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Predicting elastic properties of hard-coating alloys using
ab-initio and machine learning methods
H. Levämäki 1✉, F. Tasnádi 1, D. G. Sangiovanni 1, L. J. S. Johnson 2, R. Armiento 1 and I. A. Abrikosov1,3

Accelerated design of hard-coating materials requires state-of-the-art computational tools, which include data-driven techniques,
building databases, and training machine learning models. We develop a heavily automated high-throughput workflow to build a
database of industrially relevant hard-coating materials, such as binary and ternary nitrides. We use the high-throughput toolkit to
automate the density functional theory calculation workflow. We present results, including elastic constants that are a key
parameter determining mechanical properties of hard-coatings, for X1−xYxN ternary nitrides, where X,Y∈ {Al, Ti, Zr, Hf} and fraction
x ¼ 0; 14 ;

1
2 ;

3
4 ; 1. We also explore ways for machine learning to support and complement the designed databases. We find that the

crystal graph convolutional neural network trained on ordered lattices has sufficient accuracy for the disordered nitrides,
suggesting that existing databases provide important data for predicting mechanical properties of qualitatively different types of
materials, in our case disordered hard-coating alloys.

npj Computational Materials            (2022) 8:17 ; https://doi.org/10.1038/s41524-022-00698-7

INTRODUCTION
Hard-coating materials have a wide range of applications
including metal cutting, scratch-resistant coatings, grinding, and
aerospace and automotive parts. For metal cutting tools, hard
coatings are essential to their machining performance, increasing
it by orders of magnitude over uncoated tools in most
applications. Since the beginning, high-hardness materials have
been developed experimentally, but for a few decades computa-
tional tools, such as density functional theory (DFT)1,2 and
molecular dynamics, have been used to support and complement
experiments. However, as the design of new coatings moves from
binary and ternary systems to quaternary and beyond, the
combinatorial complexity increases rapidly, making conventional
approaches increasingly difficult.
More recently, machine learning (ML) has been found to be a

viable way to reduce the number of experiments, as well as
computations, to accelerate the design process3–7. Demand for
robust ML models is there, but a big hurdle in their adoption is the
limited availability of data, either experimental or computational,
that ML models need to be trained on. Experimental data has
traditionally been relatively scarce, while computational data-
bases, such as Materials Project8 and AFLOW9, have grown to
contain tens or hundreds of thousands of entries. For example,
Avery et al. used AFLOW and a combined ML and evolutionary
search method to predict new superhard phases in carbon6.
Mazhnik et al. used Materials Project data to train the crystal graph
convolutional neural network (CGCNN)10 model to predict the
bulk and shear moduli of ordered compounds using only the
structural and chemical information of the system as input5,
obtaining good results. In this paper, we extend the approach to
qualitatively different class of materials, disordered alloys (as-
deposited metastable thin films). It is well-known that ML is good
at interpolation, but bad at extrapolation, and it is therefore vital
to establish how well ML models extrapolate from ordered data to
disordered data. We utilize a transfer learning (TL) approach11 to
predict polycrystalline elastic constants of disordered alloys based

on data obtained from ordered compounds. To the best of our
knowledge, there are only very few TL studies in predicting
properties of alloys. For a broad overview of ML approaches
utilized in the case of alloys, see12.
From the point of view of practical applications, e.g., to design

new hard coatings, however, currently existing databases are
lacking for two reasons. Firstly, elastic constants are important: for
instance, the intrinsic hardness of a material can be qualitatively
assessed from the elastic constants and moduli13,14. However,
since elastic constants are demanding to calculate, only a limited
fraction of the entries in existing databases have elastic constants
data included. Secondly, most industrially relevant hard coatings,
e.g., Ti1−xAlxN, Cr1−xAlxN, and Ti1−xSixN, are substitutionally
disordered15, and are often thermodynamically metastable or
even unstable, which is possible due to the far-from-equilibrium
synthesis techniques of physical vapor deposition. Existing
databases, on the other hand, are focused on ordered
compounds. Creating databases for disordered systems is there-
fore an activity that requires more attention. There is a recent
effort to enable data-driven study of high-entropy ceramics16, and
in this paper we work towards a database of disordered hard-
coating materials. Because of significant computational costs,
direct first-principles calculations for disordered alloys would lead
to a relatively small database, which limits the amount of data to
train ML models on. On the other hand, there are recent efforts in
literature to find ways to make ML useful for small datasets11,17–20.
Given the abundance of data for ordered compounds, we

investigate how ordered data can help with the lack of disordered
data. Using a bigger data set to help the modeling of a smaller
data set is one of the goals of TL18. In this paper, we use a TL
approach, in which the CGCNN model is trained on the data for
ordered compounds available in Materials Project, and the model
is then used to predict the properties of disordered systems. We
are interested in predicting quantities that are known to correlate
with the intrinsic hardness of materials, such as bulk and shear
moduli21–24. We find that even without an explicit inclusion of the
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data for disordered alloys in the model, it is able to predict the
bulk and shear moduli of the industrially relevant nitrides with
sufficient accuracy.

