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Machine learned interatomic potentials using random features
Gurjot Dhaliwal1, Prasanth B. Nair2,4✉ and Chandra Veer Singh 1,3,4✉

We present a method to model interatomic interactions such as energy and forces in a computationally efficient way. The proposed
model approximates the energy/forces using a linear combination of random features, thereby enabling fast parameter estimation
by solving a linear least-squares problem. We discuss how random features based on stationary and non-stationary kernels can be
used for energy approximation and provide results for three classes of materials, namely two-dimensional materials, metals and
semiconductors. Force and energy predictions made using the proposed method are in close agreement with density functional
theory calculations, with training time that is 96% lower than standard kernel models. Molecular Dynamics calculations using
random features based interatomic potentials are shown to agree well with experimental and density functional theory values.
Phonon frequencies as computed by random features based interatomic potentials are within 0.1% of the density functional theory
results. Furthermore, the proposed random features-based potential addresses scalability issues encountered in this class of
machine learning problems.
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INTRODUCTION
Classical molecular dynamics (MD) based on empirical force
fields has emerged as a powerful technique for predicting
material properties and behaviour at the atomistic scale. This is
because the use of empirical models of interatomic interactions
enable significantly faster and scalable computations compared
to ab initio methods such as density functional theory (DFT)1.
The central component of any MD simulation is the Interatomic
Potential (IP) function that determines interatomic interac-
tions1,2. The choice of IP can significantly alter the property
predictions, thus affecting the derived insights from the
corresponding MD simulations3,4. It has been shown that IPs
based on physical and chemical theories can be sensitive to
small changes in their parameters5,6. Furthermore, due to their
rigid physically motivated functional forms, they cannot be
generalized across different material systems. An alternative is
to use IPs developed using machine learning (ML) tools7–17.
These models make fewer assumptions on the functional form
of the IP and can be easily generalized to different material
systems10,18.
The most popular ML approaches for IP development include

linear regression12,14, kernel regression models7,15, and neural
networks8,11. All of these models use atomic descriptors,
functions describing local atomic environment, as inputs and
predict energy, and its higher-order derivatives as outputs19,20.
More recently, Zhang et al.21 and Jia et al.22 proposed neural
network-based IPs, that use the atomic coordinates as input
and learn the underlying descriptors through an embedding
neural network. Training of embedding as well as prediction
network is performed end-to-end. A review of ML-based IPs can
be found in refs. 16,17,23–27. The present study focuses on kernel
regression models such as Gaussian approximation potential
(GAP)7. GAP is based on Gaussian processes and approximates
the local atomic energy with a kernel defining the similarity
between different atomic descriptors. This kernel-based IP has
been used to predict the energy/forces for a wide range of

materials including metals, semiconductors, amorphous solids
etc.9,28–32. Another popular IP based on kernel regression is
Adaptive Generalizable Neighbourhood Informed (AGNI)
potential, which has been mainly used for modelling interac-
tions in metals15.
Parameter estimation in standard kernel methods costs

typically OðN3Þ, where N is the number of training points. In
addition, standard kernel methods require storage and
factorization of a dense (N × N) Gram matrix, which poses a
significant computational and memory bottleneck for large N.
In IP learning applications, N can easily be in the range of
106−107, requiring significant computational resources for
parameter estimation. The large Gram matrix also hinders the
hyper-parameter tuning process where multiple model runs are
required to identify good settings for the hyper-parameters
such as kernel length scales, cut-off radius etc. Slow training
becomes a bottleneck when more than one element is involved
e.g., alloys, or when active learning methods are used for
training13,33. Another major disadvantage of kernel methods is
that prediction at a new point costs OðNDÞ, where D is the
number of input features. Depending on the descriptors used,
D can easily take values of the order 102, leading to slower
MD run time. In the GAP approach, a sparse approximation is
used to reduce the training complexity to OðN02NÞ and
prediction complexity to OðN0DÞ, where N0 denotes the number
of sparse points7.
In order to address the high computational cost associated with

the application of ML to learn IPs, this study presents a method
that approximates the local atomic energy as a linear combination
of random features associated with a kernel. The basis function
used for energy modelling is a low-dimensional representation of
the infinite-dimensional feature space associated with a kernel.
The models presented here are tested using random features
based on both stationary and non-stationary kernels. Energy and
forces are predicted for three material systems—graphene,
diamond, and tungsten. For each material system, mean absolute
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error (MAE) for force predictions are of the order 10−2 eVÅ−1 as
compared to the corresponding DFT results. Performance of IPs
based on random features is compared against state-of-the-art
ML-based IPs such as GAP7 and empirical IP such as AIREBO34,
EAM35 etc. Apart from providing better energy/force fittings, IPs
based on random features significantly reduce the training time
by 96% as compared to GAP. The main reason for this is the
smaller number of parameters needed to fit the energy function of
random features based IPs. The low-dimensional parameter space
has a direct impact on the computational cost associated with
energy/force evaluations during MD run time, with fewer
parameters leading to faster evaluations as detailed in Supple-
mentary Note 3.

RESULTS
Random feature models
In this and the following sections, an atomic configuration will
refer to a particular group of atoms in ordered or disordered
state. The total number of atomic configurations in the training
set will be denoted by L, with the lth configuration having Nl

atoms, where l= 1, 2,…, L. Each atom is described by rotation-
ally and translationally invariant descriptors. A simple descriptor
can be the distance between two atoms or functions of distance
as discussed by Behler11. More complex descriptors include
functions based on spherical harmonics of charge density
expansion such as smooth overlap of atomic positions (SOAP)20.
The goal is to learn a model for energy and forces given the
atomic descriptors.
The local atomic energy, E, for an atom described by the

descriptor q, can be approximated as follows

EðqÞ ¼
XL
l¼1

XNl

t¼1

wtKðq;qtÞ; (1)

