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Linear-superelastic Ti-Nb nanocomposite alloys with ultralow
modulus via high-throughput phase-field design and machine
learning
Yuquan Zhu1, Tao Xu 1,2✉, Qinghua Wei1, Jiawei Mai1, Hongxin Yang 2, Huiran Zhang3, Takahiro Shimada4, Takayuki Kitamura4 and
Tong-Yi Zhang1✉

The optimal design of shape memory alloys (SMAs) with specific properties is crucial for the innovative application in advanced
technologies. Herein, inspired by the recently proposed design concept of concentration modulation, we explore martensitic
transformation (MT) in and design the mechanical properties of Ti-Nb nanocomposites by combining high-throughput phase-field
simulations and machine learning (ML) approaches. Systematic phase-field simulations generate data of the mechanical properties
for various nanocomposites constructed by four macroscopic degrees of freedom. An ML-assisted strategy is adopted to perform
multiobjective optimization of the mechanical properties, through which promising nanocomposite configurations are prescreened
for the next set of phase-field simulations. The ML-guided simulations discover an optimized nanocomposite, composed of Nb-rich
matrix and Nb-lean nanofillers, that exhibits a combination of mechanical properties, including ultralow modulus, linear super-
elasticity, and near-hysteresis-free in a loading-unloading cycle. The exceptional mechanical properties in the nanocomposite
originate from optimized continuous MT rather than a sharp first-order transition, which is common in typical SMAs. This work
demonstrates the great potential of ML-guided phase-field simulations in the design of advanced materials with extraordinary
properties.
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INTRODUCTION
Titanium-based shape memory alloys (SMAs), such as Ti-Nb alloys,
are an important class of smart materials that possess shape
memory effect (SME) and pseudoelasticity (PE)1, as well as high
specific strength, excellent corrosion resistance, superior biocom-
patibility2,3, etc. These fascinating merits are widely exploited for
industrial4 and biomedicine applications5. In general, the SME and
PE originate from temperature- or/and stress-induced reversible
first-order martensitic transformation (MT)6–8. The common PE
stress-strain curve during loading consists of an initial true
elasticity stage with a high Young’s modulus (>80 GPa) of
austenite phase until MT occurring, following by the stress-
plateau associated with the structural transition, and final true
elastic deformation of martensitic phase, while during unloading
the stress lever causing the reverse MT is lower than that causing
MT during loading, thereby exhibiting a large stress-strain
hysteresis. Due to the stress-strain hysteresis, low efficiency and
poor position control of the SMA actuators are generally observed
due to the large hysteresis and strong nonlinearity9. Moreover, as
potential metallic biomaterials, a low Young’s modulus compar-
able with those of natural human bones (~20 GPa10) is essential
for Ti-Nb alloys to avoid the “stress-shielding effect”11 and the
resulting bone degradation. Although several efforts have been
made to optimize the mechanical responses of metallic alloys, e.g.,
modulation of the components and concentrations12,13, defect
engineering14,15, introduction of elastic-inelastic strain match-
ing16,17, and grain refinement18,19, the deliberate design and
control of MTs for a combination of specific properties, such as
low modulus, linear super-elasticity, and free-hysteresis is still

highly desired for various advanced biomedical and engineering
applications.
Recently, Zhu et al.20–24. have conducted comprehensive

investigations via phase-field simulations on the design of how
to make apparently linear-superelastic alloys with ultralow
modulus and high strength in SMAs. The pioneer works illustrate
that concentration modulation, which can be obtained by
spinodal decomposition20–22, multilayer deposition23, and pre-
cipitation of nanoprecipitates24, is able to convert the first-order
MT to pseudo-high-order MT and result in purely apparent elastic
deformation with low Young’s modulus and high strength. From
the perspective of the Landau thermodynamic theory, such
manipulation of the mechanic properties essentially derives from
the flattening the average thermodynamic energy density profile
of the structures, since many physical quantities of ferroic
materials are associated with free-energy derivatives with respect
to certain thermodynamic variables. More specifically, elastic
constants of ferroelastics such as SMAs are determined by second
derivatives of the Gibbs free-energy density with respect to
strain25,26, i.e., the curvature of the thermodynamic energy profile.
This design concept has also been widely used in ferroelectrics to
optimize corresponding properties, such as ultrahigh piezoelec-
tricity27,28 and ultrahigh energy density dielectrics29 achieved by
deliberately introducing nanoscale structural heterogeneity or
nanodomain.
On the other hand, the rational design of these concentration

