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Glide symmetry protected higher-order topological insulators
from semimetals with butterfly-like nodal lines
Xiaoting Zhou 1✉, Chuang-Han Hsu 2,3, Cheng-Yi Huang1,3, Mikel Iraola 4,5, Juan L. Mañes5, Maia G. Vergniory4,6, Hsin Lin 3 and
Nicholas Kioussis 1✉

Most topological insulators (TIs) discovered today in spinful systems can be transformed from topological semimetals (TSMs) with
vanishing bulk gap via introducing the spin-orbit coupling (SOC), which manifests the intrinsic links between the gapped
topological insulator phases and the gapless TSMs. Recently, we have discovered a family of TSMs in time-reversal invariant spinless
systems, which host butterfly-like nodal-lines (NLs) consisting of a pair of identical concentric intersecting coplanar ellipses (CICE). In
this Communication, we unveil the intrinsic link between this exotic class of nodal-line semimetals (NLSMs) and a Z4 = 2
topological crystalline insulator (TCI), by including substantial SOC. We demonstrate that in three space groups (i.e., Pbam (No.55),
P4/mbm (No.127), and P42/mbc (No.135)), the TCI supports a fourfold Dirac fermion on the (001) surface protected by two glide
symmetries, which originates from the intertwined drumhead surface states of the CICE NLs. The higher order topology is further
demonstrated by the emergence of one-dimensional helical hinge states, indicating the discovery of a higher order topological
insulator protected by a glide symmetry.
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INTRODUCTION
The discovery of the quantum spin Hall effect (QSHE)1–3 and
topological insulators (TIs)4–6 which are protected by time-reversal
symmetry (TRS), has indicated that symmetry plays a crucial role in
classifying the topology of free fermion states7–9. Subsequently,
the concept has been generalized to spatial symmetries in
crystalline systems. For instance, topological crystalline insulators
(TCIs)10 are protected by other space-group symmetries (Q)11,12,
such as mirror13 and rotational symmetries14–16. Consequently,
such type of systems are known to harbor symmetry-protected
topological (SPT) phase17.
In free fermion systems, SPT insulators harbor a central

paradigm referred to as the bulk-boundary correspondence18. A
d-dimensional bulk with gapped excitations hosts anomalous
gapless, topologically nontrivial boundary states in lower (d− 1)
dimensions4,19. Recently, a higher-order bulk-boundary correspon-
dence has been uncovered in types of TCI, which exhibit a gapped
(d− 1)-dimensional boundary but a gapless (d− 2)-dimensional
boundary14,20–22. Hence, this type of TCIs are dubbed higher-order
topological insulators (HOTIs)14,20–27. In general, an nth order
topological insulator describes a TCI in d-dimensions having
symmetry protected (d− n)-dimensional gapless boundary states,
but gapped otherwise, when the sample geometry is properly
selected, being compatible with Q. HOTIs protected by various
symmetries have been studied, such as Cz4T , the mirror
symmetry22, and the inversion symmetry23, respectively.
In contrast to the gapped topological phase, a topological

semimetal (TSM) has gapless bulk band structures, which are
characterized by the topologically robust band-crossings mani-
folds between occupied and unoccupied bands in momentum
space. Among them, nodal-line semimetals (NLSMs)28,29, which
harbor one-dimensional (1D) nodal lines (NLs), possess the highest

variability. NLSMs with NLs integrated in various configurations
have been studied under the assumption that the spin-orbit
coupling (SOC) is negligible or absent, e.g., a chain link30–32, a Hopf
link31, and a knot33.
However, from another perspective, it is intuitive to raise the

question whether additional topology could be unearthed when
these intricate degenerate links are gapped out by substantial
SOC. The intrinsic link between gapped TIs or TCIs and gapless
TSMs is essential to trace the origin of the topology of the
insulating phase due to the band inversions and the evolution of
the surface states. It has been known that a Z2 strong TI can be
realized from NLSMs with a single nodal ring when SOC is
included34–36, and a HOTI from NLSMs with monopole nodal
lines24, which represent the intrinsic link between a gapped
topological phase and a gapless TSM. Nevertheless, similar studies
for NLSMs with complex NL configurations remain deficient. In this
work, we unveil the intrinsic link between an exotic class of nodal-
line semimetals (NLSMs) and a Z4 = 2 topological crystalline
insulator (TCI). This type of NLSM has been discovered and
reported in ref. 37 recently in spinless systems, which hosts a
butterfly-like NL consisting of a pair of concentric intersecting
coplanar ellipses (CICE) residing on a plane in k space as shown in
Fig. 1a.
In this paper, we include the Pbam (No.55) symmetry-invariant