RESULTS
DFT results
We calculate disordered binary and ternary nitrides of the form
X1−xYxN, where X,Y∈ {Al, Ti, Zr, Hf} and the concentration para-
meter x ¼ 0; 14 ;

1
2 ;

3
4 ; 1. The calculations are performed with and

without taking atomic relaxations into account, so that we can
assess the importance of the atomic relaxation effects. Cell shape
and volume are optimized in both cases. Note that in this
comparison in the unrelaxed B4 calculations we must fix the one
available atomic degree of freedom along the z-direction. We fix it
by setting the atomic unit cell coordinates as z1= 0 and z2= 0.38
in terms of the notation of ref. 25. One can define z1= 0 without
loss of generality and z2= 0.38 represents the average value for
the type of systems we consider here. It should be noted that the
z2 coordinate is also called the u parameter in some literature
sources26.
Let us first investigate the effect of atomic relaxations on the

elastic constants. Assessment of the computational cost due to
atomic relaxation is useful, because computing the elastic
constants is time consuming. Thus, if the effect is minor, some
computational time could be saved by neglecting atomic
relaxations. Several previous studies have investigated the impact
that atomic relaxations have on the elastic constant results27–33. In
summary, the previous studies have found that, in most cases,
relaxed and unrelaxed elastic constants are quite similar. Most
often, the relative differences are lower than ≈ 10%. Relaxation
effects can also be qualitatively estimated from symmetry
arguments. For some lattice symmetries, a uniform deformation
(used for elastic-constant calculations) may be sufficient to shift
atoms from their equilibrium positions. This implies, in turn, that
the resulting elastic tensors strongly depend on the strain matrix
used for the calculation.
Table 1 shows the mean absolute errors (MAE) and mean

absolute relative errors (MARE) (Xrel− Xunrel)/Xunrel between the
relaxed and unrelaxed elastic constants and the polycrystalline
quantities, calculated for all the alloys that can be found in Table 2,
except for those that are marked B4→ Bk. We have not included
those B4 structures that relaxed into Bk, because all unrelaxed
calculations remain in the B4 phase and therefore are not directly
comparable to the relaxed calculations that end up in the Bk phase
(see Fig. 3). We can see that for the B1, which is a highly symmetric
structure, relaxation effects are minor. With the B3 phase, atomic
relaxation effects on calculated c11 and c12 are negligible.
Conversely, the MAE and MARE values indicate a strong effect of
atomic relaxation on c44. That is due to local B3-symmetry-breaking

induced by shear lattice distortions. Also the B4 phase shows
noticeable relaxation effects.
Based on our findings, if one is only interested in the bulk

modulus, one might perform only unrelaxed calculations. If the
shear modulus, or quantities that depend on the shear modulus, is
of interest, the unrelaxed shear modulus will be accurate only for
structures such as B1, where the different distortions do not break
the symmetry in such a way that there are significant distortion
dependent atomic movements.
The calculated elastic properties are shown in Table 2 and the

mixing energies E[X1−xYxN]− (1− x)E[XN]− xE[YN] and relative
stabilities E[structure]− E[B1] of the B1 and B3 structure types are
shown in Fig. 1. The B4 alloys, most of which relaxed into the Bk
setting are not shown. All of the calculated alloys are found to be
mechanically stable within a 10% tolerance of ϵ= 1.1 (see “DFT
calculations”). Dynamical stability checks, which are based on
phonon dispersion calculations, are out of the scope of this work,
but based on existing literature some of the calculated alloys can
be expected to be dynamically unstable. All two-component
systems are ordered and those systems have been checked
against available Materials Project data and the two sets have
been found to be generally in good agreement. Our results for the
well-studied Ti1−xAlxN system are also in agreement with literature
data15,34–36.
For the alloys in B1 structure we find good agreement with the