modulations or nanoscale structural heterogeneity usually
requires synergistic control of various structural attributes (such
as concentration gradient, distribution, and morphology, etc) and
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chemical features, which poses a great challenge for the
conventional time-consuming experimental or computational
searches by the trial-and-error process. The emerging data-
driven material design approach through the combination of
high-throughput (HTP) calculations and machine learning (ML) has
been recognized as a powerful tool in the search for new materials
or structures with tailored properties and novel functionalities30.
There have been many inspirational HTP first-principles works,
from which direct links between atomic-scale information and
macroscopic functionalities are established. These approaches
have shown many successes in the discovery of new piezoelectric
and dielectric materials31, thermoelectric materials32, magnetic
materials33, and so on. Nevertheless, the origin of material
properties resides in not only chemical constituent itself but also
mesoscale morphological and microstructure evolutions34. Mesos-
cale phase-field simulations in a high-throughput manner that
allow for the investigation of microstructure effects are rather
limited35–37. The development of HTP mesoscale calculations is
not only indispensable for the accelerated characterization of
microstructure evolutions but also a boost for data- and modeling-
driven discovery of new materials and structures.
In this work, we propose an alternative concentration modula-

tion approach, i.e., nanocomposite engineering, meanwhile
developing an integrated framework of HTP phase-field simula-
tions and ML, to achieve the extraordinary mechanical properties
in the Ti-Nb SMAs. A HTP phase-field simulations procedure is
designed to optimize the mechanical response of various Ti-Nb
SMA nanocomposites constructed by four structural feature
variables and to seek the optimal microstructure with desired
properties. Guided by the ML, a nanocomposite with a perfect
combination of ultralow modulus, quasi-linear elasticity, and near-
zero hysteresis is screened out, which shows great potential for
biomedical material applications. The developed computational

approach is also applicable to the design of a wide range of
advanced materials.

RESULTS
Workflow of high-throughput phase-field simulations
We design a series of Ti-Nb square-array nanocomposite structures38

consisting of different Nb-lean nanofillers that are uniformly and
coherently embedded in a Nb-rich Ti-Nb alloy matrix (Fig. 1b). In the
simulations of uniaxial tension tests, the displacement of the lower-
left corner and the x-direction displacement of the left side of the
nanocomposite are fixed at zero to prevent the rigid body translation
and rotation (see Fig. 1b). The motivation for the choice of such a
nanostructure is the advancements in fabrication techniques of
composites and their various associated phenomena39–41. The Ti-Nb
nanocomposite has four structural feature variables (macroscopic
degrees of freedom) related to the macroscopic mechanical proper-
ties, namely the Nb concentration (CNb) of the matrix (MNb) and
nanofillers (FNb), volume fraction of nanofillers (VF), and the number of
nanofillers (NF). Following the novel approach of concentration
modulation and concentration gradient layer structure developed by
Zhu et al.20–23, MNb and FNb are set with 15–20 at.% and 5–10 at.%,
respectively, with a 1% interval, to facilitate the stress-induced MT
during loading and inverse MT during unloading. To systematically
study the effect of VF, a series of nanofillers with the total areas of 82

nm2, 162 nm2, 242 nm2, 322 nm2, and 402 nm2 are adopted in the
simulations, which correspond to the variation of VF from 1.56% to
39.06%. Correspondingly, three groups of NF are defined: 4, 16, and
64. The detail of four structural feature variables are also summarized
in Supplementary Table 1 in the Supplementary information. The
computational framework for the design of the Ti-Nb nanocomposite
is represented schematically in Fig. 1c. A computing script framework
is developed to concurrently handle multiple calculation tasks. With a
multi-core workstation, more than 10 tasks are concurrently