SOC in a minimal tight-binding (TB) model which exhibits CICE in
ref. 37, and (i) demonstrate that the CICE act as the origin of a TCI
protected by two glide symmetries. With substantial SOC, as
shown in Fig. 1b, the CICE become anticrossing, thus driving a
phase transition from NLSM to a TCI with Z4 ¼ 238–41 due to the
fact that the CICE are essentially sets of NLs stemming from the
double-band-inversion (DBI). (ii) Consequently, the intertwined
drumhead surface states (DSSs) on the (001) surface (wallpaper
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group (WG) pgg) stemming from the CICE nodal lines, evolve to
the topological surface states (TSSs) with a fourfold Dirac
fermion42,43 protected by the two glide symmetries, correspond-
ing to the TCI as shown in Figs. 1b and 2d, respectively. (iii) We
further uncover the higher-order topology of the system featuring
the 1D helical hinge states when the sample geometries are
distinctively and properly selected, which indicates the discovery
of the three-dimensional (3D) HOTI protected by a nonsym-
morphic glide symmetry.

RESULTS
The lattice model
The CICE can be sustained by two glide mirror symmetries and
only nine space groups (SGs) are feasible to host it37. The
minimal 4-band TB model for the spinless CICE NLSM in SG Pbam
(No. 55) is a lattice, consisting of two sublattices denoted by A
(gray) and B (blue) which occupy the 2a Wyckoff position at rA=
(0, 0, 0) and rB ¼ ð12 ; 12 ; 0Þ in the unit cell (see Fig. 1c for the
structure). There are two orbitals, pz and dxy, for each sublattice,
described by the Pauli matrix σ and τ for the A and B sublattices,
respectively. σ0 and τ0 are identity matrices. The SG Pbam (No.55)
can be generated by the mirror symmetry, Mz ¼ fm001j000g,
and the two glide-mirror symmetries, Gx ¼ fm100j 12 12 0g and
Gy ¼ fm010j 12 12 0g, normal to the [100] and [010] directions,
respectively, accompanied by a translation of ½12 12 0�. For a spinless

system, employing the basis Ψ ¼ ðpAz ; dAxy ; pBz ; dBxyÞ
T
, the

symmetry-constrained TB Hamiltonian is of the form,

H0ðkÞ ¼ ½ðα cos kx þ β cos ky þ γ cos kzÞ þ δ0�τ0σ3

þ cos kx
2 cos

ky
2 cos kzðλ10τ1σ0 þ λ13τ1σ3Þ

þ sin kzðλ32τ3σ2Þ þ sin kx
2 sin

ky
2 sin kzðλ12τ1σ2Þ;

(1)

where α, β, γ, and λij are hopping strength, and δ0 represents the
chemical potential. As discussed in detail in ref. 37, the CICE emerge
on the mirror plane (gray shaded area in Fig. 1a) centered at the
high symmetry k point S= (π, π, 0) [R= (π, π, π)], under the condi-
tions {αδS(R) < 0 ∩ αβ > 0 ∩ α ≠ β}, where δS,R= δ0− (α+ β∓ γ). The
various terms in Eq. (1) describe the pair of concentric elliptic NLs,
the NL anisotropy, and the angle between the NLs (see details in
ref. 37). Since the CICE are composed of two NLs, it is anticipated to
observe a pair of DSS28 intertwined on the (001) surface.

Topological crystalline insulator
We consider the effect of SOC, and the minimal TB model contains
eight spinful bands. The minimal SOC Hamiltonian in SG Pbam
(No. 55), HSOC(k), to gap out the CICE-NL is of the form,

HSOCðkÞ ¼
P3

i¼1
ζ01i sin kiΓ01i

þ ζ233 cos
kx
2 cos

ky
2 cos kzΓ233 þ ζ111 sin

kx
2 cos

ky
2 cos kzΓ111

þ ζ112 cos
kx
2 sin

ky
2 cos kzΓ112 þ ζ223 sin

kx
2 sin

ky
2 sin kzΓ223;