elastic constants, bulk modulus, and mixing energy results of
refs. 37,38. Reference 37 calculated the same set of alloys that can be
found in Fig. 1, except for Hf1−xZrxN. The mixing energies of Fig. 1
are in general in good agreement with those of ref. 37, except for
the trend found in ref. 37, whereby the obtained mixing energies
that are highly symmetrical in terms of the concentration
parameter x-axis. Our mixing energies in panel (a) of Fig. 1 show
more pronounced asymmetry (except Hf1−xZrxN and Zr1−xTixN)
with the x ≈ 1 side having larger positive mixing energies. The
reason for these different trends could be related to differences in
the SQS supercells between our study and ref. 37.
We notice that all alloys, except HfN and Al-rich alloys, prefer

the planar Bk structure. We interpret the tendency to relax toward
the planar Bk structure (u parameter ~0.5) as an effect induced
by the dynamical instability (imaginary phonon frequencies39, see
Fig. 3g in ref. 40) combined with an energetic preference for the Bk
hexagonal polymorph41. Additionally, the B4 ZrN and HfN binaries
are predicted to be dynamically stable in the Bk phase40.
Previous ab initio results41 and Fig. 1 suggest that X1−xAlxN (X=

Ti, Zr, Hf) solid solutions energetically favor the B1 structure for Al
contents x≲ 0.5, whereas the wurtzite B4 alloy phase becomes the
most stable for high x (≳ 0.7). At ambient conditions, the ordered
TiN, HfN, and ZrN favor the B1 structure, which is also their ground
state. Other recent ab initio results indicate that TiN can be
metastable in the B4 structure (see Fig. 3g in ref. 40). Our
calculations, however, do not find TiN to be stable in the
B4 structure. Note, indeed, that ref. 40 reports phonon dispersion
results only along a few high-symmetry directions. Evaluation of
the B4 TiN phonon-density of states may be necessary to reveal
imaginary frequencies.

Machine learning results
Given that it is relatively resource heavy to calculate the elastic
tensor of disordered structures, a large amount of supercomputer
time would be needed to amass a sizable database of such
materials. We are therefore interested in different strategies to
supplement or augment the database using ML techniques. One
way to tackle the problem of low data availability is to train the ML
model to a part of the available data that is related to the problem
at hand, and then appropriately modifying and verifying the
model with the smaller dataset. This is the basic idea behind TL18.
In this work, we use an approach that might be considered a

Table 1. Mean absolute error (MAE) in GPa (except the unitless
Poisson’s ratio ν) and mean absolute relative error (MARE) (Xrel− Xunrel)/
Xunrel in % between the relaxed and unrelaxed elastic properties.

c11 c12 c13 c33 c44 B G E ν

MAE

B1 8 6 – – 9 4 4 10 0.004

B3 4 3 – – 38 3 17 38 0.035

B4 41 34 39 108 11 3 26 57 0.052

MARE

B1 2 5 – – 6 2 3 3 2

B3 2 2 – – 28 2 17 15 13

B4 12 31 46 32 14 2 26 23 21
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Table 2. Calculated DFT elastic constants, bulk (B), shear (G) and Young’s moduli (E) in GPa, as well as Poisson’s ratio (ν).