Fig. 1 The computational framework for the design of the Ti-Nb nanocomposite. a Crystal structure of parent (BCC) and martensitic
(orthorhombic) phase. b Square-array distributed Nb-lean nanofillers in the Ti-Nb nanocomposite and loading-unloading condition and
profile. c HTP phase-field simulation framework for the Ti-Nb nanocomposite.
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calculated. We start by specifying the above four features (MNb, FNb,
VF, and NF) with automatic nanocomposite modeling, which yields
540 candidates from a combinatorial point of view. Although the
nanofillers could be randomly distributed in the matrix, we restrict the
nanofillers to a square nanocomposite structure38, a typical
Archimedean lattice structure, to reduce the computational complex-
ity. We then carry out HTP phase-field simulations for the established
nanocomposite models and compute their microstructure evolutions
and stress-strain (SS) curves under mechanical stress along the [100]
direction as shown in Fig. 1b. The quantitative analyses of the SS
curves are subsequently conducted, and the main mechanical
properties are extracted, including the apparent incipient Young’s
modulus (EI), the apparent elastic stress limit (σL), and the hysteresis
area (AH). In the present study, the apparent elastic limit is defined as
the critical point of the apparent elastic stage on a stress-strain curve
obtained by the “backward convex splitting method”, as schematically
explained in Figure S7 in the Supplementary information, where εL
and σL denote the apparent elastic strain limit and associated stress,
respectively. The apparent Young’s modulus is defined by EI=σL/εL.
The hysteresis area of AH measures the size of the hysteresis area
encircled by the whole SS curve. Based on the data sets from HTP
phase-field simulations, we employ ML strategy to perform multi-
objective optimization of the mechanical properties for the
nanocomposites. The recommended candidates are further verified
by the phase-field simulations and the underlying mechanisms are
also clarified.

Overview of high-throughput phase-field results
Based on the HTP phase-field simulations, we plot the obtained
four features dependence of the mechanical properties of the
nanocomposites in Fig. 2, in which VF increases from 1.56 to
39.06% on each row and NF decreases from 64 to 4 on each
column. It can be seen that EI and εL of the nanocomposites are
widely distributed within 10–35 GPa and 0–3%, respectively. This
tunable and variable modulus indicates that engineering the
chemical composition and geometry of the nanocomposite offers
great flexibility to tune the mechanical properties of the materials.
According to the map shown in Fig. 2a, there is a rough trend that
nanocomposites with larger VF exhibit lower EI, although the Nb-
lean nanofillers are assumed to have the same elastic constants as
that of the matrix. It is also interesting that FNb dramatically
reduces EI at a lower FNb (FNb < 8%) (see Fig. 2a) and higher VF (VF
> 14.06%), while MNb and NF are negligible on EI for the whole VF
range. These results suggest that coupling between nanofillers
and matrix with different CNb gives rise to EI superior to their
inherent ones. As displayed in Fig. 2b, σL also decreases with
increasing VF, which is consistent with the conclusion of EI. In
comparison, σL increases with increasing MNb, indicating that the
Nb-rich matrix effectively maintains the linear elasticity of the
nanocomposites. The opposite variation tendencies are observed
for EI and σL with FNb and MNb, manifesting that FNb and MNb play
different roles in regulating the mechanical properties of the
nanocomposites. Moreover, the calculated AH of the nanocompo-
sites spans a large range from 0 MJ m−3 to 3 MJ m−3 for different
features (Fig. 2c), and thus the embedding of nanofillers greatly
reduces the energy loss during the loading-unloading cycle.
Although the regulated effect of NF is not as obvious as other
features, it can be seen from Fig. 2a to c that NF is also of great
significance in fine-tuning mechanical properties of nanocompo-
sites. All these results indicate that the mechanical properties of
nanocomposites are nonlinearly affected by all four features.

Effect of the coherent nanocomposite
The widely tunable and variable mechanical responses of the
nanocomposites could be attributed to the change in the MT
nucleation critical stress and the local stress fields associated with
the inserted nanofillers. Figure 3a plots the Landau free-energy

density curves as a function of the order parameter for the Ti-Nb
alloys with different CNb at 300 K, in which the martensitic phase
gradually transformed from an unstable state to a stable state with
decreasing CNb. It is evident that the martensitic phase is stable in
the Nb-lean cases (CNb < 8%), while in the Nb-rich cases (CNb ≥
8%), the martensitic phase could not nucleate without the aid of
external loads. The critical stress for the stress-induced martensitic
nucleation versus CNb is further calculated (see Fig. 3b) and the
results demonstrate that the critical stress increases exponentially
with increasing CNb. For the heterogeneous nanocomposites,
martensite thus preferentially nucleates in Nb-lean nanofillers and
generates local stress fields associated with the CNb-dependent
stress-free transformation strain (SFTS) tensors (see Fig. 3b) to
promote the growth of martensite into the matrix, while the high
critical stress in the Nb-rich matrix will confine the extent of
growth. The critical stress for the nucleation (or growth) of
martensite is the minimum stress for the nucleation (or growth) of
martensite transformed from austenite in a homogeneous system.
To qualitatively investigate and clarify the mechanism for the
modulation of mechanical properties, we adopt a simplified
2-dimensional model with the nonperiodic condition and stress-
free condition to explore the competitive relationship between
the Landau energy and the elastic energy. It consists of 8 nm2