where K(q, qt) is a kernel function denoting the similarity measure
between atomic descriptors q and qt. The contribution of each
training atomic descriptor, qt, is weighted by a scalar weight, wt,
where the index t goes over all the atoms in the training set. The
above model of energy approximation forms the basis of various
ML-based interatomic potentials7. Two types of kernels: stationary
such as squared exponential (used mostly for two-body and three-
body descriptors) or non-stationary such as polynomial kernel
(used mostly for SOAP descriptors) are used to approximate the
atomic energy as per Eq. 1. However, as mentioned earlier the
training cost and runtime associated with kernel methods can be
exorbitant for large values of N and D. More specifically, the
training data used to learn IP models can easily scale to 100,000
atomic configurations, which makes full kernel evaluation
infeasible in practice.
In order to circumvent the issues associated with full kernel

evaluation, we use the idea of random features. Kernel
approximations based on random features have been used to
solve a range of challenging problems in machine learning36–38.
However, the use of these models to develop IPs has not been
explored yet. In the following sections, we discuss how random
features corresponding to stationary and non-stationary
kernels can be used to efficiently learn IPs from DFT simulation
datasets.
To approximate stationary kernels, we use the notion of random

Fourier features (RFF). The main idea behind RFF is that stationary
kernels can be approximated by a dot product of random features
as follows

Kðq;qtÞ � zðqÞTzðqtÞ; (2)

where z(q) is a vector of random features associated with the
atom descriptor q 2 RD. For stationary kernels such as the
squared exponential, these random features are obtained by

invoking Bochner’s theorem which states that a kernel is positive
definite if and only if it is a Fourier transform of a non-negative
measure. Writing the Fourier transform of the kernel as
Kðq� qtÞ ¼ R pðωÞejωT ðq�qtÞdω, and using the ideas presented
by Rahimi and Recht39, the kernel can be approximated in the
form of Eq. 2, with

zðqÞ ¼
ffiffiffiffi
2
M

r
½cosðωT

1qÞ; sinðωT
1qÞ; � � � ; cosðωT

MqÞ; sinðωT
MqÞ� 2 R2M;

(3)

and ωm ~ p(ω), m= 1, 2,… M, are random vectors of length D (for
details see algorithm 1). For different kernels, the distribution p(ω)
takes the specific forms as detailed by Rahimi and Recht39.
Detailed derivations for the above basis functions and general-
ization error bounds can be found in Rahimi and Recht39–41. The
local atomic energy can be approximated using the random
features as follows

EðqÞ ¼
X2M
m¼1

αmzmðqÞ; (4)

where αm are the model weights and zm(q) denotes the mth
component of the vector z(q) defined in (3). A smooth function
that zeroes out the energy contributions of atoms falling outside a
cutoff radius can be used with the above energy model. The
mathematical form of the cutoff function used in this work is
described in the Methods section.
For many body features such as SOAP, a dot product or

polynomial kernel provides a better approximation of energy than
a stationary kernel. A dot product kernel is of the form
Kðq;qtÞ ¼ ðqTqt þ rÞn, where n 2 N and r 2 Rþ. This kernel
can be approximated using a random features map (RFM) based
on results from harmonic analysis42. According to Shor’s theorem,
a kernel is positive definite if it is an analytic function admitting
Maclaurin expansion42. The mth component of the random
feature map that provides an unbiased estimate of the dot-
product kernel can be written as

zmðqÞ ¼ ffiffiffi
γ

p Yn
j¼1

ωT
j q; (5)

where γ is a randomly chosen scaled Maclaurin coefficient as
defined in algorithm 2 and ωj∈ {−1, 1}D is a random vector. To
reduce the variance due to random sampling, n copies of ω are
generated and multiplied together in the preceding equation. Kar
and Karnick42 emphasized that the coefficients of the Maclaurin
expansion needs to be non-negative, otherwise it will lead to
indefinite kernels. Similar to stationary kernel approximation, the
energy of an atomic configuration, considering a non-stationary
kernel, is modelled by a linear combination of these random
features as follows

EðqÞ ¼
XM
m¼1

βmzmðqÞ; (6)

where βm are model weights to be estimated from the training
data. Algorithms to generate random features for both
stationary and non-stationary kernels are detailed in the
Methods section.

Parameter estimation
The energy of an atom can be modelled using random feature
models as per Eqs. 4 and 6. The weight vectors, α and β, are
estimated by minimizing the regularized least-squares loss

G. Dhaliwal et al.

2

npj Computational Materials (2022)     7 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



function

Lðα; βÞ ¼ PL
l¼1

PNl

i¼1
Eli � El;�

� �2

þPNl

i¼1

PNl

j¼1

P3
k¼1

Flijk � Fl;�ijk
� �2 !

þ λ kαk22 þ kβk22
� �

;

(7)

where Eli denotes the predicted values of local energy for the ith
atom belonging to the lth atomic configuration and Flijk denotes
the predicted forces in direction k for the (i, j) atom pair in atomic
configuration l. The local energy is modelled using (3) and/or (6)
while the predicted forces are obtained by differentiating the
energy models as outlined in the Methods section. Quantities of
interest calculated using DFT (available in the training dataset) are
marked by an asterisk, where El,* denotes the DFT calculated
energy for configuration l and Fl;�ijk denotes DFT calculated force in
direction k for atom pair (i, j). λ denotes the regularization
parameter which can be estimated by cross-validation. Since this
loss function is quadratic in α and β, the weights can be estimated
by solving a system of linear algebraic equations. The complexity
of weight estimation through this method is OðM2NÞ which is
significantly lower than traditional full kernel methods (OðN3Þ).
Similarly, the computational cost of prediction at a test point is
OðMÞ as compared to OðNDÞ for classical kernel methods. Here, N
denotes the training set size, D denotes the number of descriptors
and M denotes the total number of random features.
In the present study, we approximate the squared exponential

kernel using RFFs. By writing the Fourier transform of this kernel,
the corresponding probability distribution for ω can be written as
ω � Nð0; σ�1IÞ,where σ denotes the shape parameter of the
kernel39 and I denotes the D × D identity matrix. From the above
probability distribution, random samples for ω are generated,
which are used to obtain z(q) as defined in Eq. 3. To make this
approach deterministic, ω can be generated from the above
distribution using quasi-random sequences43. Random features
are obtained for dot product kernels of order 4 using RFM as
described in the Results section.