Alloy SB c11 c12 c13 c33 c44 B G E ν

AlN B1 432 167 – – 307 256 219 511 0.167

HfN B1 598 112 – – 129 274 166 414 0.248

Hf0.75Al0.25N B1 524 124 – – 147 258 166 410 0.235

Hf0.50Al0.50N B1 460 142 – – 174 248 168 411 0.224

Hf0.25Al0.75N B1 429 158 – – 221 248 182 439 0.205

Hf0.75Ti0.25N B1 581 113 – – 134 269 168 417 0.242

Hf0.50Ti0.50N B1 567 119 – – 142 268 171 423 0.237

Hf0.25Ti0.75N B1 577 122 – – 153 274 180 443 0.231

Hf0.75Zr0.25N B1 584 109 – – 128 267 165 410 0.244

Hf0.50Zr0.50N B1 569 108 – – 128 262 162 403 0.244

Hf0.25Zr0.75N B1 554 107 – – 127 256 159 395 0.243

TiN B1 584 136 – – 166 285 187 460 0.231

Ti0.75Al0.25N B1 535 139 – – 181 271 187 456 0.22

Ti0.50Al0.50N B1 492 155 – – 214 268 194 469 0.208

Ti0.25Al0.75N B1 443 161 – – 250 255 199 474 0.19

ZrN B1 544 110 – – 125 255 156 389 0.246

Zr0.75Al0.25N B1 477 124 – – 139 242 153 379 0.239

Zr0.50Al0.50N B1 427 141 – – 166 236 156 384 0.229

Zr0.25Al0.75N B1 411 157 – – 215 242 174 421 0.21

Zr0.75Ti0.25N B1 538 111 – – 130 253 159 394 0.24

Zr0.50Ti0.50N B1 540 116 – – 138 257 164 406 0.237

Zr0.25Ti0.75N B1 568 122 – – 150 271 176 434 0.233

AlN B3 285 152 – – 178 196 120 299 0.246

HfN B3 292 152 – – 93 199 83 219 0.317

Hf0.75Al0.25N B3 274 144 – – 100 188 84 219 0.306

Hf0.50Al0.50N B3 261 144 – – 106 183 84 219 0.301

Hf0.25Al0.75N B3 263 144 – – 127 183 94 241 0.281

Hf0.75Ti0.25N B3 287 150 – – 93 196 82 216 0.316

Hf0.50Ti0.50N B3 286 150 – – 92 195 82 216 0.316

Hf0.25Ti0.75N B3 289 152 – – 92 198 82 216 0.318

Hf0.75Zr0.25N B3 281 148 – – 91 193 80 211 0.318

Hf0.50Zr0.50N B3 272 147 – – 90 189 78 206 0.319

Hf0.25Zr0.75N B3 263 144 – – 88 184 75 198 0.321

TiN B3 293 155 – – 91 201 81 214 0.322

Ti0.75Al0.25N B3 282 154 – – 103 197 85 223 0.311

Ti0.50Al0.50N B3 274 154 – – 116 194 89 232 0.301

Ti0.25Al0.75N B3 271 153 – – 138 192 98 251 0.282

ZrN B3 258 144 – – 87 182 73 193 0.323

Zr0.75Al0.25N B3 247 140 – – 92 176 74 195 0.316

Zr0.50Al0.50N B3 240 142 – – 98 175 74 195 0.315

Zr0.25Al0.75N B3 253 146 – – 123 182 88 227 0.292

Zr0.75Ti0.25N B3 262 144 – – 87 184 74 196 0.323

Zr0.50Ti0.50N B3 269 148 – – 88 188 76 201 0.322

Zr0.25Ti0.75N B3 282 154 – – 89 197 78 207 0.325

AlN B4 376 129 98 352 112 194 121 301 0.242

HfN B4 253 161 162 220 47 188 44 122 0.391

Hf0.75Al0.25N B4→ Bk 296 204 113 359 107 201 79 210 0.326

Hf0.50Al0.50N B4→ Bk 298 176 145 110 109 135 51 136 0.332

Hf0.25Al0.75N B4 305 140 124 216 87 175 79 206 0.304

Hf0.75Ti0.25N B4→ Bk 298 210 106 493 113 214 85 225 0.325

Hf0.50Ti0.50N B4→ Bk 304 210 103 491 120 214 90 237 0.316

Hf0.25Ti0.75N B4→ Bk 311 212 106 500 128 218 94 247 0.311

Hf0.75Zr0.25N B4→ Bk 292 211 105 495 106 212 81 216 0.331
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zeroth-order approximation to TL. In this approach, we train an ML
model using Materials Project data, which are ordered com-
pounds, and see how well that model predicts the disordered
alloys simulated in the present study. In other words, we check
how well the patterns learned from the ordered dataset, without
modifications, transfer or generalize to the disordered dataset. If
the ML model generalizes well, one can employ the network to
predict, or at least estimate the properties of disordered systems
outright, as the case may be, or use it as a basis for further training
with the disordered dataset11. Performing more sophisticated TL,
such as fine-tuning and layer freezing11,18, is out of the scope of
this study and will be addressed in future work.
Throughout the ML section, the B4 phase is not included

because most of the studied B4 alloys turns out to be unstable
and transform into Bk structure upon structural relaxation. At the
same time, information on compounds with Bk structure in the
databases is insufficient to build reliable ML models: hexagonal
systems (and the Bk in particular) are underrepresented in the
training set (only ~1000 compounds are hexagonal out of the total
8000). One may view the inability to describe B4/Bk alloys as a
limitation of the applicability of the ML and TL that requires
further in-depth study. Additionally, those ordered binary
compounds (concentration parameter x= 0 or 1) that can be
found in the Materials Project data are excluded, because for
those data points the error would be biased as they were part of
the training set.
The ML architecture that we use is the CGCNN, and Mazhnik