martensite particle with Nb concentration of fNb (denoted as the
green square) and the adjacent 8 nm2 austenitic matrix with Nb
concentration of mNb (denoted as the orange square), correspond-
ing to the martensite volume fraction of 0.5. After relaxation, the
interface between martensite and austenite moves toward the
particle or matrix depending on fNb and mNb. Different combina-
tions of fNb and mNb will generate various martensite volume
fractions as shown in Fig. 3c. The heatmap of martensite volume
fraction after relaxation is divided by a dashed line into the
suppressed and non-suppressed region, which is highlighted in
blue and red colors, respectively. These results thus indicate that
FNb (fNb) and MNb (mNb) significantly mediate the Landau free-
energy and SFTS, and further regulate the MT nucleation critical
stress and spread of martensite in the nanocomposites.
Furthermore, the geometric features (i.e., NF and VF) modulate

the strength and distribution of the generated stress field.
We perform simplified simulations to investigate the local stress
field σ11 (Fig. 3d–r) generated by the lattice mismatch between
the embedded martensitic fillers (V3 with FNb = 7%) and the
matrix with different NF and VF. The local stress field probability
distribution is further summarized in Fig. 3s-u. We observe that an
increase in VF resulted in the gradual expansion of the local stress
distribution range, such that VF greater than 25% produces a
second stress distribution peak around 400MPa. In addition, the
increase of VF not only increases the maximum value of the local
stress field (represented by the red dashed line) but also
significantly increases the probability that the local stress is
greater than the critical stress of martensite spread into the matrix,
as indicated by the blue dashed line in Fig. 3s–u for the median
value (i.e., 600 MPa). Moreover, NF also regulates the distribution
and probability density of the local stress field. Contrary to VF, a
smaller NF increases the maximum value of the local stress field
and the probability of σ11 ≥ 600 MPa. Hence, VF and NF effectively
affect the magnitude and extent of the local stress field. The shear
component σ12 also contributes to the nucleation and growth of
the MT process. The high shear stress region in the nanocompo-
site beyond the critical shear stress is very small and highly
localized, as shown in Figure S5 in the Supplementary information.
Therefore, all four features regulate the nucleation and spread of
the MT process by altering the MT nucleation critical stress and
the local stress field distribution.
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Machine learning guided optimization of the nanocomposites
As previously discussed, reducing the Young’s modulus while
maintaining a large εL is critical for the ideal orthopedic implant.
Through the HTP phase-field simulations of the initial hundreds of
nanocomposites, we have obtained the structures with widely
tunable mechanical properties. However, an exhaustive search for
the optimal one is intractable and computationally expensive. To
remedy this, we apply the Artificial Neural Network (ANN) method

to achieve the highly efficient multiobjective optimization of the
nanocomposites. Since the AH of training samples is tiny
(minimum and average values are 0 MJm−3 and 0.51 MJm−3,
respectively) compared with other SMAs, such as TiNi (~10 MJ
m−3)42, we select the other two mechanical properties (i.e., EI and
σL) for the multiobjective optimization based on the Pareto
front43. On the Pareto front, we use a selection strategy to find the
three “best” configurations as the candidate and verify them by
the phase-field simulation. Our selection strategy transforms the

0

1

2

3

N
F =

 4
N

F =
 1

6
N

F =
 6

4

10
9
8
7
6
5

FN
b (

at
.%

)

10
9
8
7
6
5

FN
b (

at
.%

)

10
9
8
7
6
5

FN
b (

at
.%

)

(c) Hysteresis area (MJ m^-3)
0

150

300

450

600

N
F =

 4
N

F =
 1

6
N

F =
 6

4

(b) Elastic stress limit (MPa)

10
9
8
7
6
5

FN
b (

at
.%

)

10
9
8
7
6
5

FN
b (

at
.%

)

10
9
8
7
6
5

FN
b (

at
.%

)

