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Supercurrent decay in ballistic magnetic Josephson junctions
Hervé Ness1✉, Ivan A. Sadovskyy 2✉, Andrey E. Antipov2✉, Mark van Schilfgaarde1,3✉ and Roman M. Lutchyn2✉

We investigate transport properties of ballistic magnetic Josephson junctions and establish that suppression of supercurrent is an
intrinsic property of the junctions, even in absence of disorder. By studying the role of ferromagnet thickness, magnetization, and
crystal orientation we show how the supercurrent decays exponentially with thickness and identify two mechanisms responsible for
the effect: (i) large exchange splitting may gap out minority or majority carriers leading to the suppression of Andreev reflection in
the junction, (ii) loss of synchronization between different modes due to the significant dispersion of the quasiparticle velocity with
the transverse momentum. Our results for Nb/Ni/Nb junctions are in good agreement with recent experimental studies. Our
approach combines density functional theory and the Bogoliubov-de Gennes model and opens a path for material composition
optimization in magnetic Josephson junctions and superconducting magnetic spin valves.
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INTRODUCTION
Coherent quantum tunneling of Cooper pairs through a thin
barrier is one of the first examples of macroscopic quantum
coherent phenomena. As predicted by Josephson more than 50
years ago1, it has important applications in quantum circuits
used in metrology, quantum sensing, and quantum information
processing2.
Most of the previous studies focused on conventional

Josephson junctions (JJs) consisting of two s-wave super-
conductors (S) that are connected by an insulating (I) or a
normal (N) region3,4. The flow of supercurrent through a JJ
depends on the superconducting phase difference ϕ between
two superconductors and, in general, is characterized by the
current-phase relationship J(ϕ) (CPR). In conventional JJs CPR
should be periodic with 2π, I(ϕ)= I(ϕ+ 2π) which follows from
the Bardeen–Cooper–Schrieffer theory5. This result is a mani-
festation of a 2e charge of Cooper pairs and is used in
metrology to measure electron charge. Time-reversal symmetry
requires that I(ϕ)=− I(− ϕ) which imposes a constraint that
the supercurrent should be zero for ϕ= πn where n is an
integer. In general, CPR can be expanded in Fourier harmonics,
IðϕÞ ¼

P
nIn sinðnϕÞ.

In many cases, however, CPR is well approximated by the first
harmonic IðϕÞ � Ic sinðϕÞ with Ic being the maximum supercurrent
that can flow through the junction, i.e., the critical current. At a
microscopic level, the supercurrent through a short SNS junction is
determined by bound states forming in the constriction due to
Andreev’s reflection at the NS interfaces. In the Andreev reflection
process, an incident electron-like quasiparticle with spin ↑ gets
reflected at the NS interface as a hole-like quasiparticle with spin ↓
and a Cooper pair is emitted into the condensate. When time-
reversal symmetry is not broken, electrons and holes propagate
with the same velocity in the normal region. In this case, no phase
shift accumulates between this pair of quasiparticles along their
trajectories in the N region, and the sign of Ic is fixed. When Ic > 0
we refer to this case as 0-junction.
In a magnetic Josephson junction (MJJ), exchange splitting

breaks time-reversal symmetry and leads to an interesting

interplay of superconductivity and magnetism4,6–9. In
superconductor–ferromagnet–superconductor (SFS) junctions
[Fig. 1a] the correlated quasi-particles and quasi-holes forming
Andreev bound states propagate through the junction under the
exchange field of the ferromagnet (F). In many ferromagnets, such
as Fe or Ni, the exchange splitting is large (of the order of eV) and
significantly perturbs the band structure of metal and, conse-
quently, significantly modifies Fermi velocities of minority (spin ↓)
and majority (spin ↑) carriers. Strong time-reversal symmetry
breaking leads to the appearance of characteristic superconduct-
ing correlations with oscillatory dependence determined by the
difference in wavenumbers, k"F � k#F

10,11. This effect opens a
possibility for the supercurrent reversal as a function of the
thickness of the ferromagnetic region, the so-called Josephson π-
junction12,13. The correlation between the phase shift of the
supercurrent and the magnetization provides a possibility for
realizing magnetic spin valves, see Fig. 1b, which may have
promising novel applications for cryogenic superconducting
digital technologies14–16. Understanding the microscopic physics
of MJJs is of great scientific interest as well as technological
importance. 0–π transitions in SFS junctions have been extensively
studied experimentally since the early 2000s and have been
observed in different material systems13,17–25. While qualitatively
these observations are consistent with the previous phenomen-
ological theories26–42 the roles of the microscopic band structure
arising from the atomic lattice on the supercurrent suppression
with junction thickness remain unclear. Our primary goal is to
address these essential points. The supercurrent suppression that
is exponential in the junction length is often associated with the
presence of disorder in the ferromagnetic region6,43. However,
significant supercurrent suppression can also appear in relatively
clean metals (e.g., Ni) whose mean free path is larger than the
junction thickness22,23,44.
Here, we study the suppression of the critical current in the MJJs

shown in Fig. 1a and identify two microscopic mechanisms for its
suppression, both a consequence of the band structure asym-
metry of the majority and minority carriers in the F region. First,
there is an asymmetry in the structure of the Fermi surface, see
Fig. 2a. For certain bands and momenta, the Fermi surface present
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in one spin channel may be absent in the other. This is typical in
ferromagnetic materials like Fe, Co, and Ni because the bandwidth
for d-electrons is relatively small and is often comparable to the
exchange splitting. As a result, the wavenumber of one of the
constituent quasi-particles forming Andreev bound states in MJJ
becomes imaginary and the supercurrent becomes suppressed.
We label this scenario as mechanism (i). In a second mechanism
(ii), we show there is a dephasing of a harmonic signal originating
from different Fourier components of the supercurrent due to the
Fermi velocity dispersion, see Fig. 3a. Both these mechanisms lead
to an exponential suppression of the supercurrent, which was
previously believed to occur due to the presence of disorder in the
magnetic region. We show that band structure effects are
important and maybe even dominant in many cases.
In order to capture a realistic band structure, we develop a

microscopic theory for the supercurrent in realistic MJJs. We use a
combination of density functional theory (DFT) and Bogoliubov-de
Gennes (BdG) model to investigate the 0–π transition in realistic
material stacks of Nb/Ni/Nb junctions in the clean limit. This
method allows one to predict and explain key properties of MJJs
such as the period and decay of the critical current oscillations
with the ferromagnet thickness.