et al. have shown that it can be succesfully harnessed, together
with Materials Project data, to predict simultaneously both the
bulk and shear moduli of an input crystal structure. One could
always train separate ML models for the bulk and shear moduli,
but in the approach of Mazhnik et al. both quantities are treated
on equal footing. Based on their good results, we are encouraged
to implement a similar approach here. We employ a typical train-
validate-test workflow to build the optimal CGCNN model from
the Materials Project data.
The performance of the finished model is depicted in Table 3 in

terms of MAE and MARE for the test set and the disordered
dataset, with and without atomic relaxations. In the Table, the
B1+ B3 means the combination of the B1 and B3 structure sets.
We can see that the predictions made by the ML model for the
disordered alloys with B1 and B3 crystal structure are quite
accurate, even though no actual TL was done to the model. We
notice that for the B3 structures the shear modulus prediction
error is noticeably better for the relaxed data compared to

unrelaxed data. This difference reflects the differences in
unrelaxed and relaxed shear moduli in Table 1. There are two
possible reasons that could explain this behavior. Firstly, the ML
prediction error is smaller for the relaxed data, which makes sense
since the model was trained on Materials Project data, for which
atomic relaxation is used systematically. It is reasonable to assume
that the bonding lengths of the unrelaxed structures appear
unphysical to the ML model. That would explain why the model
performs poorly for unrelaxed structures. Secondly, the CGCNN
construction includes a certain cutoff parameter (8 Å in this work)
that is used to make the descriptor of each atomic site finite;
neighboring atomic sites that fall outside the cutoff radius are
neglected. When the structure is relaxed, some atomic sites may
move beyond the cutoff radius while others may move within the
radius. The descriptors between relaxed and unrelaxed structures
are therefore slightly different, which could create discrepancies in
the ML results for relaxed and unrelaxed structures.
An interesting observation is that the test set and disordered

nitrides MAEs show opposite qualitative trends; for the test set,
the shear modulus MAE is smaller than the bulk modulus MAE,
while for the disordered data this trend is reversed. Overall, the
average ML prediction error for the disordered nitrides is good for
the bulk modulus and somewhat worse for the shear modulus. We
can say that the CGCNN architecture generalizes quite well from
ordered systems to disordered ones even without explicit fine-
tuning of the ML model.
To get a clearer picture of the performance of the ML model,

Fig. 2 shows a parity plot of the DFT versus ML predicted values
(B4/Bk not included). Panel (a) of Fig. 2 shows the performance of
the network for the test set (green round markers), as well as for
the training set (blue cross markers). The figure also shows ML
predictions for Young’s modulus E and Poisson’s ratio ν, which are
not directly produced by the ML model, but can be calculated
from the predicted bulk and shear moduli. Our results for the test
set are comparable to those of Mazhnik et al.5. The prediction
accuracy for the disordered nitrides falls within the accuracy range
of the Materials Project test set.
Panel (b) of Fig. 2 shows how well the ML model with the lowest

loss function performs for the disordered nitrides. We can see a
fairly tight clustering around the diagonal and an absense of
major outliers. Clear outliers or significant scatter for the nitrides is
not expected anyway, because the disordered dataset is very
homogeneous (in terms of the variety of structures and chemical
elements) compared to the Materials Project training set, so the
ML model should work similarly for all the data points the

Table 2 continued

Alloy SB c11 c12 c13 c33 c44 B G E ν

Hf0.50Zr0.50N B4→ Bk 288 206 102 483 107 208 81 215 0.328

Hf0.25Zr0.75N B4→ Bk 286 201 101 470 107 205 82 217 0.324

TiN B4→ Bk 322 219 111 524 138 227 100 262 0.308

Ti0.75Al0.25N B4→ Bk 311 212 120 438 138 218 93 244 0.313

Ti0.50Al0.50N B4→ Bk 314 196 128 363 148 211 98 255 0.299

Ti0.25Al0.75N B4 315 136 136 214 88 181 80 209 0.307

ZrN B4→ Bk 284 195 101 458 106 202 82 217 0.321

Zr0.75Al0.25N B4→ Bk 277 195 108 320 101 188 72 192 0.33

Zr0.50Al0.50N B4→ Bk 287 177 125 202 110 176 74 195 0.316

Zr0.25Al0.75N B4 302 147 122 190 89 169 76 198 0.304

Zr0.75Ti0.25N B4→ Bk 288 200 101 453 110 203 83 219 0.32

Zr0.50Ti0.50N B4→ Bk 297 205 102 461 116 207 87 229 0.316

Zr0.25Ti0.75N B4→ Bk 307 210 105 485 125 215 92 242 0.313

The SB column refers to the Strukturbericht designation. Those B4 systems that relaxed into the Bk structure are marked by B4→ Bk in the SB column.