(2)

where ζijk denotes SOC strength, and Γijk= τiσjsk (i, j, k∈ {0, 1, 2, 3}).
s0,1,2,3 are identity matrix and Pauli matrices operating in spin
space, respectively. The band structure of H0 and H= H0+ HSOC

are shown in Fig. 1d by the red and blue curves, respectively. In
the presence of SOC, the CICE-NL TSM evolves into an insulating
phase. The parameters are tuned to allow the system to
host a single CICE centered at the S point in the absence of
SOC and to have no additional band inversions at other k points
including SOC. In addition to {αδS < 0 ∩ αβ > 0 ∩ α ≠ β}, either

condition fδS < 0 \ δR > 0 \ δΓ;Z >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ þ ζ2233

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2� þ ζ2233

q
g or

fδS > 0 \ δR < 0 \ δΓ;Z < �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ þ ζ2233

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2� þ ζ2233

q
g, should be

Fig. 1 Phase transition from a NLSM to a TCI, crystal structure, and band structures. a Brillouin zone (BZ) of bulk and the projected (001)
surface in SG Pbam (No. 55), with the high-symmetry points. The CICE nodal lines are on the xy-plane centered at S point. b Schematic band
structures demonstrating the SOC-driven transition from a NLSM exhibiting the CICE NLs37 (left panel) to a TCI (right panel). Gray denotes the
bulk states, and the magenta, red and blue indicate the (001) surface states, i.e., the interwined DSSs of the NLSM (left panel), and the TSSs of
the TCI with two intertwined Dirac cones (right panel). c Orthorhombic crystal structure of the lattice model in Eqs. (1) and (2), consisting of a
lattice with two sublattices A (in blue) and B (in gray). d Band structure of the model with and without SOC, respectively.
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satisfied, where λ±= λ10 ± λ13 and δΓ,Z= δ0+ (α+ β ± γ). If addi-
tional band inversions emerge beyond the one which gives rise to
the CICE, the band topology may be changed in the presence of
SOC, and the semimetal may evolve to distinct insulating phases,
although the CICE nodal lines may still exist in the absence of SOC.
In order to determine its band topology, we implement the

symmetry-indicator theory38,40,41. Crystals in the SG Pbam (No. 55)
are characterized by four symmetry indicators (SIs)38,40,41, three Z2

weak TI indices and one Z4 index. The Z4 index is defined as,
Z4 � 1

4

P
K2TRIMsðnþK � n�K Þmod4, where nþK (n�K ) is the number of

occupied bands with parity +(−) at the TRIM points K. Due to the
nonsymmorphic symmetries, bands are four-fold degenerate at all
TRIM points except Γ. Besides, since inversion I anticommutes
with the glide, G, or screw, S, symmetry operations (here S
includes Sy ¼ 2½010�1 ¼ f2010j 12 12 0g, and Sx ¼ 2½100�1 ¼ f2100j 12 12 0g),
at X, U, Y, and T, the parity of each four-fold degenerate state must
be (+, +, −, −), which does not contribute to Z4. By enumerating
the parity of the states at other TRIM points, we obtain
Z2;2;2;4 ¼ ð0; 0; 0; 2Þ, corresponding to eight possible topological
states41. To further narrow down the possible phases, we have
calculated the mirror Chern numbers of Mz and Cm001

0;π
(m001

0;π

denotes the kz= 0, π mirror planes), following the method
implemented in ref. 16. We find that Cm001

0;π
¼ ð2; 0Þ. The corre-

sponding Dirac surface states on the (010) surface are shown in
Fig. 2b, where the relevant k points and the schematic locations of
the Dirac cones are illustrated in Fig. 2a. Therefore, given that
Cm001

0;π
¼ ð2; 0Þ, there are two possible topological phases, which

are listed in Table 1. The first one is S-protected TCI with
ν2½010�1

¼ ν2½100�1
¼ 1, while the second one is G-protected TCI with

nontrivial Z2 topological invariants ν
gð010Þa

and ν
gð100Þb

(where

gð010Þa ¼ Gy ¼ fm010j 12 12 0g, and gð100Þb ¼ Gx ¼ fm100j 12 12 0g). Note
that the nontrivial characteristics of the bands agree with the
analysis from the elementary band representations (EBRs)44–46.
The physical EBRs for the 2a Wyckoff position47–49 require that the
parity of Γ, Z, S, and R has the same sign. However, because of the
double band inversion at S guaranteed by the CICE-NL, both
valence and conduction bands violate the physical EBRs,
suggesting the emergence of nontrivial topology.
To further determine the topological phase certainly, we have

also investigated the (001) surface bands, because the presence of
topological surface states on the (001) surface excludes the
scenario of S-protected TCI. The (001) surface bands are shown in
Fig. 2c, where the (001) surface BZ and the corresponding high
symmetry k points are displayed Fig. 2a. Interestingly, the
calculations reveal the emergence of nontrivial surface states