Data
We tested the IP based on random features on three classes of
materials namely metals, semiconductors, and 2D materials.
Datasets for tungsten, diamond and graphene were obtained
from libatoms.org, as accessed on March 3, 2019. The data consist
of energy and forces for a range of configurations computed
through first principle methods, details of which can be found in
references7,28,31. For graphene, we used the same training and
validation dataset as detailed in Rowe et al.28. For the tungsten
dataset, we used GAP5 as training and GAP6 as test set31. The
atomic configurations included in the sets GAP5 and GAP6 are
described in ref. 31. Random partition of diamond data was
performed to obtain training and test set. For diamond and
tungsten, we used SOAP descriptors, and thus only the RFM model
was applied to these datasets. To isolate the performance of the
RFF model, we employed two-body and three-body descriptors
only for the graphene datasets. The parameters for the descriptors
are kept the same as presented in refs. 7,28,31.
Figure 1 shows the predicted forces versus the DFT computed

forces for graphene, diamond, and tungsten. As can be seen from
Fig. 1, the forces predicted closely agree with the DFT computed
values. R-squared value for these plots is more than 0.99
exhibiting the excellent fit between predicted and true forces.
MAE in energy and force prediction in these three classes of
materials is detailed in the inset of Fig. 1. Energy and force fittings
exhibit low MAE with energy fittings approaching the chemical
accuracy of 1 kcal/mol (0.043 eV).

Graphene potential
Performance of IPs based on random features was also
compared against existing classical IPs. On the graphene
dataset, Rowe et al.28 compared GAP IP to classical IPs as well
as other DFT methods. We computed the same error metric
considering RFF, i.e., root mean squared error of in-plane and
out-plane forces, and found these numbers to be 0.070 and
0.044 eVÅ−1, respectively. Though these error metrics are
slightly higher than GAP, they are significantly lower than the
other IPs28.
Apart from excellent energy/force fittings, another computa-

tional advantage considering RFFs is discussed here. Table 1
compares the MAE in energy and forces as predicted by GAP
potential and RFF potential for two-body (GAP(2B), RFF(2B)) and
three-body (GAP(3B), RFF(3B)) descriptors, respectively. It can be
easily seen from Table 1 that the RFF model provides a much
better energy fitting than GAP while also maintaining compar-
able force-fitting accuracies. Particularly, MAE for energy fittings
considering three body descriptors is lower than GAP (3B) by two
orders of magnitude while both IPs exhibit similar performance
for force fittings. The last column in Table 1 shows the time taken
to train each potential on the same dataset. It is clearly evident
that RFF based IP not only provides better energy and force
fittings, they also outperform GAP in terms of training time. The
main drawback of RFF potential is that the number of parameters
required for energy/force fittings is higher than the correspond-
ing GAP potentials. This will result in slower prediction of energy/
forces during MD run-time.
In order to reduce the number of parameters, we constrained

each sample of ω to be orthogonal to each other. The
importance of orthogonal random numbers has been discussed
previously in other works and corresponding performance
bounds can be found in refs. 44–46. We will refer to RFF model
with orthogonal random numbers as O-RFF and corresponding
performance metrics are detailed in Table 1. By introducing
orthogonal random numbers, the number of parameters
reduced by one order of magnitude, while maintaining accuracy
in energy/force predictions. Furthermore, training time is
reduced by approximately 96% as compared to RFF, leading to
significant computational savings. Supplementary Note 2 details
the energy and force error convergence as number of random
features is increased in O-RFF based IPs. It can be easily seen
that, for both the two-body and three-body descriptors, error
drops at much faster rate and plateaus earlier when orthogonal
random numbers are used.
To test the ability of RFF based IP, an extensive set of

structural, thermal, and elastic MD simulations were performed
on monolayer graphene. MD simulations were performed using
the Atomic Simulation Environment (ASE) library47. Predictions
made through RFF based IP were compared against those
obtained from classical and GAP potentials. Calculations invol-
ving GAP and classical potentials were performed using the QUIP
framework within the ASE library47. Reproducibility of DFT and
experimental values is also assessed and comparison to RFF
based predictions is presented in Table 3.
The first set of MD simulations that we analyzed correspond to

structural properties such as cohesive energy and lattice
constant. In-plane lattice parameter was obtained by fitting
Birch-Murnaghan equation of state (EOS)48 on energy and
volume data. Corresponding minimum energy configuration
provided the cohesive energy of the graphene sheet. From Table
3, it can be seen that RFF prediction of cohesive energy is close
to GAP. The predicted value of cohesive energy also lies within
1% of the DFT predictions. From Table 3, it is evident that
prediction using AIREBO potential is off by 4% from DFT
computed values. It is worth noting that both GAP and RFF
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over-predicts cohesive energy as compared to experimental
value of −7.73 eV.
We also consider the elastic properties of monolayer

graphene sheet. The elastic constants, C11 and C12 were
computed by fitting elastic tensor to stress−strain data.
Independent normal and shear strained configurations were
obtained and corresponding stress tensors were computed
after performing force relaxation. For stress calculations, we

considered the thickness of graphene sheet to be 3.34 Ao. MD
simulations reveal that C11 as predicted by RFF was within 0.2%
of the GAP predictions. Value of C12 as obtained from RFF is
221.93 GPa, which is showing a deviation of 12% from the GAP
prediction. Compared to the value obtained from experiments,
RFF computed value for C11 is underestimated by 8%. This
deviation can be addressed by including more strained
configurations during the training phase.
Table 3 also shows the properties predicted using the O-RFF

potential. O-RFF predicted values of lattice constant and
cohesive energy are in close agreement with the full RFF model.
The values of C11 are off by 2% while C12 are off by 3.2% as
compared to RFF.
Another important quantity of interest is the phonon

dispersion curve for graphene. To model thermal transport
properties such as thermal expansion coefficient and specific
heat, it is highly critical to accurately determine phonon
frequencies. It has been shown in previous studies that
classical IPs fail to reproduce experimentally or DFT obtained
phonon dispersion curves. Considering ML-based IP, GAP has
been shown to accurately reproduce the experimentally
obtained phonon frequencies28. In the present study, we
compared the phonon frequency as obtained from DFT to
those obtained using GAP, RFF, and O-RFF potentials. Phonon
dispersion curve and frequencies were obtained using small
displacement method as implemented in the ASE library47.