H. Levämäki et al.
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Fig. 1 Calculated mixing energies and structural stability. a Calculated DFT mixing energies E[X1−xYxN]− (1− x)E[XN]− xE[YN]. b Structural
stability with respect to B1 with the same composition E[structure]− E[B1]. B4 alloys, most of which relaxed into the Bk setting (see Table 2) are
not shown.
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disordered data. We can identify some structure specific trends in
the ML prediction accuracy. While the bulk and shear moduli of
the B3 structures are especially well predicted, the B1 shear
moduli show a lower accuracy. For the B1 phase the shear
modulus is consistently underestimated and the largest single
underestimation is ≈ 50 GPa. It is not easy to give a simple reason
for the inconsistent shear modulus prediction performance, but
we can note that the shear modulus, as evidenced by Table 1, is a
more sensitive quantity than the bulk modulus. It is the aim of
future studies to see how much fine-tuning the current ML
network will improve the prediction accuracy.

DISCUSSION
We have developed an automated high-throughput workflow for
building a computational database of disordered hard-coating
materials and presented results of our calculations. The reliability
of our data is verified by comparing to the Materials Project data
and existing literature. Moreover, we have trained the CGCNN ML
model on ordered compounds from the Materials Project and
demonstrated that this model is able to readily predict the bulk
and shear moduli of disordered nitrides with sufficient accuracy.
The CGCNN architecture seems to be able to learn such
fundamental patterns in the data that these patterns hold
regardless of the degree of order, indicating good generalizability
of CGCNN from ordered to disordered systems. Prediction
accuracy for disordered systems can be further improved by
using the ML model trained on ordered data as the starting point
for TL. Our findings open new ways to gain insight into disordered
hard-coating materials, as well as to support and possibly speed
up the investigations of disordered hard-coating materials, which
are computationally demanding to calculate and thus slow to
accumulate into a large database.

METHODS
DFT calculations
The DFT calculations were performed using the Vienna Ab initio Simulation
Package (VASP)42,43. The exchange and correlation effects were treated at
the generalized gradient approximation (GGA) level44–46 using the
Perdew–Burke–Ernzerhof (PBE)47 functional. Energy cutoff is set to 500
eV in the preliminary relaxation phase and to 700 eV in subsequent phases.
The precision mode is set to Accurate (PREC= Accurate). The Gaussian
smearing scheme with a smearing width of 0.05 eV is used. Ionic
relaxations are stopped when all forces are below the threshold 0.01 eV/Å.
In cases where the threshold 0.01 eV/Å is difficult to reach, the threshold is
increased to 0.03 eV/Å or 0.05 eV/Å. The elastic constants calculations
include the support grid for augmentation charges (ADDGRID=.TRUE.).
The VASP calculations were managed with The High-Throughput Toolkit

(httk)48,49. The httk software offers workflows to create input files, manage
calculations on computing clusters, automatically fix broken calculations

by adjusting VASP input settings, and organize results in databases. The
automatic computation of elastic constants is implemented in httk.
In this work, we consider disordered binary and ternary nitrides in cubic

rocksalt (B1)50, cubic zincblende (B3)51, and hexagonal wurtzite (B4)25

structures. These structure types are illustrated in Fig. 3. Disorder is
modeled using the special quasirandom structures (SQS) technique52,53.
The SQS supercells that are used in this study are listed in Supplementary
Methods. Here, substitutional disorder is considered only on the metallic
sublattice, i.e., the nitrogen sublattice is ordered because it is fully
occupied by nitrogen atoms. All SQS supercells had size of 96 atoms. This
size has been found to be within the optimal range for ternary nitrides
from the standpoint of accuracy versus computational speed35. The B1
X0.5Y0.5N SQS cell is taken from the supplementary materials of ref. 35,
where it is referred to as the (4 × 4 × 3) cell. In ref. 35 the (4 × 4 × 3) cell was
found to model disorder at a high-quality level, that is, comparable to SQS
cells of bigger sizes. The B3 X0.5Y0.5N SQS can be easily derived from the B1
X0.5Y0.5N SQS by noting that the B1 conventional unit cell turns into B3
when the N atom is shifted from the high-symmetry position 1