RESULTS
Qualitative discussion and main results
In this section, we describe basic concepts for the supercurrent
flow in MJJs and summarize our results. Our main qualitative
conclusions are supported by microscopic calculations for Nb/
Ni/Nb MJJs. Ni appears to have a fairly long mean free path
lMFP ≈ 60 Å (see estimations in Supplementary Note 1), which is

comparable or larger than the typical thickness of the ferro-
magnet used in recent experiments22,23. Therefore, the motion
of quasiparticles in Nb/Ni/Nb junction is quasi-ballistic, and our
method is applicable to this system. Most of this paper focuses
on clean Nb/Ni/Nb junctions.
First it is illuminating to consider a toy model, a one-

dimensional SFS junction, and calculate the supercurrent in such
a system for different Fermi energies, see Fig. 2a. Using the results
of ref. 45, one finds that both majority and minority spin bands are
both occupied in the limit Vex/EF≪ 1 [i.e., scenario (ii) in Fig. 2a]
the supercurrent does not decay with ferromagnet thickness at
zero temperature,

IðϕÞ ¼ 2eΔ
_

cos δφ sin ϕ
2 ; 0<ϕ< π � 2δφ;

� sin δφ cos ϕ
2 ; π � 2δφ<ϕ< π þ 2δφ;

� cos δφ sin ϕ
2 ; π þ 2δφ<ϕ< 2π:

8>><
>>: (1)

Here perfect interface transparency T is assumed, T � 1. The phase
offset δφ originates from the Fermi momentum difference of a
quasi-particle and a quasi-hole forming Andreev bound state in the
junction, see Fig. 2b, and is given by δφ ¼ jk"F � k#Fjw � Vexw=_vF.
The 0- and π-junction regimes can be clearly identified at δφ= 0
and δφ= π/2, respectively. At the intermediate values 0 < δφ < π/2,
the CPR is anharmonic which is a generic feature at 0–π transition as
shown below. In the low transparency regime, T � 1, one would
expect qualitatively similar results with the maximal critical current
being suppressed Ic � ðeΔ=_ÞT but still independent of the
ferromagnet thickness, w.
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Fig. 1 MJJ stacks. a Schematic view of the SFS junction. b SFNFS
junction. Arrows indicate possible magnetization of ferromagnets.
The supercurrent through the spin-valve JJ depends on the relative
magnetization of the ferromagnets, which governs the properties of
the Josephson magnetic random-access memory (JMRAM)16. c Ball-
and-stick representation of the Nb(110)/Ni(111)/Nb(110) junction
with five layers of Ni. Nb atoms are light grey, Ni atoms are blue. The
top and bottom atomic planes of Nb(110) are repeated periodically
in the z-direction to create the semi-infinite Nb leads of the junction
through which the current flows. Periodic boundary conditions are
used in the xy-plane. The corresponding reciprocal space defines
two-dimensional k∥= (kx, ky) vectors, i.e., the transverse modes, used
in the calculations.
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Fig. 2 Bound states in SFS junctions. a Simplified band structure of
a ferromagnet, with the majority and minority bands, split by Vex. k

"
F

and k#F are the Fermi momenta for the majority and minority carriers,

respectively. Fermi level EðiÞF corresponds to large Vex, where the

minority band is pushed above EðiÞF . EðiiÞF corresponds to small Vex.
Thus, the propagation of minority quasiparticles is characterized by
an imaginary momentum k#F and is suppressed. b Supercurrent in
SFS junction is carried by Andreev bound states localized in the
junction. Solid red line represents a quasi-classical trajectory
corresponding to an Andreev bound state. The spectrum of Andreev
states depends on the relative superconducting phase difference
across the junction as well as the phase, δφ ¼ jk"F � k#Fjw,
accumulated due to the difference of Fermi momenta for the
majority and minority carriers. Note that in scenario (i) the
propagation of minority carriers is suppressed leading to an overall
exponential decay of the supercurrent with w. This is to be
contrasted with the normal transport through the junction.
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In the case of large exchange splitting Vex/EF≫ 1 [scenario (i) in
Fig. 2a], the minority band may become unoccupied. Given that
minority carriers are gapped out and their propagation through
the junction is suppressed, the supercurrent decays exponentially
with w45

IðϕÞ � 2eΔ
_

expð�κwÞ 1� EF
8Vex

sin2ðkwÞ
� �

sinϕ: (2)

Here, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ðVex � EFÞ

p
=_ and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ðVex þ EFÞ

p
=_ with

m* being effective electron mass. One may notice the drastic
difference between normal-state and superconducting transport
in this case—the former is weakly affected (because majority and
minority contributions are additive) whereas the supercurrent is
strongly suppressed. In this case, the measurement of normal-
state junction resistance does not necessarily predict the
magnitude of the supercurrent through the junction.
We now generalize above results for the realistic three-

dimensional (3D) geometry and material composition of the MJJ.
In the clean limit, the supercurrent I(ϕ) in the short-junction limit
(w much smaller than the coherence length of the super-
conductor) is obtained from the spectrum of the Andreev bound
states εν(ϕ, k∥) localized in the junction3 which now also depends
on the parallel momentum k∥. The supercurrent density J(ϕ) per
junction area A is J(ϕ)= I(ϕ)/A. For the junction with periodic
atomic structure in xy-plane the supercurrent density at zero

temperature is given by

JðϕÞ ¼ � e
_

Z
BZ

dkk
ð2πÞ2

X
ν>0

∂ενðϕ; kkÞ
∂ϕ

; (3)

where the k∥ integration is performed over the Brillouin zone (BZ) of
the corresponding surface supercell of area, A, and the sum is carried
over positive quasiparticle energies, εν(ϕ, k∥) > 0. Note that we use
spin-resolved εν and therefore omit spin prefactor 2 in Eq. (3). The
derivative is periodic in ϕ and can be represented as a Fourier series

� e
_

∂ενðϕ; kkÞ
∂ϕ

¼
X
n⩾1

InνðkkÞ sin½nϕþ δφnνðkkÞ�;

so that Eq. (3) can be written as

JðϕÞ ¼
Z
BZ

dkk
ð2πÞ2

X
ν>0

X
n⩾1

Inν sin½nϕþ δφnνðkkÞ�:

As we will show below, away from 0-π transition the supercurrent
is dominated by the first (n= 1) harmonic. Therefore, we focus
henceforth on the first harmonic contribution and drop n index in
the following discussion. Next, one may notice that the super-
current amplitudes Iν(k∥) and phase offsets δφν(k∥) depend on the
parallel momentum k∥. One may include this dependence and
define an effective Fermi energy EF(k∥) that counts the energy
corresponding to k∥ in each band of the ferromagnet from the
bottom of the band. Depending on EF(k∥) and Vex, either scenario
(i) or (ii) of Fig. 2a may be realized.
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Fig. 3 Normal and superconducting current of Nb/Ni/Nb junction. a First Fourier harmonic J1 of the supercurrent density [Eq. (3), black
circles] and it is fit [Eq. (6), solid black line] as a function of Ni layer thickness, w, calculated for the Nb(110)/Ni(111)/Nb(110) junctions shown in
Fig. 1c. Green semitransparent curves correspond to jfit1 ðkkÞ for individual k∥. b Normal state conductance per unit of area as a function of w for
the majority (G↑) and minority (G↓) spins [Eq. (13)] as well as G= G↑+ G↓. G does not depend on w and is approximated by the single value 〈G〉.
c–e Supercurrent as a function of phase difference ϕ for c 4 atomic layers of Ni (strong 0-junction regime), d 8 layers (intermediate regime),
and e 13 layers (strong π-junction regime). In the 0- and π-junction regimes, the J1 component dominates. In the intermediate regime, higher-
order terms may prevail.
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Thus, it is important to compare the exchange splitting with the
bandwidth of d-character states in transition metals to make sure
that a perturbation theory in Vex is justified. Assuming it is the
case, one can estimate the phase offset δφν(k∥) by expanding in
exchange splitting to find

δφνðkkÞ � Vexw=_vzνðkkÞ: (4)

In general, the dependence of vzν on k∥ is complicated, especially
in spd-transition metals. The combination of complicated ampli-
tude and phase offset dependence on k∥ leads to a non-trivial
supercurrent dependence on the ferromagnet thickness w. As
shown in Fig. 3a, the critical current decays with w for the Nb(110)/
Ni(111)/Nb(110) junctions. We analyze the details of the decay and
perform an exponential fit in Section “Details of the supercurrent”.
At small thicknesses, below 30 Å, this decay originates from the
evanescent modes corresponding to gapped out minority or
majority carriers which cannot propagate through the junction,
see Table 1. This is the mechanism (i) discussed above. At larger
thicknesses (i.e., w≳ 50 Å) a loss of synchronization between
different modes due to the dispersion of vzν(k∥) becomes
important. This second mechanism (ii) has been previously
discussed in the literature6,12 under assumptions of a single
spherical Fermi surface and a small uniform exchange splitting Vex
in the magnetic region. Within these assumptions, one finds that
critical current should decay algebraically with the thickness w of a
magnetic layer12. However, as we show below most of these
assumptions do not apply to realistic SFS junctions involving
transition metals. Thus, in order to understand CPR in realistic
MJJs, one needs to use accurate ab initio methods, which capture
the physical effects described above.
To make a connection between the decay seen in Fig. 3 and the

mechanisms responsible for it, Fig. 4a presents the energy band
structure of bulk Ni. It is probably the highest fidelity band
structure available: it very closely reproduces ARPES data in both
majority and minority spin bands, with exchange splitting Vex=
0.3 eV46, and should be an excellent predictor of the real Fermi
surface and velocities in Ni.
Here, we use this potential to analyze the bulk Ni Fermi surface

[Fig. 4b] and Fermi velocities (Table 1). Counting from the bottom
s-band, bands of Ni d character are bands 2 to 6. These bands are
nearly full: only majority band 6↑ and minority bands 3↓–6↓ cross
the Fermi level EF. Only band 6 has both majority and minority
carriers at the Fermi surface. Bands 6↑ and 6↓ have roughly the
same shape and the energy splitting is approximately constant
and equal to Vex (see the right panel of Fig. 4 in ref. 46). Beyond
this, however, the correspondence between the Ni band structure
and a simple parabolic band structure deviates substantially, in
two ways that critically affect the analysis. First, the Fermi velocity,
vF ¼ _�1ð∂E=∂kÞjk¼kF , is not fixed even for a single pocket: it varies
in band 6↑ by a factor of 2 [see Fig. 4 and Table 1]. Accordingly, the
splitting k"F � k#F between bands 6↑ and 6↓ varies by a factor of two

as expected from the twofold variation in vF. Second, bands 3↓–5↓

have no majority counterpart at EF, indicating that the wave
number of bands 3↑–5↑ is complex. This is the origin for the
exponential decay in scenario (i) in Fig. 2a as noted above: a large
portion of Andreev levels is carried by Cooper pairs made of
single-particle wave functions with one or both of k"F and k#F
having an imaginary component. The magnitude of Im k depends
on the particular mode and k∥ leading to a distribution of decay
exponents. The slowest decay in each of these evanescent modes
can be estimated from the distance ΔE of the closest approach to
EF and the effective mass m*/me, using _2k2min=2m

� ¼ ΔE and
decay κ ¼ 2π=ImðkminÞ, see Table 1. (m*/me is found to be highly
anisotropic, so only the effective transport mass m� ¼
3 ½1=m�1 þ 1=m�2 þ 1=m�3�

�1 is shown.) κ is only a rough measure
of the evanescent mode decay for a given band.
Let us now focus on the mechanism (ii) for the supercurrent

decay, i.e., loss of synchronization between different transverse
modes. This mechanism is well-known in diffusive systems where
quasiparticle trajectory is random and thus the phase offset δφ
accumulated along such a trajectory also gets randomized.
Thus, upon averaging Eq. (3) over different disorder realizations,

Table 1. Minimum, maximum, average, and root mean square of the Fermi velocities vF for the majority and minority Fermi surfaces in bulk Ni.

Majority (↑) Minority (↓)

vmin
F vmax

F 〈vF〉
ffiffiffiffiffiffiffiffiffi
hv2Fi

p
ρ(EF) ΔE m*/me κ vmin

F vmax
F 〈vF〉

ffiffiffiffiffiffiffiffiffi
hv2Fi

p
ρ(EF)

Band [105 m
s ] [105 m

s ] [105 m
s ] [105 m

s ] [eV−1Å−3] [eV] [Å] [105 m
s ] [105 m

s ] [105 m
s ] [105 m

s ] [eV−1Å−3]