Table 1. Comparison of RFF model with the state-of-the-art GAP
potential, for the graphene dataset.

Potential MAE Etest
(meV/atom)

MAE Ftest
(eVÅ−1)

Parameters Training time
(seconds)

GAP (2B) 52.705 0.234 50 144

RFF (2B) 28.9459 0.325 200 103

O-RFF (2B) 27.18 0.353 20 51.4

GAP (3B) 11.185 0.058 250 6060

RFF (3B) 0.415 0.049 4000 4229

O-RFF (3B) 0.29 0.047 200 256

The metric used is mean absolute error. GAP model was trained considering
only 2 body interactions, denoted as GAP (2B) and considering 3 body
interactions only, denoted as GAP (3B). Training time is measured in seconds.

Fig. 1 Prediction accuracy of potential based on random features. Plot of forces predicted through random features versus the DFT
computed values. Data was obtained from libatoms.org. Mean absolute error in energy (Etest) and force (Ftest) prediction is shown in inset for
the corresponding test sets (a, c, e). Histogram of the force prediction errors is provided for graphene (b), diamond (d), and tungsten (f).
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The DFT study was conducted using ASE with VASP as
underlying calculator.
From Fig. 2c, it is evident that the RFF predictions closely

match DFT obtained phonon dispersion curves. We also
compared the phonon frequencies as obtained from RFF and
GAP. Absolute error in frequencies as predicted by both the
potentials is less than 7 meV, thus confirming that RFF based IP
can accurately reproduce phonon dispersion curve within the
experimental tolerance. Figure 2e compares the phonon
dispersion curves as obtained from O-RFF and DFT. The absolute
error in frequencies is shown in Fig. 2f. It is clear that the O-RFF
predictions also closely match DFT obtained phonon dispersion
curve with an accuracy of 6 meV.

Diamond and Tungsten potentials
Considering diamond and tungsten data, Fig. 3 shows the
dependence of (a) MAE in energy and (b) force on the number
of random features. For both the material systems, a clear trend
of reduction of MAE in energy and force fittings is evident.
Performance is compared against the GAP IP, where dashed
lines show corresponding MAE in energy and forces. As the
number of random features is increased, errors in force fittings,
Fig. 3b, for both diamond and tungsten falls below the GAP
benchmarks. MAE in energy fittings for both the materials
reduces as we increase the number of random features
but at different rate than the corresponding error in force
fittings. Supplementary Note 1 details the variation of energy
and force errors as the training sample size is increased.

Both energy and force errors converge with increase in training
sample size.
Accuracy of force fittings for RFM potentials is also compared

to those obtained from classical IPs. We considered the diamond
data and obtained forces using AIREBO34, AIREBO-M49, and
Tersoff50 potentials. Force prediction for each potential is
compared against DFT predictions and MAE is presented in
Table 2. It can be noted that RFM has the lowest MAE for both
training and test set.
To validate the proposed RFM potential, we performed a

series of MD simulations and compared the results to DFT and
experimental values. In order to perform MD simulations, we
implemented RFM potentials using the open-source ASE
library47. We start the performance analysis of the RFM
potential by first assessing the structural properties of both
diamond and tungsten. From the energy−volume curves,
ground state energy and corresponding lattice constant is
obtained for the respective material systems. Figure 4 shows
energy−volume curves for diamond and BCC tungsten using
both RFM and GAP7,31 potentials. It is clearly evident that RFM
matches GAP predicted energies with high accuracy for both
the material systems. Lattice constant values are listed in
Table 3 and are compared to DFT and experimental values.
Comparing RFM and DFT values, the error in lattice constant
prediction is within 0.01% for both the material systems. We
also obtained bulk modulus, by fitting the Birch-Murnaghan
equation to the energy volume data. For both the material
systems the values lie closely to DFT predicted values.

Fig. 2 Comparison of phonon properties. Phonon dispersion curves as obtained by DFT (shown by solid lines) and by GAP (a), RFF (c), and
O-RFF (e). Absolute error in frequency prediction between DFT and respective potentials is shown in subfigure (b), d, and (f). Maximum
absolute error in frequency prediction through RFF is 7 meV while from O-RFF its 6 meV.
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Using linear elasticity theory, elastic constants C11, C12, and
C44 were computed for both diamond and tungsten. Pristine
atomic configurations were strained within 1% and corre-
sponding stresses were computed. The results for RFM and GAP
are given in Table 3 and compared to the corresponding DFT
and experimental results. Considering tungsten, the values
of C11 and C44 are within 4% of the DFT values. There is a
slight overprediction of C12 with the RFM predicted value to
be 225.07 GPa while the corresponding DFT value is 203 GPa.
The elastic constants obtained for the diamond dataset
were within 3% of the DFT values except C44. We also
computed mechanical properties such as Young’s modulus
and Poisson’s ratio and found them to be in excellent
agreement with the DFT results (see Table 3). Another
validation of RFM based potentials is assessed by performing
simulations considering defects such as vacancies for tungsten.
From Table 3, it is clear that RFM based potentials can model
defects such as vacancy formation and provide accuracy levels
comparable to DFT.

DISCUSSION
The present study provides a computationally efficient
approach to model interatomic interactions. The generalized
linear models presented in this study provide energy and
force predictions with DFT level accuracy (MAE less than
0.03 eVÅ−1 when compared to DFT results). By providing
potentials for three different classes of materials, we have
shown that the same functional form, as presented in Eqs. 4 and
6, can be used to model a wide range of material classes.