2 a!1 þ
1
2 a!2 þ 1

2 a!3 to another high-symmetry position 1
4 a!1 þ 1

4 a!2 þ 1
4 a!3. All

the other SQS supercells are generated with the stochastic Monte-Carlo
SQS program mcsqs54, which is part of the Alloy Theoretic Automated
Toolkit (ATAT) program package55.
Although the SQS scheme is an efficient way to simulate disorder, the

downside is that the proper (macroscopic) symmetry is broken and
the generated SQS cells typically only have triclinic symmetry. For the
calculation of elastic constants this poses a problem, because we are
interested in elastic constant tensors of cubic (B1 and B3) or hexagonal (B4)
classes instead of triclinic-structure elastic tensors. In order to derive
properly symmetrized elastic constants from the full triclinic elastic tensor,
we employ the projection technique that has been discussed in ref. 35 and
references therein. For the unprojected triclinic elastic constants, see
Supplementary Tables. We can see that the deviations between the
different crystallographic directions are small, even though the disordered
SQS supercells do not respect the proper macroscopic symmetry. As ref. 35

shows, the projected elastic constants have the desirable property that
they converge fast to the correct value as a function of supercell size, faster
than the unprojected elastic constants. To facilitate automated calcula-
tions, we have implemented the symmetrization technique in httk. The
elastic constants in VASP are calculated using the stress-strain method in
the same general way that was used, e.g., in ref. 56. Four distorted
structures are generated for each strain component (in terms of Voigt
notation) and the range of distortion are−3%,−1.5%, 1.5%, 3% for non-
shear components and −6%, −3%, 3%, 6% for shear components. All
polycrystalline quantities are calculated using the Hill averaging scheme56.
The mechanical stability is checked based on the Born-Huang stability
criteria57. In addition to the normal stability check, we also use the stricter
tolerance based check of ref. 56. For example, cubic systems must fulfill a
condition C11 > ∣C12∣ to be mechanically stable. In the tolerance based
check, a more rigorous condition C11 > ϵ∣C12∣ (ϵ > 1) must be fulfilled. All of
the calculated alloys are found to be mechanically stable. Dynamical
stability checks, which are based on phonon dispersion calculations, are
out of the scope of this work, but based on existing literature some of the
calculated alloys can be expected to be dynamically unstable.

Machine learning
The ML part of this work is done using the PyTorch package. The CGCNN10

architecture is applied using the code available at GitHub as the basis58. In
the CGCNN model the input crystal structure is transformed into a crystal
graph, which is constructed from node feature vectors vi and edge feature
vectors uij. The node feature vector encodes information about the type of
atom located at atomic site i. The atomic information is encoded in an
integer vector using one-hot or dummy encoding. For example, if the
training data includes elements N, Al, and Ti, then the elements can be
encoded as N⇒ [1, 0, 0], Al⇒ [0, 1, 0], and Ti⇒ [0, 0, 1]. The edge feature
vector encodes information about the bonds that the atom at site i makes
with its nearest neighbors. This bonding information is encoded by
discretizing a Gaussian distribution function centered around the nearest
neighbors of the reference site i. The feature vector for site i with one of its
nearest neighbors j is then calculated as

uij ¼ exp �ðdij � αÞ2
h2

 !
; (1)

Table 3. The MAE (in GPa) and MARE (in %) of the bulk modulus B and
the shear modulus G for the Materials Project test set and the
disordered nitrides.

Dataset MAE(B) MARE(B) MAE(G) MARE(G)

Mat. Proj. test set 11.6 18.4 9.0 21.7

unrelaxed B1 15.8 6.0 28.3 16.4

unrelaxed B3 3.9 2.1 23.6 23.7

unrelaxed B1+B3 9.7 4.0 25.9 20.2

relaxed B1 14.0 5.3 23.9 13.9

relaxed B3 5.3 2.9 7.9 9.8

relaxed B1+B3 9.5 4.1 15.7 11.8

The B1 + B3 means the combination of the B1 and B3 structure sets.
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Fig. 2 Parity plot comparing DFT and ML predicted results. a Materials Project training, validation, and test sets. Blue cross markers indicate
training set, red diamonds validation set, and green disks test set. b Disordered nitrides test set. The minimum and maximum DFT and ML
prediction values for the disordered nitrides are also labeled by chemical formulas and dashed lines.
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where dij is the distance between sites i and j, h is a discretization step size,
and α is a vector of discretized trial distances