2 − 1.59 0.68 12

3 − 0.22 3.90 13 2.7 3.6 3.3 3.6 0.004

4 − 0.11 0.61 47 0.8 1.8 1.1 1.2 0.015

5 − 0.10 2.95 22 0.6 3.0 1.5 1.8 0.173

6 3.5 6.0 4.6 5.2 0.029 0.6 3.0 2.3 2.6 0.045

ρ(EF) is the density of states at the Fermi level, ΔE is the energy of the valence band maximum relative to EF for the majority bands not crossing EF, m* (me) is
the effective (bare) electron mass, and κ estimates the decay exponent of the evanescent mode for a given band at EF.
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Fig. 4 Band structure. a Electronic band structure of bulk Ni (solid
lines) calculated from first principles including many-body effects,
see ref. 46. It is the highest-fidelity available and is very close to
ARPES data (diamonds) in both majority (red) and minority (green)
spin bands, with exchange splitting Vex= 0.3 eV. b Majority (solid
line) and minority (dashed line) Fermi surfaces of bulk Ni in the k∥
plane (with kz= 0) corresponding to the (111) plane direction used
for the stacking of the Nb/Ni/Nb junctions, as discussed in the text.
Axes correspond to two Γ-L lines: the Fermi surface has a threefold
symmetry in the entire plane. Majority band 6↑ is depicted as a solid
red-blue line with color interpolating between red and blue
depending on the Fermi velocity ℏ−1∂E/∂k, which ranges between
3 × 105 m/s (red) and 6 × 105 m/s (blue). Minority bands are shown
by dashed lines: 3↓ (blue), 4↓ (cyan), 5↓ (green), and 6↓ (red).
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one ends up with exponentially decaying critical current6.
Previously, such a suppression of the supercurrent with junction
thickness, w, was often associated with impurity scattering in the
ferromagnet. Here, we demonstrate that this dephasing mechan-
ism can also appear in clean systems (where quasiparticle
trajectory is well defined) due to the dispersion of the velocity
vzν with an in-plane momentum k∥. Specifically, we find that, in
the Nb/Ni/Nb junctions, this mechanism becomes relevant for
junctions thicker than 50 Å, see Fig. 3. In SFS junctions the
combination of disorder in the ferromagnet, interface scattering as
well band-structure-induced dephasing ultimately determines the
magnitude of the supercurrent. However, we believe that band
structure effects provide an upper bound on the magnitude of the
critical current as a function of w.
Next, we present numerical results which support the qualita-

tive discussion presented above.

Choice of MJJ stack
It is illuminating to compare our numerical simulations for the
supercurrent with the experimental measurements involving
quasi-ballistic MJJs. As previously discussed, we believe that
the Nb/Ni/Nb junctions represent a good model system for
which experimental data are readily available15,22,23. The best-
performing stacks consist of Nb(110)/Cu/Ni(111)/Cu/Nb(110). Cu
spacer layers seem to be essential to get strong supercurrent,
likely because it prevents intermixing of the Ni and Nb. Our
model junction simulates this geometry, via supercells in the
plane normal to the stack to account for the lattice mismatch
(see Fig. 1 and Supplementary Note 2), though we do not include
the Cu layers. We anticipate that Cu spacers will mainly affect
transmission matrix elements rather than the dependence of the
supercurrent on ferromagnet thickness, which is the main focus
of this work. Furthermore, as discussed before, the Cu spacers
will suppress the direct interaction between the ferromagnet
and the superconductor and reduce the inverse proximity effect
justifying Andreev approximation for the boundary conditions,
see Eq. (14). Therefore, we consider only the simplified Nb/Ni/Nb
stack and vary the number of layers (atomic planes) of Ni. In
addition, we also consider the effect of different crystallographic
orientations of the Ni planes and investigate Nb/Ni(110)/Nb
junctions in Supplementary Note 3.

Band structure of Nb/Ni/Nb junctions
To make a Nb/Ni superlattice, the unit cells of the Nb and Ni
regions in the plane normal to the interface must be coincident.
This is complicated by the severe lattice constant mismatch, and
also the incompatibility of the (110) and (111) atomic planes. It is
necessary to construct superlattices with Nb(110) and Ni(111) both
rotated to the z-axis and with lattice vectors in the plane
coincident. A supercell with nearly coincident vectors was found
(see Supplementary Note 2 for details). By applying a small shear
strain to the Ni, the lattice vectors are made exactly coincident.
Figure 5a shows the Nb(110) surface supercell and the Ni(111)
surface supercell with equal lattice vectors used to match the Nb/
Ni interfaces. Each atomic plane of Ni(111) contains 14 atoms and
each atomic plane of Nb(110) consists of 10 atoms. The atomic
structure of the Nb(110)/Ni(111)/Nb(110) for 5 layers (atomic
planes) of Ni is shown in Fig. 1c.
Next, we performed self-consistent DFT calculations within the

local density approximation (LDA) in order to obtain the relaxed
structure and corresponding electronic structure. For the smallest
structures, we performed a constrained optimization. Only the
atoms in the planes closest to the Nb/Ni interfaces are allowed to
relax to facilitate the stacking of arbitrarily large cells. The Nb/Ni
interplanar spacing has also been optimized to minimize the total
energy, see Supplementary Methods for more details.

Once the structure is determined, one can determine the normal-
state thermodynamic and transport properties of the junction, e.g.,
calculate the magnetization profile and spin-resolved conductance
through the junction as a function of Ni thickness. For transport
calculations, we use a layer transport technique47 which employs
the atomic spheres approximation (ASA). Careful checks were made
of ASA band structures of elemental Nb and Ni, and also
superlattices, to confirm that they are very similar to the full
potential linear muffin-tin orbital (LMTO) DFT-LDA ones.
We find that the magnetic properties of Ni are sensitive to their

local environment, indicative of the itinerant ferromagnetism. As
shown in Fig. 5b, the magnetization profile is non-uniform in the
junction with averaged magnetic moments per atom being
suppressed near the Nb interface. For thickness larger than 4
layers, one recovers the bulk value of ~0.6μB in the middle layers,
away from the Nb/Ni interfaces. The averaged moment drops
down towards the edges and becomes considerably reduced
down to ~0.1μB at the interface with Nb. The strong reduction of
magnetism is exemplified for the short junction with three layers
of Ni where the moments on the Ni atoms have completely
vanished. Such a non-uniform magnetic moment dependence in
Nb/Ni/Nb junctions affects superconducting properties of the SFS
junctions in a non-trivial way. For example, Nb/Ni/Nb junctions
thinner than four layers of Ni behave as essentially SNS junctions.
It is well-known that the LDA tends to overestimate local

moments M in itinerant magnets48 because spin fluctuations
reduce the average moment49, and underestimate M when local
moments are very large46. For Ni, LDA yields M in good agreement
with the experiment, but this is likely an artifact of an accidental
cancellation of errors. Most important for transport is the
exchange splitting Vex, which the LDA predicts to be 0.6 eV, about
twice larger than the experimental value of 0.3 eV50. It is possible
to reproduce both M and Vex at the same time, but a high-level
theory, potentially including spin–orbit coupling, is needed to
surmount both kinds of errors inherent in the LDA46,51. The high
cost and poor scaling of such a theory are not practical for these
junctions, so we elect to stay within the LDA and scale the self-
consistently calculated Vex. This was the approach Karlsson and
Aryasetiawan used to calculate the spin-wave spectra in Ni52.
Scaling of Vex can be accomplished using different approaches,
e.g., by adding some effective magnetic field to simulate the effect
of spin fluctuations. Since Ni is a simple case with a nearly linear
relation between M and Vex, the band structure hardly depends on