It was shown that MD simulations performed using the above
approach provided results within 7% of the experimental values
or DFT predictions.
In certain applications, material behaviour is accurately

represented by a combination of two body, three body, and
many body descriptors. In those cases, a linear combination of
RFF and RFM can be easily applied. We also like to highlight that
there is no restriction on using the descriptors discussed in this
study. In fact, the algorithms used to generate random features
(RFF/RFM) can be easily applied to Behler’s symmetry func-
tions19, bispectrum coefficients12, or the descriptors used in
AGNI framework15 etc.
The major advantage of the RFF/RFM based IP is the low

memory requirements as compared to standard kernel
methods such as GAP and AGNI. Prediction through RFF/RFM
potentials does not need storage of training set and requires
computational effort of OðMÞ, where M is the number of
random features. This low memory advantage of RFF/RFM
based IP makes them scalable compared to standard kernel
methods. This computational advantage is achieved without
sacrificing prediction accuracy as is evident through MD
simulation results.
The potential’s functional form can be easily extended to

model complex material interactions that involve different
material classes. These interactions are hard to capture by
classical IPs, as they are tuned to very specific chemical
compositions, bonding types, and surface geometry. On the
other hand, ML-based potentials can have challenges with
descriptor and parameter identification for the large dataset
involving different elements. In the light of these issues, RFF/
RFM based potentials come up as a worthy candidate for
accurate modelling of such complex interactions in a compu-
tationally efficient way. Not only have these potentials been
shown to provide forces with DFT level accuracy, the simple
generalized linear form can provide faster training and predic-
tion of energy/forces in comparison to standard kernel methods.
To test our above hypothesis, we developed O-RFF potentials for
two different material systems (a) Li-Si-P-S51 and (b) Li-P-S-Sn51.
The data for both the material systems was obtained from
DeepMD library (http://dplibrary.deepmd.net/). For both the
material systems, we obtained forces agreeing well with DFT
calculations, with MAE between DFT and O-RFF predicted forces
around 0.08 eVÅ−1. Detailed results are presented in Supple-
mentary Note 4.
One major issue that we encountered was slow run time of

RFF based IP as compared to the classical IP. The main reason

Fig. 3 Learning capacity of random features model. Dependence of MAE in energy and force prediction on the number of random features
for RFM model. Mean absolute error in energy (a) and forces (b) are shown for diamond and tungsten RFM IP. Dashed horizontal lines show
the performance of GAP IP.

Table 2. Comparison of MAE in force predictions as predicted
through RFM and other existing IPs for the diamond dataset.

MAE Ftrain (eVÅ−1) MAE Ftest (eVÅ−1)

RFM 0.022 0.024

GAP7 0.067 -

AIREBO34 3.281 3.341

AIREBO-M49 3.156 3.229

Tersoff50 2.407 2.376

MAE in forces is lower by two orders of magnitude as compared to classical
IPs and about three times lower than GAP.
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for this is the expensive evaluation of cos and sin functions
at every timestep. We tackled this issue by introducing
potentials based on orthogonal random numbers, which
reduced the number of required random features by more
than half. For different sheets of graphene, Supplementary
Fig. 3 (ref. Supplementary Note 3) shows the average time taken
by 10 steps of NVT ensemble considering O-RFF, RFF,
and GAP28 IPs. Run time of O-RFF is considerably lower
than both GAP and RFF IP, while two orders of magnitude
slower than the classical IP such as AIREBO34. Another way to
reduce the runtime cost would be to include a sparsity-
inducing regularizer in the objective function or by using
Kronecker matrix algebra52. This is the focus of an
ongoing study.

ML-based IPs can outperform classical empirical IP, by using a
generic functional form, with DFT level accuracy for energy/force
prediction. However, the main disadvantage of ML-based IP is
the computational time needed for training the model and
prediction of energy/forces during MD runs. Kernel-based
methods are memory intensive as they have to store the training
configurations for prediction purposes. The present study
eliminated these limitations by providing a linear model-based
IP using random features for stationary and non-stationary
kernels. Energy and force fittings are comparable to DFT
predictions. Low parametric space and linear functional form
enabled these models to be computationally faster than DFT. Time
to learn IP is significantly reduced by 96% as compared to GAP,
thus allowing faster hyper parameter search and optimization.

Table 3. Table of physical properties as computed using various methods.

Experiment DFT Classical IP GAP RFF/RFM O-RFF

Graphene Lattice constant (Ao) 2.45959 2.408−2.660 2.419 2.467 2.453 2.461

Cohesive energy (eV) −7.37461 −7.7362,−7.90663 −7.427 −7.964 −7.963 −7.976

C11 (GPa) 1017.9664 1072.1665 992.435 934.49 936.27 917.55

C12 (GPa) – 194.6166 335.585 198.33 221.93 214.74

Tungsten Lattice constant (Ao) 3.16567 3.17268 3.1652 3.18 3.178 –

C11 (GPa) 501−52169 51731,52370 553.09 518.04 519.77 –

C12 (GPa) 199−20769 19831,20370 183.59 198.47 225.07 –

C44 (GPa) 151−16069 14231,16070 148.44 142.95 138.71 –

Vacancy formation energy (eV) 3.1−4.069 3.4970 3.69 3.29 3.39 –

Bulk modulus (GPa) 308−31469 32069 283.68 303.81 323.3 –

Poisson ratio 0.2871 – 0.25 0.28 0.3 –

Young’s modulus (GPa) 40571 – 461.58 408.09 383.75 –

Diamond Lattice constant (Ao) 3.56772 3.56873 3.561 3.527 3.524 –

C11 (GPa) 1074−108474 106073 11187 1051.96 1059.17 1043.05 –

C12 (GPa) 119−12974 12573 1517 100.78 98.86 114.61 –

C44 (GPa) 576−58074 56273 6037 629.68 575.11 507.02 –

Bulk modulus (GPa) 441−44575 463.176 428.45 476.56 478.48 –

Poisson ratio 0.07977 – 0.087 0.085 0.09 –

Young’s modulus (GPa) 116477 – 1034.34 1042.29 1020.38 –

The first column exhibits experiment values. DFT predictions are stored in the second column and MD simulations using classical, GAP, and random features
based IP are shown in the last four columns respectively. Classical IPs considered in this table are Airebo34, Finnis Sinclair78, and Tersoff50 for graphene,
tungsten and diamond respectively.