10

15

20

25

30

35
N
F =

 4
N
F =

 1
6

N
F =

 6
4

(a) Incipient Young’s modulus (GPa)

10
9
8
7
6
5

FN
b (

at
.%

)

10
9
8
7
6
5

FN
b (

at
.%

)

10
9
8
7
6
5

FN
b (

at
.%

)

15 16 17 18 19 20
MNb (at.%)

15 16 17 18 19 20
MNb (at.%)

15 16 17 18 19 20
MNb (at.%)

15 16 17 18 19 20
MNb (at.%)

15 16 17 18 19 20
MNb (at.%)

1.56 6.25 14.06 25.00 39.06
VF (%)
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two-objective optimization problem into a single-objective
optimization problem by calculating the normalized distance δ
from a point in search space to the target (EIt = 10 GPa, σLt =
500MPa), and the normalized Euclidean distance δ is given by

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI � EtI
35

� �2

þ σL � σtL
600

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI � 10
35

� �2

þ σL � 500
600

� �2
s

(1)

In order to avoid samples with poor performance dominating
the construction of the ML model, we classify the calculated
configurations from the HTP phase-field simulations by perform-
ing K-Means clustering using the mechanical properties (i.e., EI and
σL) as the input variable. As illustrated in Fig. 4a, the calculated
configurations are grouped into three data sets, in which Cluster
1 shows poor mechanical performance in terms of its large EI and
low σL. We thus select Cluster 0 and Cluster 2 (324 samples) as
training data for the construction of ANN model. As shown in

1.56%
6.25%
14.06%
25.00%
39.06%

Local stress σ11 (MPa)
-800 -400 0 400 800

Pr
ob

ab
ilit

y 
(%

) (u) NF = 64

10%

1.56%
6.25%
14.06%
25.00%
39.06%

Local stress σ11 (MPa)
-800 -400 0 400 800

Pr
ob

ab
ilit

y 
(%

) (t) NF = 16

10%

1.56%
6.28%
14.06%
25.00%
39.06%

Local stress σ11 (MPa)
-800 -400 0 400 800

10%

Pr
ob

ab
ilit

y 
(%

) (s) NF = 4

800

600

400

200

0

-200

-400

-600

-800

(d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

(n) (o) (p) (q) (r)

σ11(MPa)

64
16

4
N

F (
1)

39.06%1.56% 6.25% 14.06% 25.00%
VF (%)

15 16 17 18 19 20
mNb (at.%)

10

9

8

7

6

5

fN
b (

at
.%

)

0.70

0.65

0.60

0.55

0.50

0.45

non-suppressed

suppressed

fNb mNb
M A

non-suppressed
vf > 0.5

fNb mNb
M A

initial
vf = 0.5

fNb mNb
M A

suppressed
vf < 0.5

volume fraction (vf)
(c)(a)

5 10 15 20
CNb (at.%)

12

0

3

6

9

SF
TS

 c
om

po
ne

nt
s 

(%
)

1200
0

400
800

C
ritical Stress (M

Pa)

Critical stress
SFTS a
SFTS b
SFTS c

(b)

Parent

Martensite Martensite

fch

η-η

20%
17%
14%
11%
08%
05%

Fig. 3 Schematic diagrams for the understanding of physical origin to achieve the specified properties of the nanocomposites. a Landau
free-energy curves with different CNb, b SFTS tensors component, and MT critical stress with different CNb, and c the ability that Nb-rich matrix
inhibits the spread of martensite in fillers into matrix determined by FNb and MNb. d–r Local stress field on the [100] direction of Ti-Nb
nanocomposites of different VF and different NF and s–u local stress field probability distribution with VF = 1.56, 6.28, 14.06, 25.00, and 39.06%
for different NF.