11)
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a b
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Fig. 5 Magnetization of Nb/Ni/Nb junction. a Top view of the Nb
(110) and Ni(111) surface supercells used to build the Nb/Ni
interfaces and the Nb(110)/Ni(111)/Nb(110) stacks shown in
Fig. 1c. The surface supercell is defined from two 2D vectors a1=
[10.8, 0] Å and a2= [6.03, 7.11] Å with periodic boundary condition
in the 2D plane. The corresponding reciprocal space defines the 2D
k∥ vectors used in the calculations. Each atomic plane of Ni (Nb)
contains 14 (10) atoms of Ni (Nb). b Magnetic moment profile of Nb
(110)/Ni(111)/Nb(110) junctions for different thicknesses of Ni (from
3 to 9 layers). The value of the moment is an average over the
moments of the 14 Ni atoms in each atomic plane. Note the
magnetic dead layer at the Nb/Ni interfaces and that all moments
vanish for the shortest junction made of 3 layers of Ni.
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the details in which the LDA potential is modified. Here, we first
perform fully self-consistent calculations. Then, to construct the
potential for transport properties, we rescale the spin component
of the density by a constant factor, which we denote as M/M0.
This enables parametric studies of transport as a function of Vex.
M/M0= 0.5 yields the observed Vex= 0.3 eV, and we use this
scaling unless stated otherwise.
The conductance per unit of area, G/A, is shown in Fig. 3b. It is

weakly dependent on the thickness, w, of the magnetic layer, as
expected for a metallic system in the absence of disorder.

Superconducting transport
We now focus on superconducting properties. The dependence of
the supercurrent on the phase difference ϕ for 5, 8, and 11 Ni
layers is shown in Fig. 3c–e. One can present current-phase
relation, J(ϕ) in a form of a Fourier series

JðϕÞ ¼
X
n⩾1

Jn sinðnϕÞ: (5)

In the 0-junction mode, the first term in the Fourier series
dominates with J1 > 0 [see solid black line in Fig. 3c]. In the π-
junction case [Fig. 3e], the supercurrent is also mostly defined by
the first harmonic but with J1 < 0. Close to the 0–π transition J1
dies out so that the behavior is governed by higher Fourier
harmonics53, e.g., for 8 Ni layers supercurrent has mostly second
harmonic, J2, shown by the dashed black line in Fig. 3d.
Figure 6 shows the critical current density, Jc ¼ max

ϕ
jJðϕÞj,

normalized by normal-state conductance, eJcA/GΔ, as a function of

w (blue squares). Far from the 0–π transitions, the critical current

coincides with the absolute value of the first Fourier harmonic,

e∣J1∣A/GΔ (red circles). Since J1 contains a sign of the current and

has better numerical stability than Jc, we use this quantity for the

analysis. We exclude very thin junctions (three Ni layers or less)

from the analysis since the magnetic properties are suppressed

there. In particular, for the first data point in Fig. 6 corresponding

to three layers of Ni the magnetization is completely suppressed

[see Fig. 5b] and the ratio eJcA/GΔ ≈ 2.2 is significantly higher than

the one for thicker Ni regions with non zero magnetic moments.

We compare this value with the result for the short disordered SNS

junction. The combination of analytical energy spectrum54 with

Dorokhov distribution of channel transmissions55,56 leads to a ratio

of 2.1 (horizontal dashed line in Fig. 6). We attribute this difference
to the fact that there is no interfacial disorder in our model.
The J1 dependence on w can be fit by the following expression

Jfit1 ðwÞ ¼ ΘJ expð�w=ξJÞ cos½πðw þ δJÞ=λJ�; (6)

where ΘJ= 3.20 A/μm2, ξJ= 41.1 Å, λJ= 23.2 Å, and δJ=− 2.75 Å
are fitting parameters. We interpret ξJ as a decay length, λJ as the
“half-period” of the oscillation in J1 as a function of w, and δJ as a
measure of the suppressed magnetization in Ni layers near the Ni/
Nb boundaries. Jfit1 ðwÞ accurately fits the discrete points J1 as
shown in Figs. 3a, 6, 7, and 10 by black solid line and black circles,
accordingly.

Details of the supercurrent
In order to gain insight into the evolution of J1 with w, let us resolve
contributions from different k∥. For this, we rewrite Eq. (3) as

JðϕÞ ¼ A
Z
BZ

dkk
ð2πÞ2

jðϕ; kkÞ; (7a)

jðϕ; kkÞ ¼ �
e
_

1
A

X
ν>0

∂ενðϕ; kkÞ
∂ϕ

: (7b)

Here, A= 76.75 Å2 is the area of the surface supercell shown in
Fig. 5a. Similar to Eq. (5), we denote the first ϕ-harmonic of j(ϕ, k∥)
as j1(k∥). The evolution of the first Fourier harmonic of the
supercurrent J1 and j1(k∥) as a function of w is shown in Fig. 7.
Calculations were performed for two different sets of k∥ with 290
discrete k∥-points (full black circles) and 4142 k∥-points (empty
black circles). One can see that both sets give the same result for
J1, establishing that the k∥ integration is well converged. In Fig. 7,
“errorbars” denote the standard deviation in j1(k∥) with respect to
the k∥-summed average, J1(ϕ). Individual j1(k∥) is shown by semi-
transparent horizontal dashes. The important observation is that
while J1 decays with w, the dispersion in j1(k∥) does not change
significantly.
Figure 8 shows color plots of j1(k∥) corresponding to local extrema

of Jfit1 ðwÞ (4, 13, 25, 36, 48, and 60 layers labeled in Fig. 7). For small
w, one can see that most of all the k∥ contributions to J1 have the
same sign, i.e., positive in the 0-junction regime and negative in the
π-junction regime. In this regime, the decay is predominantly due to
evanescent modes decaying into the junction. For larger w, the
dephasing mechanism becomes important since the phase offset
spread grows with w. One can observe the apparition of
contributions of the opposite sign for w≳ 50 Å. This dephasing
mechanism is mainly due to the variation of the Fermi velocity with
k∥, and becomes more important with increasing w.
In order to study the distribution of the phase offsets and decay