Fig. 4 Fitting equation of states for diamond and tungsten data. Energy volume relation for a diamond and b BCC-tungsten. The relations
are obtained using RFM (blue) and GAP (red)7,31 IP, by fitting Birch−Murnaghan equation of state48 to energy−volume data.
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METHODS
Algorithms to generate random features
The algorithms used to generate random features for both the models are
presented below

Cutoff radius
The cutoff function, denoted by fcut(rij), is a smooth function that zeroes
out the energy contributions for atoms falling outside a cutoff radius and is
as described below

f cutðrijÞ ¼ 0:5 ´ cos π
rij � rcut þ wcut

wcut

� �
þ 1

� �
; (8)

where rij denotes the distance between two atoms and rcut is the cutoff
radius. Tuning can be achieved by setting wcut. For three body
descriptors such as ½rij þ rik ; ðrij � rikÞ2; rjk �, the cutoff function takes the
form fcut(rij)fcut(rik).

Expression for forces for RFF and RFM models
This section outlines the steps involved in computation of forces from
potential energy expressions. The forces are computed as derivative of the
energy and corresponding expressions were obtained through the chain
rule. The derivative of energy contribution of RFF features (see Eq. 4) with
respect to descriptor q can be written as

∇EðqÞ ¼
X2M
m¼1

αm∇zmðqÞ; (9)

where

zmðqÞ ¼

ffiffiffi
2
M

q
cos ωT

mq
	 


if m is oddffiffiffi
2
M

q
sin ωT

mq
	 


if m is even :

8><
>: (10)

It can be easily verified that for descriptor q with dimension D

∇zmðqÞ ¼

ffiffiffi
2
M

q
∇ cos ωT

mq
	 


if m is oddffiffiffi
2
M

q
∇ sin ωT

mq
	 


if m is even :

8><
>: (11)

where

∇ cos ωT
mq

	 
 ¼
�ωmð1Þ sin ωT

mq
	 


�ωmð2Þ sin ωT
mq

	 

..
.

�ωmðDÞ sin ωT
mq

	 


2
666664

3
777775 (12)

and

∇ sin ωT
mq

	 
 ¼
ωmð1Þ cos ωT

mq
	 


ωmð2Þ cos ωT
mq

	 

..
.

ωmðDÞ cos ωT
mq

	 


2
666664

3
777775: (13)

Note that ωm(i) denotes the ith component of the vector ωm. Following
the same line of reasoning, the gradient for RFM features (Eq. 6 in the main
text) can be written as

∇zmðqÞ ¼

ffiffiffi
γ

p Pn
i¼1 ωmið1Þ

Q
k≠iω

T
mkq

	 

ffiffiffi
γ

p Pn
i¼1 ωmið2Þ

Q
k≠iω

T
mkq

	 

..
.

ffiffiffi
γ

p Pn
i¼1 ωmiðDÞ

Q
k≠iω

T
mkq

	 


2
666664

3
777775: (14)

The final step in obtaining forces is to multiply∇ zm(q) with the gradient
of the descriptor q with respect to position vector r. The last quantity is
descriptor-dependent and should be handled accordingly.

Phonon dispersion DFT calculation
Plane wave DFT calculations were conducted using Vienna Ab initio Simulation
Package (VASP)53,54 to get energy and forces. The interaction between the
valence electrons and the ionic core was described by generalized gradient
approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) formulation along
with projector augmented wave (PAW) pseudopotentials55–57. A 7 × 7 ×
1 supercell of graphene was constructed for the calculations and a 4 × 4 × 1
k-point mesh generated using Monkhorst−Pack scheme was used for Brillouin
zone sampling58. An additional support grid was added for the evaluation of
the augmentation charges and non-spherical contributions related to the
gradient of the density in the PAW spheres were included.
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Data to train interatomic potentials was obtained from libatoms.org, as accessed on
March 3, 2019.

CODE AVAILABILITY
Software library to facilitate the reproduction of the results presented here can be
found at https://github.com/g7dhaliwal/RandomFeatures.

Received: 4 May 2021; Accepted: 26 November 2021;

REFERENCES
1. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford University

Press, 2017).
2. Griebel, M., Knapek, S. & Zumbusch, G. Numerical Simulation in Molecular

Dynamics Vol. 5 (Society for Industrial and Applied Mathematics, 2007).
3. Becker, C. A., Tavazza, F. & Levine, L. E. Implications of the choice of interatomic

potential on calculated planar faults and surface properties in nickel. Philos. Mag.
91, 3578–3597 (2011).

4. Becker, C. A., Tavazza, F., Trautt, Z. T. & de Macedo, R. A. B. Considerations for
choosing and using force fields and interatomic potentials in materials science
and engineering. Curr. Opin. Solid State Mater. Sci. 17, 277–283 (2013).

5. Dhaliwal, G., Nair, P. B. & Singh, C. V. Uncertainty analysis and estimation of robust
airebo parameters for graphene. Carbon 142, 300–310 (2019).

6. Dhaliwal, G., Nair, P. B. & Singh, C. V. Uncertainty and sensitivity analysis of
mechanical and thermal properties computed through embedded atom method
potential. Comput. Mater. Sci. 166, 30–41 (2019).

