Y. This agrees with the
experimental observations that brittle materials typically have
larger Paris-law exponents than ductile materials7. Note that there
exists a crossover between the blue line with larger σ0

Y and the red
line with smaller σ0

Y in Fig. 9a. This is because larger yield strength
leads to larger stress and smaller plastic strain near the crack tip,
and the two factors have opposite effects on crack growth. When
ΔJ is large, the crack propagates faster with larger σ0

Y due to the
larger stress ahead of the crack tip. From the simulation results,
the crack growth is dominated by stress magnitude in this case.
On the other hand, when ΔJ is small, larger σ0Y gives rise to smaller
plastic strain near the crack tip. As a result, the decrease of the
fracture toughness is smaller, leading to slower crack growth. In
this situation, the crack growth is dominated by the degradation
rate of fracture toughness. At an intermediate ΔJ, a crossover
occurs when the two factors are balanced. The crack growth rate is
also studied as a function of εhalf. As shown in Fig. 9b, smaller εhalf,
i.e., stronger coupling between plastic strain and fracture
toughness, generally gives rise to faster crack growth and larger
exponent of the growth law.

The fatigue behaviors are also analyzed based on the strain/life
method by calculating the relation between plastic strain and
cycle numbers to failure. The LCF is typically described by the
Coffin–Manson relation31, which assumes the following relation

Δεp ¼ αfN
β
f ; (44)

where Δεp is the magnitude of plastic strain, αf an empirical
constant, Nf number of cycles to failure, and β is known as the
fatigue ductility exponent. The value of Δεp is calculated from the
first loading cycle of the load-displacement curves. As shown in
Fig. 10, the calculated exponent β is between −0.3 to −0.53, close
to the typical experimental value, which is ~�0:531.
The simulation results reveal the influences of initial yield

strength and εhalf on the fatigue life. As shown in Fig. 10a, with a
larger value of σ0

Y, the exponent β becomes smaller in its
magnitude, and the fatigue life becomes shorter under the same
plastic strain. The decrease of the fatigue life is mainly caused by
the increase of the stress ahead of the crack tip. Note that when
the magnitude of Δεp is smaller, the difference of fatigue life
caused by different σ0

Y becomes smaller. In this case the crack
growth is dominated by the degradation of fracture toughness,
which is determined by the magnitude of Δεp. The effect of εhalf
on the value of β is demonstrated in Fig. 10b, which shows that
the value of β changes from −0.53 to −0.48 when εhalf decreases
from 0.15 to 0.075. The cycle number N decreases with a
decreasing εhalf, which suggests that the fatigue life becomes
shorter when the coupling between plastic strain and fracture
toughness is stronger.

Fig. 7 Evolution of plastic strain during a loading cycle. a Evolution of the average equivalent plastic strain and crack length.
b–f Distribution of the plastic strain component along the loading direction, corresponding to Points B-F in (a), respectively. The red curve in
each figure represents the contour of the crack. The color legend is shown on the top right. The numbers on (b–f) indicate the numbers of
cycles.
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To reveal the underlying mechanism of the Coffin–Manson
relation, crack growth rate is plotted as a function of Δεp. As
shown in Supplementary Fig. 8, the exponent of the power law in
the logarithmic scale is close to 2, i.e.,

da
dN

¼ CεðΔεpÞ2; (45)

Integrating Eq. (45) with respect to both a and N gives,

ac � a0 ¼ CεðΔεpÞ2Nf ; (46)

where ac is the critical crack size before the catastrophic failure
and a0 is the initial crack size. Equation (46) is equivalent to the
Coffin–Manson relation with β � 0:5. Therefore, the
Coffin–Manson relation results from the fact that the crack growth
rate is a power law function of Δεp in LCF. The value of β is close to
the reciprocal of the exponent in the crack growth law.

Summary of the work
A general phase-field framework with constraints on order
parameters is developed from the variational principle using the

Fig. 9 Crack growth rate versus the path integral ΔJ. a Results with different initial yield strength. b Results with different values of εhalf. The
dots with different colors represent the results from phase-field simulations, and the dotted lines are fitted based on the simulation results.
The slopes of the fitted lines are labeled.

Fig. 8 Crack closure and fatigue striations after eight load cycles. a Distribution of a plastic strain component. b Distribution of a normal
stress component. The red curves in (a and b) represent the contour of the crack. c Distribution of the displacement field. d Profile of the
displacement along the purple line in (c).

F. Xue et al.

12

npj Computational Materials (2022)    18 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Lagrange multiplier method. It is shown that the Lagrange
multipliers in a non-equilibrium state can be solved from the
time invariance of the constraints, and the modified TDGL
equations can be derived. Based on this framework, we formulate
two types of phase-field models on ductile fracture. The Type-I
model incorporates three sets of order parameters, which describe
the distributions of cracks, plastic strain, and grains, respectively.
In the Type-I model, crystal plasticity is employed in the grain
interior, accommodated by J2 plasticity at grain boundaries. The
Type-I model is applied to FCC single crystals and bicrystals,
and the simulation results demonstrate that grain orientation and
grain boundary location strongly affect the plastic flow and
consequently crack paths.
In the Type-II model, J2 plasticity is assumed for the whole

system and the grain structure is neglected, which approximates
the situation at the continuum length scale. The Type-II model is
applied to investigate LCF, and our simulation results reproduce
several features of fatigue cracks in ductile materials. It is
demonstrated that crack closure and striations are caused by
the periodic distribution of plastic strain on the crack flanks, and
that the striation spacing is equal to the crack growth per cycle.
Crack growth rate is analyzed based on the J-integral, and
the calculated growth law is consistent with experiments. The
dependence of crack growth rate on yield strength and on the
coupling strength between plasticity and fracture toughness is
investigated, and a crossover is observed between the calculated
curves with different yield strength. Fatigue life is studied as a
function of plastic strain, and without a priori assumption, the
Coffin–Manson relation is reproduced. The proposed phase-field
models have demonstrated their capabilities to study crack
growth in ductile materials and reveal the dependence on the
grain structures and loading conditions.
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