Y. Zhu et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)   205 



Supplementary Figure 8, all four features are independent of each
other and have certain correlations with the mechanical proper-
ties. Moreover, since the chemical features (i.e., FNb and MNb) are
sampled linearly while the geometric features (i.e. NF and VF) are
sampled squarely in the HTP phase-field simulations, we treat the
geometric features by square root transformation as NL

F ¼
ffiffiffiffiffi
NF

p
and VL

F ¼ 64 ´
ffiffiffiffiffi
VF

p
to eliminate the influence of the numerical

differences on the prediction performance of the ML model. In
order to predict new configurations with better properties, a large
unexplored search space is created by increasing the resolution of
four structural features: We allow FNb to vary from 5.0 to 10.0%
with an interval of 0.2% and MNb to vary from 15.0 to 20.0% with
an interval of 0.2%. For geometric features, we set NL

F from 2 to 8
in steps of 2 and VL

F from 8 to 40 in steps of 4. Overall, 42588
virtual samples (C1

26C
1
26C

1
7C

1
9 ) are formed out of which only 324 are

computationally studied.
Figure 4b-c show the ten-fold cross-validation performance of EI

and σL obtained by the ANN algorithm. As we can see, the ANN
model has a great cross-validation performance for EI (R = 0.9889)
and σL (R = 0.9536). According to the hyperparameters
determined by the cross-validation, we use all 324 training data
samples to train two new ANN models to predict the EI and σL of
samples in the unexplored search space. According to our
selection strategy, three new configurations with improved
properties are screened out in the search space, which are
selected as promising nanocomposite configurations for the next
set of phase-field simulations. Their predicted and calculated
mechanical properties are shown in Table 1. The predicted EI is
higher than the calculated value with an average prediction error
of 1.86%, while the predicted σL is higher than the calculated
value with an average prediction error of 9.46%, indicating that
the ML model yield accurate predictions for the unexplored
nanocomposites. The calculated properties of the three

recommended configurations (denoted as red pentagons) are
compared with those from HTP phase-field simulations (denoted
as blue dots) in Fig. 4d. Improvements can be observed for the
recommended configurations and the red pentagon sample with
the most obvious performance improvement is selected as the
configuration of the ideal orthopedic implant. Compared with the
result of HTP phase-field simulations, the normalized Euclidean
distance δ is reduced from 0.231 to 0.200, decreasing by 13.4%.
Thus, we could locate the configuration with the best compromise
of low EI and large σL with the aid of ANN. The optimized
configuration (as shown in Fig. 5b) is composed of Nb-rich TiNb
matrix (MNb = 18.4%) and 25.0% volume fraction of Nb-lean TiNb
square fillers (FNb = 7.2%) with NF = 16, which will be discussed in
detail below. It is also worth to mention that the application of the
proposed data-driven approach based on the HTP phase-field
simulations is not confined to the design of the present
orthopedic implant with low EI and large σL, but applies to a
wide range of materials and structures with target mechanical and
other functional properties.

Ideal orthopedic implant design strategy
The comparison of EI and εL of the constructed nanocomposites
designed from the ML-aided simulation with those of Ti2448 (Ti-
24Nb-4Zr-8Sn in wt.%)44, a typical metallic biomaterial, and other
state-of-the-art systems proposed in the literature45, are shown in
Fig. 5a. It is readily seen that the candidate nanocomposite for the
ideal orthopedic implant exhibits an ultralow EI relative to other
reported systems, which is essential for metallic biomaterials. The
nanocomposite also outperforms Ti2448 in terms of the relatively
large elastic strain limit and small hysteresis area. The SS curve of
the designed nanocomposite during the loading-unloading cycle
together with that of uniform bulk Ti2448 is shown in Fig. 5c with
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configurations and training data from HTP phase-field simulations.
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the red curve and gray curve, respectively. The SS curve of Ti2448
features a typical characteristic of a large stress hysteresis with an
obvious stress plateau, which is consistent with the experimental
observations. By contrast, the stress plateau completely disap-
pears in the SS curve of an ideal orthopedic implant, and exhibits a
quasi-linear elasticity and almost hysteresis-free mechanical
behavior. As shown in Fig. 5a, compared with the state-of-the-
art functional material16, such as Ti2448 (Ti-24Nb-4Zr-8Sn in wt.%),
NICSMA (nanowire in situ composite with SMA), Gum metals et al.,
the nanocomposite designed by HTP calculations and ML are
superior in mechanical properties in terms of their linear super-
elasticity, ultralow Young’s modulus, large apparent elastic stress
limits, and near-hysteresis-free. These properties in the

nanocomposites designed by ML-assisted HTP calculations are
comparable with the recently reported phase-field simulation
results via concentration modulation and concentration gradient
film designs20–23.
To gain a thorough understanding of the exceptional mechan-