exponents for different modes, we fit the individual j1(k∥) using an
expression analogous to Eq. (6). The set of the resulting fitted
curves jfit1 ðw; kkÞ for 4142 k∥-points are shown by the green
semitransparent curves in Fig. 3a. Here, to minimize the numerical
“noise,” j1(w, k∥) curves are smoothed over the 2D k∥ space using
Gaussian filter with σkk ¼ 0:01 Å−1 which is of the order of the
Fermi wave vector in Nb. Thus, each data point j1(w, k∥)
approximately corresponds to a transverse conducting channel.
This fitting procedure works reasonably well, e.g., the relationship
in Eq. (7a) holds if one replaces J(ϕ) by Jfit1 ðwÞ and j(ϕ, k∥) by
jfit1 ðw; kkÞ for w≳ 10 Å.
The distribution of the fitting parameters for jfit1 ðw; kkÞ is shown

in Fig. 9. Histograms for decay lengths and half-periods reveal a
complicated picture describing different contributions to the
supercurrent in real materials. First of all, in Fig. 9a one can see the
distribution of the half-periods, λj, which is similar to a Gaussian
distribution with a mean value 〈λj〉= 23.2 Å and standard
deviation 2.8 Å. The mean value 〈λj〉 is very close to λJ [see text
after Eq. (6)] while the spread in λj leads to dephasing and is

Fig. 6 Dependence of the supercurrent on Nb thickness.
Comparison of critical current density, Jc ¼ max

ϕ
jJðϕÞj (blue squares),

the absolute value of first Fourier component for supercurrent, ∣J1∣
[see Eq. (5), red circles], and its fitting jJfit1 j [Eq. (6), black curve]. All
these quantities are “normalized” by normal-state conductance, G.
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responsible for the exponential decay of J1 at large w. Indeed, it is
well-known that the average of an oscillatory function with
respect to a random fluctuating phase (described by a Gaussian
distribution) results in an exponentially decaying function.
In addition to the dephasing mechanism, the decay of the

supercurrent originates from the evanescent modes. The histogram
for decay lengths, ξj is shown in Fig. 9b. Here, small ξj corresponds to
fast-decaying jfit1 ðw; kkÞ, large ξj is responsible for non-decaying

modes (i.e., modes with the decay exponents larger than the
junction thickness). The right-skewed distribution of the decay
exponents has a mean value of 〈ξj〉= 108 Å which is much larger
than ξJ in Eq. (6). The shoulder at small ξj presumably corresponds to
the evanescent mode decay comprising of d bands 2 and 3, see
Table 1, whereas the tail at large ξj originates predominantly from
band 6. Overall, one can see that a fit with a single decay exponent,
discussed in Eq. (6), is quite oversimplified for an Nb/Ni/Nb junction
considered here.

Exchange splitting
We now turn to the discussion of the effect of exchange splitting
energy on the supercurrent in MJJs. So far we have used M/M0=
0.5, which yields the experimentally observed Vex= 0.3 eV. It is
interesting to investigate how a ferromagnet with a different Vex
(but otherwise the same band structure as Ni) would affect the w-
dependence of J1. In Fig. 10, we show the results for parametric
variations in M/M0. One can see in Fig. 10a that the half-period, λJ,
and the decay length, ξJ, strongly depend on M. Here, black points
correspond to M/M0= 0.5, and the self-consistent calculations
with no rescaling correspond to M/M0= 1. In order to understand
how λJ and ξJ depend on M, we perform the fitting procedure
Eq. (6) for different magnetic moments and plot, in Fig. 10b, the

Fig. 7 First Fourier harmonic, J1, of the supercurrent as a function of junction thickness, w. Full black circles correspond to J1 calculated
with 290 k∥-points, empty circles (mostly superposed onto the full black circles) correspond to 4142 k∥-points. A solid black line is Jfit1 ðwÞ [J1 fit
given by Eq. (6)]. Green semitransparent dashes show Jfit1 ðwÞ contributions [Eq. (7b)] for the individual k∥-points. The vertical “errorbars”
correspond to the standard deviation of j1(k∥) with respect to J1. The standard deviation is the same for both sets of k∥-point indicating that
these results are independent of the chosen discretization.

Fig. 8 Colorplot of j1(k∥) with k∥= (kx, ky). Each panel corresponds to the local extrema of Jfit1 ðwÞ shown in Fig. 7. For 4 and 13 layers, all the k∥
channels contribute with the same sign. For 48 layers and larger, different k∥ channels lose synchronization and contribute to the total
supercurrent with different signs.
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Fig. 9 Fitting parameters for model supercurrent. Analysis of the
fitting parameters of jfit1 ðwÞ for individual k∥, shown in Fig. 3a by
semitransparent green lines. Distribution of a half-periods, λj, and b
decay lengths, ξj.
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supercurrent density as a function of the rescaled thickness, ðw þ
δJÞ=2~λJ with ~λJ ¼ ðM0=MÞ 11:6 Å. Remarkably J1, as a function of
the rescaled thickness, collapses to the same universal curve. The
inset demonstrates that the fitted half-period, λJ, is proportional to
1/M showing that the oscillation period scales linearly with the
inverse of Vex in this parameter range.
Note that deviations from the linear regimes become significant

for M/M0≳ 1.7. For the clarity of the data, we do not show the
results for M/M0 > 1 in Fig. 10b.

Different orientations of Ni plane
We now discuss the difference in crystal orientation in Nb/Ni/Nb
junctions. We have performed calculations for Nb/Ni/Nb junctions
built from stacking the Ni atomic planes in the (110) orientation
instead of the (111) orientation. The results are given in Supplemen-
tary Note 3. Qualitatively, the same physics holds for both stacks built
from (111) and (110) Ni planes. However, our calculations show that
the actual value for the period of oscillation and for the current decay
depend crucially on the details of the electronic structure of the
junctions, such as the relative crystal orientation.

Spin–orbit coupling
Finally, we considered the effect of spin-orbit coupling in SFS
junctions. Spin–orbit coupling leads to the mixing of the minority
and majority channels and may change current–phase relationship.
The interplay between Zeeman splitting and spin-orbit coupling
have been discussed in ref. 45; the regime of interest is the Zeeman-
field-dominated regime considered there. Indeed, we find that SOC
in Ni is much smaller than the exchange splitting because of
the low atomic number of Ni. As we show in Supplementary Note 4,
the SOC in Ni-based MJJ considered here does not change the
qualitative picture described above but rather leads to small
quantitative changes to the Josephson current.