Algorithm 1. RFF approximation

Require: A positive definite shift-invariant kernel i.e. k(x, y)= k(x− y)

Ensure: A randomized feature map z : RD ! RM such that 〈z(x), z(y)〉 ≈
k(x, y)

1: Compute the Fourier transform p of the kernel
k : pðωÞ ¼ 1

2π

R
e�jωTδkðδÞdδ

2: Draw M i.i.d samples ω1; � � � ;ωM 2 RD from p

3: zðxÞ ¼
ffiffiffi
2
M

q
½cosðωT

1xÞ; sinðωT
1xÞ; � � � ; cosðωT

MxÞ; sinðωT
MxÞ�

Algorithm 2. RFM approximation

Require: A positive definite dot-product kernel i.e. k(x, y)= f(xTy)

Ensure: A randomized feature map z : RD ! RM such that 〈z(x), z(y)〉 ≈
k(x, y)

1: Obtain the Maclaurin expansion of f ðξÞ ¼P1
t¼0 atξ

t by setting at ¼ f ðtÞð0Þ
t!

2: Fix a value p0 > 1.

3: for i= 1, 2,⋯ ,M do

4: Choose a nonnegative integer n 2 N∪ 0 with P½n ¼ t� ¼ 1
ptþ1
0
.

5: Choose n vectors ω1⋯ωn∈ {−1, 1}D, selecting each coordinate using
fair coin tosses.

6: Let feature map zi : x !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anpnþ1

0

q Qn
j¼1 ω

T
j x.

7: end for

8: Output z : x ! 1ffiffiffi
M

p ðz1ðxÞ; z2ðxÞ; � � � ; zMðxÞÞ

G. Dhaliwal et al.

8

npj Computational Materials (2022)     7 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://github.com/g7dhaliwal/RandomFeatures


7. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev.
Lett. 104, 136403 (2010).

8. Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

9. Nyshadham, C. Machine-learned multi-system surrogate models for materials
prediction. npj Comput. Mater. 5, 51 (2019).

10. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine
learning in materials informatics: Recent applications and prospects. npj Comput.
Mater. 3, 54 (2017).

11. Behler, J. Representing potential energy surfaces by high-dimensional neural
network potentials. J. Phys.: Condens. Matter 26, 183001 (2014).

12. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral
neighbor analysis method for automated generation of quantum-accurate
interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

13. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized
interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).

14. Shapeev, A. V. Moment tensor potentials: A class of systematically improvable
interatomic potentials. Multiscale Modeling Simul. 14, 1153–1173 (2016).

15. Botu, V., Batra, R., Chapman, J. & Ramprasad, R. Machine learning force fields:
Construction, validation, and outlook. J. Phys. Chem. C. 121, 511–522 (2016).

16. Hansen, K. Assessment and validation of machine learning methods for pre-
dicting molecular atomization energies. J. Chem. Theory Comput. 9, 3404–3419
(2013).

17. Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science:
Recent progress and emerging applications. Rev. Comput. Chem. 29, 186–273
(2016).

18. Behler, J. Perspective: Machine learning potentials for atomistic simulations. J.
Chem. Phys. 145, 170901 (2016).

19. Behler, J. Atom-centered symmetry functions for constructing high-dimensional
neural network potentials. J. Chem. Phys. 134, 074106 (2011).

20. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments.
Phys. Rev. B 87, 184115 (2013).

21. Zhang, L. et al. End-to-end symmetry preserving inter-atomic potential energy
model for finite and extended systems. Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 4441–4451 (2018).

22. Jia, W. et al. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis 1–14 (IEEE, 2020).

23. Rupp, M. Machine learning for quantum mechanics in a nutshell. Int. J. Quantum
Chem. 115, 1058–1073 (2015).

24. Liu, Y., Zhao, T., Ju, W. & Shi, S. Materials discovery and design using machine
learning. J. Materiomics 3, 159–177 (2017).

25. Mishin, Y. Machine-learning interatomic potentials for materials science. Acta
Mater. 214, 116980 (2021).

26. Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as
emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).

27. Behler, J. Four generations of high-dimensional neural network potentials. Chem.
Rev. 121, 10037–10072 (2021).

28. Rowe, P., Csányi, G., Alfè, D. & Michaelides, A. Development of a machine learning
potential for graphene. Phys. Rev. B 97, 054303 (2018).

29. Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for
amorphous carbon. Phys. Rev. B 95, 094203 (2017).

30. Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine learning a general-
purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).

31. Szlachta, W. J., Bartók, A. P. & Csányi, G. Accuracy and transferability of
Gaussian approximation potential models for tungsten. Phys. Rev. B 90,
104108 (2014).

32. Rosenbrock, C. W. Machine-learned interatomic potentials for alloys and alloy
phase diagrams. npj Comput. Mater. 7, 1–9 (2021).

33. Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly machine
learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).

34. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons
with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000).

35. Zhou, X. Atomic scale structure of sputtered metal multilayers. Acta Mater. 49,
4005–4015 (2001).

36. Xiong, K. & Wang, S. The online random Fourier features conjugate gradient
algorithm. IEEE Signal Process. Lett. 26, 740–744 (2019).

37. Nelsen, N. H. & Stuart, A. M. The random feature model for input-output maps
between Banach spaces. SIAM J. Sci. Comput. 43, A3212–A3243 (2021).

38. Hung, T. H. & Chien, P. A random Fourier feature method for emulating computer
models with gradient information. Technometrics 63, 1–10 (2020).

39. Rahimi, A. & Recht, B. Random Features for Large-Scale Kernel Machines. Adv.
Neural. Inf. Process. Syst. 1177–1184 (2008).

40. Rahimi, A. & Recht, B. In 2008 46th Annual Allerton Conference on Communication,
Control, and Computing 555–561 (IEEE, 2008).

41. Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker, A., & Zandieh, A. In
Proceedings of the 34th International Conference on Machine Learning Vol. 70,
253–262 (JMLR. org, 2017).

42. Kar, P. & Karnick, H., Random feature maps for dot product kernels. Artif. Intell.
Stat. 583–591 (2012).

43. Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods
(SIAM, 1992).

44. Yu, F. X. X., Suresh, A. T., Choromanski, K. M., Holtmann-Rice, D. N. & Kumar, S.
Orthogonal random features. Adv. Neural. Inf. Process. Syst. 1975–1983
(2016).