ical properties, the microstructure evolutions corresponding to the
marked points of the loading-unloading SS curve are analyzed,
and the results are displayed in Fig. 5d. As shown Fig. 5e,
abundant martensitic particles are observed in the nanofillers,
while the matrix still presents an austenite phase when the
nanocomposite is quenched to 300 K in a stress-free configuration.
These observations are because the martensitic phase is more
stable in the Nb-lean fillers (FNb = 7.2%), as illustrated in Fig. 3a.
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Fig. 5 Phase-field simulation of SS curve and corresponding microsctructural evolution in ideal orthopedic implant. a Comparison of the
modulus and elastic strain limit between prediction from this study with those reported in the literature. b The configuration of the ideal
orthopedic implant obtained from the ML-guided HTP phase-field simulations. c SS curves of ideal orthopedic implant (red curve) and Ti2448
(gray curve). d Microstructure evolution during MT in ideal orthopedic implant during loading e-h, and unloading i-k process.

Table 1. Predicted and calculated value of properties of new nanocomposite.

NF (1) VF (%) FNb (%) MNb (%) Predicted Calculated Prediction Error

16 25.00 18.4 7.2 EI = 16.05 GPa EI = 16.13 GPa eE = −0.5%

σL = 468.40MPa σL = 441.46MPa eS = 5.8%

16 25.00 18.2 7.4 EI = 15.92 GPa EI = 15.77 GPa eE = 0.9%

σL = 455.33MPa σL = 420.93MPa eS = 7.6%

25 25.00 18.0 7.6 EI = 15.85 GPa EI = 15.03 GPa eE = 5.2%

σL = 454.19MPa σL = 386.12MPa eS = 15.0%
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The emerged temperature-induced martensitic particles are
composed of multivariants in self-accommodating domain pat-
terns. These martensitic particles behave as seeding beds of
martensite, eliminating the nucleation barriers for MT. Upon
loading, the stress-induced martensite re-orientation occurs, and
the favored variants (such that V2, V3, and V4) dominate
and gradually fill the fillers. These martensitic variants gradually
and continuously grow into the matrix, which is significantly
different from the common avalanche-like discontinuous MT. With
increasing stress (Fig. 5g and h), the existing martensitic variants
continue to expand in the matrix, which is also accompanied by
the formation and merging of new martensitic configurations in
the matrix. At the end of the loading (600 MPa), the martensitic
domains spread almost over the entire area of the nanocomposite
with a volume fraction of 94.4%, as illustrated in Fig. 5i, in which
the remaining parent phase mainly originates from the martensitic
variant interfaces. In the process of unloading, these remaining
parent phases initiate the inverse martensite to austenitic
transition in the matrix, and the austenite gradually spread from
the matrix towards the interfaces of the nanocomposite (Fig. 5j).
The martensite completely disappears in the matrix when the
applied stress is reduced to 75 MPa (Fig. 5k). In addition, the Nb-
lean fillers also transform back to the initial self-accommodating
multivariants martensite configurations after unloading, which
contributes to the zero-residual strain in a loading-unloading
cycle. Therefore, the nanocomposite experiences macroscopically
continuous MT throughout the loading and unloading procedure
rather than a sharp first-order transition as that in typical SMAs,
which thus exhibits linear super-elasticity and ultralow EI (Fig. 5d).
The continuous characteristics of the forward and backward MTs
originate from the embedded nanofillers with local heterogeneity
that induce nonuniform local stress field associated with the
geometrical structure and the variation of MT critical stress due to
the change of CNb as discussed above. For a given nanocomposite,
nonuniform stress field appears under a certain applied load, as
shown in Supplementary Figure 6. The variation in local stresses
tailors the total free-energy landscape with multiple local minima
and facilitates the pseudo-high-order MT in the nanocomposite.
These results thus suggest a new route for achieving desirable