DISCUSSION
In this paper, we identified two generic mechanisms for the
decay of the supercurrent with junction thickness: (i) exchange-
splitting induced gap opening for minority or majority carriers
and (ii) dephasing between different modes due to the
significant quasiparticle velocity dispersion with the transverse
momentum. It was previously believed that disorder in the
ferromagnet is mainly responsible for the supercurrent decay in
SFS junctions. In the present work, we have shown that band
structure effects also contribute to the critical current suppres-
sion and thus provide an upper bound for the supercurrent in an
ideal (i.e., disorder-free) structure.
We found that the Nb/Ni/Nb junction is a suitable system for

comparison with the simulations because of the long mean free
path in Ni relative to the junction thickness and the quasi-
ballistic nature of quasiparticle propagation in the ferromagnet.
We have found good agreement with published experimental
data for the half-period of the critical current oscillations: λJ ≈
23 Å [see Eq. (6) and text after it] vs. ≈ 26 Å in the experiment,
ref. 22. We have also found that the critical current decays
exponentially with the ferromagnet thickness w. This is to be
contrasted with previously assumed algebraic decay based on
results for the clean SFS junctions using a simple parabolic-like
band structure. We believe that in measured Nb/Ni/Nb junctions
with w ≲ 50 Å the mechanism (i) is likely to be responsible for the
supercurrent decay. This finding is crucial for the material and
geometry optimization of MJJs and superconducting magnetic
spin valves.
Understanding the interplay of band structure effects and

disorder in MJJs is an interesting open problem. We believe that
interfacial disorder due to, for example, the surface roughness
will mix different k∥ modes and will lead to a larger spread of
half-periods. This, in turn, will further enhance the dephasing
mechanism (ii) of the supercurrent decay discussed here. Strong
disorder in the bulk (i.e., mean free path much smaller than
junction thickness w) would lead to the diffusive motion of
quasiparticles in the ferromagnet which is a significant
departure from the quasi-ballistic junction limit considered
here. We think that bulk disorder would induce even more
dephasing between different modes because phase offsets in
this case will depend on different random trajectories of
minority and majority carriers. We, therefore, believe that bulk
disorder will lead to even stronger decay of the supercurrent
with junction thickness, w.

METHODS
We develop a numerical method to perform realistic simulations of MJJs
using a combination of first-principles DFT and BdG calculations. The
former is used to obtain the normal-state properties (e.g., band
structure, Fermi velocities, and magnetization) and to calculate the
normal scattering matrices through the inhomogeneous 3D realistic
junctions. As a next step, we take superconductivity into account and
calculate supercurrent through the stack assuming the short junction
limit.

Normal transport: ab initio description
To calculate the normal scattering matrix we use the Questaal package for
electronic structure calculations based on the LMTO method57. It calculates
the full non-linear, i.e., nonequilibrium, transport properties of an infinite
system describing a central (C) region cladded by two semi-infinite left (L)
and right (R) leads47,58, as represented below

¼ jLjL
zfflfflfflffl}|fflfflfflffl{L

j PL0jPL1j¼ jPLL�1
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{C

j RjRj¼
zfflfflfflfflffl}|fflfflfflfflffl{R

The LCR system [Fig. 1c] can be partitioned into an infinite stack of
principal layers (PLs) which interact only with their nearest neighbors.
This is possible because the screened LMTO structure constants are
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Fig. 10 Magnetic moments rescaling. J1 for different rescaling of
the magnetic moments M/M0 as a function of a the thickness, w, and
b the rescaled thickness, ðw þ δJÞ=2~λJ , where δJ is the fitting
parameter in Eq. (6) and ~λJ ¼ ðM0=MÞ 11:6 Å. J1 values are shown by
circles; corresponding fittings Jfit1 ðwÞ are shown by lines of the same
color. (Inset) Half-period, λJ, fitted using Eq. (6) vs. ~λJ .
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short-ranged59. In the present case, the C region consists of the
ferromagnet, plus two layers of Nb at the LC and CR interfaces
respectively. This is the range over which the perturbation from C
significantly modifies the potential in the L or R region. To construct the
Nb/Ni/Nb stack, coincident site lattices for Ni and Nb must be found
(details of how this was accomplished are given in Supplementary Note
2). Planes of coincident site lattices are stacked to form the Nb/Ni/Nb
structures. Figure 5a shows the Nb and Ni planes we used, which are
denoted here as “surface supercells.”
The electronic current flows along the z-direction, perpendicular to the

PLs lying in the xy-plane (transverse direction), see Fig. 1c. Periodic
boundary conditions are used within each PL. The corresponding
reciprocal space defines the two-dimensional (2D) k∥ vectors, i.e., the
transverse modes, used in the calculations. The k∥ mesh is discretized and
integrals over k∥ are performed numerically.
The electronic structure of the C region can be separated from L and

R regions through self-energies, ΣL and ΣR, that modify the Hamiltonian
of the C region. They are most easily calculated if the potential of each
PL in the L or R region is identical all through the bulk region. This is the
reason for adding a few Nb layers folded into the C region. Thus the
periodically repeating unit cells in the L and R regions can be safely
assumed to have the potential of the bulk crystal. To construct the self-
energies, the potentials of the PL in an infinite stack are needed. These
potentials are functions only of the PL in their own region and may be
calculated in several ways. ΣL and ΣR are obtained from “surface”
Green’s function (a fictitious system that consists of a semi-infinite stack
of PL, each with the same potential). Note that the potential of the C
region is calculated self-consistently. This is important, as the local
moments of Ni are small at the boundary layers, and build up gradually,
see Fig. 5b.
With the potential in hand, the normal-state transport can be calculated

using scattering formalism58,60. For this, knowing the retarded Green’s
function, Gr, of the junction is sufficient. However, this is not the case for
the Josephson current: the individual eigenfunctions are required. Within
a Green’s function framework, Gr must be organized by normal modes
which correspond to the eigenstates of the L and R leads for a prescribed
energy E. In the PL representation, the Hamiltonian has been discretized
into the linear combinations of the LMTO basis functions, and the normal
modes are represented as eigenvectors of these basis functions. The
Schrödinger equation becomes a differential equation in the PL basis
functions61. Eigenvectors are calculated by solving a quadratic eigenvalue
problem61,62, whose eigenvalues correspond to expð± ikz;naÞ, where a is
the thickness of the PL. The wavenumber kz,n of the normal mode n can
be complex, but to correspond to a propagating mode kz,n must be real.
By solving the equation as a function of the energy E, one gets all the
eigenvalues and eigenvectors which provide the information needed to
construct the self-energies ΣL and ΣR (for each k∥ and each spin σ). Note
that, in the mode basis, the imaginary part of the self-energies is
proportional to the (band) velocity of the modes, and is diagonal for non-
degenerate modes62,63.
The retarded Green’s function Gr of the C region (connected to the L and