α ¼ 0; h; 2h; 3h; ¼ ; Rcut½ �; (2)

where Rcut is a cutoff radius to make the vector finite in length. We can see
that when α is close to dij, uij has values close to one, and when α deviates
from dij, uij is close to zero. The crystal graph is then fed into a
convolutional neural network, which consists of convolutional layers and
pooling layers. The convolutional layers iteratively modify the node feature
vector of site i by convolving it with the edge feature vector uij and node
feature vectors of surrounding sites j. The convolution is described by the
equation

vðtþ1Þ
i ¼ vðtÞi þP

j
σ zðtÞi;j W

ðtÞ
f þ bðtÞ

f

� �
�g zðtÞi;j W

ðtÞ
s þ bðtÞ

s

� �
;

(3)

where zðtÞi;j ¼ vðtÞi � vðtÞj � ui;j is the concatenation of the node and edge
feature vectors, σ is the sigmoid activation function, g is the softplus

activation function, and WðtÞ
s ;W

ðtÞ
f ;b

ðtÞ
s ;b

ðtÞ
f are the weights and biases of

the tth convolutional layer10. After R convolutional layers (three in this
work), a pooling layer is applied to produce the overall feature vector of
the crystal vc. The pooling layer is implemented as a normalized

summation of all the feature vectors vð0Þ1 ; vð0Þ2 ; ¼ ; vðRÞ1 ; vðRÞ2 ; ¼ ; vðRÞN .
Finally, vc is inputed to fully connected hidden layers (two in this work)
that predict the output. A diagram of the CGCNN architecture is presented
in Fig. 4.
Following ref. 5, the network is trained to predict bulk and shear moduli

using Materials Project data as the training and test datasets. At the time of
writing, Materials Project contains a little over 8000 systems that have
elasticity data available. We randomly split the data into training,
validation, and test sets in a 8:1:1 ratio. While the training set is used to
optimize the model parameters, the difference between the validation and
test has to do with avoiding biases in the final estimation of the accuracy
of the ML model. Here validation set is used to minimize overfitting in a
way that is described below. This means that the validation set is part of
the model optimization process and the model accuracy for the validation
set is slightly biased. Hence we need a test set that only contains data that
the final ML model has never seen before. By evaluating model
performance on the test set is therefore a way to minimize biases and
maximize the trustworthiness of the model accuracy estimate.
Before training, the target values (bulk and shear moduli) are normalized

using the formula

ey ¼ y� y
σðyÞ ; (4)

where y is the mean and σ(y) is the standard deviation of the target vector
y. The loss function to be minimized is defined in terms of the normalized
bulk modulus eB and shear modulus eG as

L ¼
P

iðeBpredi � eBDFTi Þ
2
þ ðeGpred

i � eGDFT
i Þ

2

N
; (5)

where N is the number of data points. Based on the information of refs. 5,10,18

and their supplementary materials, as well as our own testing, we can infer
reasonable values for the hyperparameters without performing extensive
hyperparameter tuning. The crystal structure descriptor-related settings are the
same as those reported in ref. 5. The training process uses the Adam optimizer
with a learning rate of 0.005 and weight decay 0.0. Training is continued for a
minimum of 500 epochs to give the randomly initialized model parameters
enough time to develop. Training is stopped after 1500 epochs, as it is unlikely
that any significant progress will happen after that point. In order to avoid the
training process getting stuck in a suboptimal local minimum, 30 instances
were trained. To reduce random variance, an ensemble of five networks with

Fig. 3 Stick and ball drawings of the B1, B3, B4, and Bk structures.
The larger red spheres indicate metallic sublattice and the smaller
gray spheres the nitrogen sublattice.

Fig. 4 Diagram of the CGCNN architecture. A high-level represen-
tation of how a prediction is made for an input crystal structure (e.g.
B3), by converting it into a crystal graph and then passing it through
a series of purpose-build ML layers.
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the lowest validation loss is used to make predictions. The validation set is
used to decide the final model parameters by extracting the parameters from
the epoch that yields the loss function minimum for the validation set. This is
one form of the early stopping technique and the purpose is to mitigate
overfitting issues59. Finally, an unbiased estimate of the performance of the
finished model is obtained by evaluating the model using the unseen test set
(see Table 3). For further details about the CGCNN architecture and the training
process, the reader is referred to refs. 5,10,18.

DATA AVAILABILITY
Relevant calculated DFT data and instructions to download the Materials Project data,
as well as the trained ML model to reproduce the results of this paper can be
downloaded from https://doi.org/10.6084/M9.FIGSHARE.17129045.V2.

CODE AVAILABILITY
The code to reproduce the results of this paper can be downloaded from https://doi.
org/10.6084/M9.FIGSHARE.17129045.V2.
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