45. Choromanski, K. M., Rowland, M. & Weller, A. The Unreasonable Effectiveness of
Structured Random Orthogonal Embeddings. Adv. Neural. Inf. Process. Syst.
219–228 (2017).

46. Choromanski, K. et al. The geometry of random features. Int. Conf. Artif. Intell. Stat.
1–9 (2018).

47. Larsen, A. H. The atomic simulation environment-a python library for working
with atoms. J. Phys.: Condens. Matter 29, 273002 (2017).

48. Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).
49. O’Connor, T. C., Andzelm, J. & Robbins, M. O. Airebo-m: A reactive model for

hydrocarbons at extreme pressures. J. Chem. Phys. 142, 024903 (2015).
50. Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multi-

component systems. Phys. Rev. B 39, 5566 (1989).
51. Huang, J. et al. Deep potential generation scheme and simulation protocol

for the li10gep2s12-type superionic conductors. J. Chem. Phys. 154, 094703
(2021).

52. Evans, T. W. & Nair, P. B. Scalable Gaussian processes with grid-structured
eigenfunctions (GP-GRIEF) Int. Conf. Mach. Learn. 1416–1425 (2018).

53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B
47, 558 (1993).

54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made
simple. Phys. Rev. Lett. 77, 3865 (1996).

56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B 59, 1758 (1999).
58. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys.

Rev. B 13, 5188 (1976).
59. Li, L., Reich, S. & Robertson, J. Defect energies of graphite: Density-functional

calculations. Phys. Rev. B 72, 184109 (2005).
60. Behera, H. & Mukhopadhyay, G. In AIP Conference Proceedings, Vol. 1313, 152–155

(AIP, 2010).
61. Baskin, Y. & Meyer, L. Lattice constants of graphite at low temperatures. Phys. Rev.

100, 544 (1955).
62. Shulenburger, L. & Mattsson, T. R. Quantum monte carlo applied to solids. Phys.

Rev. B 88, 245117 (2013).
63. Shin, H. et al. Cohesion energetics of carbon allotropes: Quantum Monte Carlo

study. J. Chem. Phys. 140, 114702 (2014).
64. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and

intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
65. Wei, X., Fragneaud, B., Marianetti, C. A. & Kysar, J. W. Nonlinear elastic behavior of

graphene: Ab initio calculations to continuum description. Phys. Rev. B 80, 205407
(2009).

66. Wang, R., Wang, S., Wu, X. & Liang, X. First-principles calculations on third-order
elastic constants and internal relaxation for monolayer graphene. Phys. B: Con-
dens. Matter 405, 3501–3506 (2010).

67. Lide, D. R. CRC Handbook of Chemistry and Physics Vol. 85 (CRC Press, 2004).
68. Ochs, T., Beck, O., Elsässer, C. & Meyer, B. Symmetrical tilt grain boundaries in

body-centred cubic transition metals: An ab initio local-density-functional study.
Philos. Mag. A 80, 351–372 (2000).

69. Wang, J., Zhou, Y., Li, M. & Hou, Q. A modified w–w interatomic potential based
on ab initio calculations. Model. Simul. Mater. Sci. Eng. 22, 015004 (2013).

70. Marinica, M. C. Interatomic potentials for modelling radiation defects and dis-
locations in tungsten. J. Phys.: Condens. Matter 25, 395502 (2013).

71. Grünwald, E. et al. Young’s modulus and Poisson’s ratio characterization of
tungsten thin films via laser ultrasound. Mater. Today.: Proc. 2, 4289–4294
(2015).

72. Donohue, J. Structures of the Elements (John Wiley and Sons, Inc., 1974).
73. Mounet, N. & Marzari, N. First-principles determination of the structural, vibra-

tional and thermodynamic properties of diamond, graphite, and derivatives. Phys.
Rev. B 71, 205214 (2005).

74. McSkimin, H. & Andreatch Jr, P. Elastic moduli of diamond as a function of
pressure and temperature. J. Appl. Phys. 43, 2944–2948 (1972).

75. McSkimin, H., Andreatch Jr, P. & Glynn, P. The elastic stiffness moduli of diamond.
J. Appl. Phys. 43, 985–987 (1972).

G. Dhaliwal et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)     7 



76. Hebbache, M. First-principles calculations of the bulk modulus of diamond. Solid
State Commun. 110, 559–564 (1999).

77. Klein, C. A. & Cardinale, G. F. Young’s modulus and Poisson’s ratio of CVD dia-
mond. Diam. Relat. Mater. 2, 918–923 (1993).

78. Finnis, M. & Sinclair, J. A simple empirical n-body potential for transition metals.
Philos. Mag. A 50, 45–55 (1984).

ACKNOWLEDGEMENTS
This research is supported by grants from Natural Sciences and Engineering Research
Council of Canada, Hart Professorship, Canada Research Chairs programme, the
University of Toronto, and Compute Canada. The authors would like to thank Abu
Anand for providing DFT calculated phonon dispersion curves.

AUTHOR CONTRIBUTIONS
Conceptualization, G.D., P.B.N., and C.V.S.; methodology, G.D. and P.B.N.; software,
G.D.; formal analysis, G.D.; investigation, G.D. and P.B.N.; data curation, G.D.;
writing—original draft, G.D.; writing—review and editing, G.D., P.B.N., and C.V.S.;
visualization, G.D.; supervision, P.B.N. and C.V.S.; project administration, C.V.S.;
funding acquisition: C.V.S.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-021-00685-4.

Correspondence and requests for materials should be addressed to Prasanth B. Nair
or Chandra Veer Singh.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

G. Dhaliwal et al.

10

npj Computational Materials (2022)     7 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-021-00685-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Machine learned interatomic potentials using random features
	Introduction
	Results
	Random feature models
	Parameter estimation
	Data
	Graphene potential
	Diamond and Tungsten potentials

	Discussion
	Methods
	Algorithms to generate random features
	Cutoff radius
	Expression for forces for RFF and RFM models
	Phonon dispersion DFT calculation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