R leads) can be written as a matrix in the normal mode basis,

GrσðE; kkÞ ¼ ½GrC;σðE; kkÞ�
�1

n
�ΣL;σðE; kkÞ � ΣR;σðE; kkÞ

��1
;

(8)

where GrC is the Green’s function of the isolated C region. On this basis, Gr is
decomposed into four blocks

GrσðE; kkÞ ¼
GrLL;σðE; kkÞ GrLR;σðE; kkÞ
GrRL;σðE; kkÞ GrRR;σðE; kkÞ

" #
; (9)

upon projecting onto the propagating modes of the L and R leads. These
four quantities and the mode velocities completely determine the normal
state transport properties of the junctions.
The transmission matrices are defined by the off-diagonal parts of

Eq. (9). More specifically, the transmission coefficients ½tLR;σ �nm, connecting
L and R regions, are given by60

½tLR;σ �nmðE; kkÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½vL;σ �nðE; kkÞj

p
´ ½GrLR;σ �nmðE; kkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½vR;σ �mðE; kkÞj

p
;

(10)

where ½vL;σ �n and ½vR;σ �m are the velocity matrix elements for propagating
modes n andm in the L and R leads, respectively. The transmission matrix tRL
can be obtained from Eq. (10) by replacing L↔ R. The reflection coefficients

are given by the diagonal blocks of Eq. (9). For instance, on the L side

½rLL;σ �nn0 ðE; kkÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½vL;σ �nðE; kkÞj

p
´ ½GrLL;σ �nn0 ðE; kkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½vL;σ �n0 ðE; kkÞj

p
� δnn0 :

(11)

The reflection matrix rRR on the R side is obtained from Eq. (11) by
replacing L↔ R.
We define the normal scattering matrix as

S ¼

rLL;" 0 tLR;" 0

0 rLL;# 0 tLR;#
tRL;" 0 rRR;" 0

0 tRL;# 0 rRR;#

2
6664

3
7775 ; (12)

where we omit E- and k∥-dependence for brevity.
The linear-response normal conductance, Gσ, per spin is given by

Gσ

A
¼ e2

h

Z
BZ

dkk
ð2πÞ2

X
n;m

j½tLR;σ �nmðEF; kkÞj
2: (13)

It is calculated at the Fermi energy, E= EF. The total conductance is given
by G= G↑+ G↓. Figure 3b shows that G, G↑, and G↓ are almost independent
of the junction thickness, w.

Superconducting transport: a scattering matrix approach
Equation (12) is the normal-state scattering matrix for
metal–ferromagnet–metal (NFN) structure taking into account reflection
at both NF interfaces. To account for superconductivity, we introduce a
step-like superconducting pairing potential Δ= 3.1 meV and use the
Andreev approximation to account for electron–hole scattering pro-
cesses3,9. This approach combines the details of the atomic structure of
Nb/Ni/Nb and superconductivity within the mean-field approximation.
The direct contact between S and F layers, as shown in Fig. 1a, would

lead to an interaction between them. The back-action of the ferromagnet
on the superconductor (i.e., the inverse proximity effect) results in a
spatial dependence of the pairing potential near the SF interfaces64–66. In
the case of a clean SFS junction model, the self-consistent BdG
calculations have been discussed in refs. 67–71. In typical experimental
systems the superconductor is disordered, so the disorder effect on
pairing potential needs to be considered, see, e.g., ref. 72. Furthermore, in
recent experiments S and F layers are separated by an intermediate
spacer layer, which significantly reduces this inverse proximity effect.
Thus, to understand the inverse proximity effect in realistic SFS devices
one would need to include both of the above mentioned ingredients in
the model as well as to take into account the inhomogeneous
magnetization in the ferromagnet (see e.g. Fig. 5b) which is outside
the scope of this paper. For the sake of clarity, we focus here on a realistic
band structure in the ferromagnet and its effect on the supercurrent in
the SFS structures. Henceforth, we also neglect the orbital effects of the
fringe magnetic field, created by the ferromagnet.
Since Δ≪ EF, spin-resolved Andreev reflection at SNL and NRS interfaces

is described by

rAðϕÞ ¼

0 1 eiϕ=2 0 0

1 eiϕ=2 0 0 0

0 0 0 1 e�iϕ=2

0 0 1 e�iϕ=2 0

2
6664

3
7775 ; (14)

where ϕ is the phase difference between left and right superconducting
leads and 1 is the identity matrix. In the short junction limit, the main
contribution to the supercurrent comes from Andreev bound states
localized in the junction having energy εν. The energy spectrum of Andreev
states can be obtained using the following equation54,

αðεÞ
0 r�AðϕÞ

rAðϕÞ 0

� �
SðEF þ ε; kkÞ 0

0 S�ðEF � ε; kkÞ

" #
Ψin ¼ Ψin;

(15)

where αðεÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ε2=Δ2

p
þ iε=Δ. The vector Ψin ¼ ψL!

e" ;
h

ψL!
e# ;ψ

R 
e" ;ψ

R 
e# ;

ψL!
h" ;ψ

L!
h# ;ψ

R 
h" ;ψ

R 
h#

iT
corresponds to the electron- and hole-like (e/h)

waves in NL and NR regions incident on the F region from the left (→) and
from the right (←).
Simulations show that S is weakly-dependent on E in the range [EF− Δ,

EF+ Δ]. Therefore, we expand S(E, k∥) in E− EF and keep only the leading
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term, i.e., S(E, k∥) ≈ S(EF, k∥)= S(k∥). Using this approximation, one can
simplify the quantization condition (15) and reduce it to the matrix
eigenvalue problem (see details in ref. 73). This approach allows one to
reliably calculate the Andreev bound states spectrum, εν(ϕ, k∥). The zero-
temperature supercurrent, J, through the junction is given by Eq. 3.
Figure 3c–e shows J as a function of a phase difference, ϕ. Figure 3a
shows the first Fourier harmonic of the supercurrent as a function of the
junction thickness, w.
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