mechanical properties to meet the requirement of different
applications by nanocomposite engineering. In particular, the
designed Ti-Nb nanocomposite realizes a perfect combination of
ultralow modulus, linear super-elasticity, and near-hysteresis-free,
which cannot be obtained in common materials and will enable
many new advanced applications. For instance, the achieved
ultralow EI in the current Ti-Nb-based alloys without compromis-
ing their good biocompatibility and superior corrosion resistance
is of particular importance for biomedical applications. The
mismatch in the Young’s modulus between the common implant
materials (~110 GPa) and human bone usually causes stress
shielding, leading to bone degradation and implant loosening
originated from inhomogeneous stress distribution between the
implant and the adjacent bone. The elastic modulus of 16.13 GPa
in the designed nanocomposite match closely to that of human
bones and thus is promising in overcoming this stress-shielding
issue completely. To verify the functional stability of the designed
nanocomposite, the repeated loading-unloading cycles are
performed for the ideal orthopedic implant. The second SS curve
and the corresponding evolution of microstructures are illustrated
in Supplementary Figure 1 in the Supplementary information,
which coincide with those in the first one, indicating the
mechanical stability of the designed ideal orthopedic implant. In
addition, we perform calculations of nanocomposites with
organized (triangular and honeycomb-array) and random arrays
of nanofillers. Supplementary Figure 2 in the Supplementary
information shows the simulation results, viz., the SS curves,
corresponding microstructures and their evolutions. The SS curves
indicate that the mechanical behavior of the nanocomposite is

also insensitive to the nanofiller distribution profile. Moreover, we
investigate the effect of different shapes of nanofillers on the
mechanical properties of the designed nanocomposite. As shown
in Supplementary Figure 3 in the Supplementary information, the
SS curves of the nanocomposites with square, hexagonal, and
spherical nanofillers are almost coincide, indicating that the
mechanical properties of the nanocomposite are insensitive to
the shape of nanofillers. Last but not least, we also verify that the
results remain almost unchanged within the loading rate range of
20 MPa s−1 – 500MPa s−1, as shown in Supplementary Figure 4 in
the Supplementary information. Experimental preparation of the
proposed fine nanocomposite is a great challenge currently; yet,
recent fabrications of size and composition-controlled nanocom-
posites using colloidal synthesis method, replacement reaction,
and accumulative roll bonding (ARB) suggest the promising
strategies to pursue40,46,47. The combination of HTP phase-field
simulations and the ML approach thus provides an efficient
paradigm for designing target properties of shape memory alloys,
which will also be beneficial to a wide range of functional
materials.

DISCUSSION
In conclusion, we have developed a HTP phase-field simulations to
accelerate the design of microstructures with desired mechanical
properties. HTP phase-field simulations are performed for various
Ti-Nb nanocomposites designed by four structural feature
variables and it is found that the mechanical responses of the
nanocomposites are widely tunable and variable. Based on the
combination of HTP phase-field simulations and ML techniques,
we design a Ti-Nb alloy nanocomposite with ultralow modulus,
linear super-elasticity, and nearly free hysteresis, which is
promising for biomaterial applications. These superior mechanical
properties attribute to the nonuniform stress distribution and the
modulation of the critical stress that facilitates continuous MT. The
present approach developed by the combination of phase-field
simulations and ML is thus an important extension to the previous
method of concentration modulations to regulate the MTs, jointly
to provide theoretical guidance for the experiments.

METHODS
Phase-field model
The Ti-Nb-based alloys undergo diffusionless and reversible MT between
the cubic β-austenite (point group m3m) and orthorhombic α”-martensite
(point group mmm) phases48 during the thermomechanical loading, as
shown in Fig. 1a. This cubic-to-orthorhombic MT is associated with six
variants49,50. Since ML demands a large amount of simulation results, two-
dimensional phase-field simulations within the plane stress condition are
conducted in the present work to illustrate the developed methodology of
phase-field simulations integrated with ML. As a result, there are four
possible variants (V1–V4) corresponded to four different SFTS tensors after
dropping the out-of-plane strain. All the SFTSs can be found in the
Supplementary information. In the phase-field model, a continuous
structure order parameter ηi (i = 1 − 4) is employed to characterize the
MT, with ηi = 0 and ηi = ±1 representing austenitic and i-th martensitic
variant, respectively. The total free-energy of the system F consists of the
Landau free-energy fch, the gradient energy fgr, and the elastic energy fel: 51

F ¼
Z

fch þ fgr þ fel
� �

dV: (2)

The microstructure evolution of the MT is governed by the time-
dependent Ginzburg-Landau (TDGL) equation:52

∂ηi r; tð Þ
∂t

¼ �L
δF

δηi r; tð Þ þ ζ i r; tð Þ; i ¼ 1 � 4; (3)

where L is the kinetic parameter, and ζi (r,t) is the Stochastic-
Langevin noise term accounting for the effect of thermal
fluctuations53. All the phase-field simulation parameters employed
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in the present work are from Ref. 20 and listed in Supplementary
Table 2 in the Supplementary information.
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