̅

Γ

(010)

kx
ky

a kz(001)

d

(001)(010) cb

Intertwined DSSs Fourfold Dirac TSSs

SOC

e (001)

̅

̅

Γ

̅

Γ

Γ

Fig. 2 Topological surface states and the evolution from DSSs to TSSs. a Brilliouin zones for the bulk, the projected (001) and (010) surfaces,
on which the predicted positions of the fourfold Dirac fermion and Dirac cones are shown schematically. Surface band spectrum of the b (010)
and c (001) surfaces along the high-symmetry k paths, where the fourfold Dirac fermion emerges at S on the (001) surface and a Dirac cone
lies along the ~Γ − ~X direction of the (010) surface, respectively. d Schematic of the SOC-driven transition of the (001) surface states from the
intertwined DSSs stemming from the CICE NLSM37 (left panel) to the fourfold Dirac fermion at S of the TCI (right panel). e The z-directed
Wilson loop along the high symmetry directions for occupied states hosting positive (+sector, red) and negative (−sector, blue) surface glide
eigenvalues, indicating a bulk topology of (χx, χy)= (2, 2).

Table 1. The two possible topological states with SIs Z2;2;2;4 ¼
ð0; 0; 0; 2Þ and mirror Chern number C

mð001Þ
0;π

¼ ð2; 0Þ in SG Pbam (No.
55)41. The Z invariants, C

mð001Þ
0;π

, are the mirror Chern numbers for the
mirror planesMð001Þ with kz= 0, π, respectively. All the listed ν’s are Z2

classified topological invariants. The set (ν0; ν1ν2ν3) are the invariants
for 3D Z2 TIs. νg010a

and νg100b
represent the invariants for the glide

symmetries Gy and Gx , respectively. νI is the inversion I protected TCI
index, where νI ¼ 1, features the hinge states in a 3D finite geometry
preserving I . ν2001 , ν20101

and ν21001
denote the invariants for the

rotational and screw symmetries 2[001], 2
½010�
1 and 2½100�1 , respectively.

(ν0; ν1ν2ν3) C
mð001Þ

0;π
νg010a

νg100b
νI ν2001 ν20101

ν21001

(0;000) (2, 0) 0 0 1 0 1 1

(0;000) (2, 0) 1 1 1 0 0 0
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around S which are composed of two intertwined surface Dirac
cones, shown schematically in Fig. 2d (right panel). We refer to
these topological surface states (TSSs) as fourfold Dirac fermions,
which are of a particular type of wallpaper fermions42. As Fig. 2d
shows, one can also obtain the fourfold Dirac fermions via SOC-
induced splitting of the intertwined DSSs of the CICE TSM37, where
the degenerate dispersions along S� X ðYÞ are guaranteed by G.
Consequently, the CICE-NL induced topological phase belongs to
the G-protected TCI. In the following, we provide more physical
insights on this TCI phase and the fourfold Dirac fermions.
In general, for time reversal symmetric systems, strong topological

insulators (STIs) with a single band inversion at one TRIM point can
be regarded as an elementary building block of the nontrivial
insulating phase15,40. For each STI, the topological surface states of
the (001) surface can be described by the Hamiltonian, hk= kxs2−
kys140. The gapless feature of hk is protected by the TRS operator,
T ¼ �is2K, where K is the complex conjugation operator. For the
current case, since there is a DBI at the S point, the induced TCI
phase can be viewed as two copies of STIs. Accordingly, for the TSSs
of the TCI, the only allowed TR invariant mass term takes the form,
M=mμ2⊗ s3, where μ1,2,3 are the Pauli matrices acting on the two
copies of hk, andm is constant. If M can be prohibited by any spatial
symmetry Q, the anomalous gapless surface states will persist,
indicating that the existing topology is protected by Q, which can
be Gx and Gy , as derived below.
At S, the eigenvalues of Gx and Gy are ±1. To preserve TRS, the

only available representations are Gx ¼ μ2 � s1 and Gy ¼ μ2 � s2,
which in turn lead to the rotational symmetry about the z-axis
C2zð¼Gx ´GyÞ ¼ �iμ0 � s3. Obviously, M cannot survive with Gx
and Gy , but is allowed by C2z. Consequently, there exist
representations for Gx and Gy to support the (001) TSSs at S,
which is the fourfold Dirac fermion shown in Fig. 2d described by
the k ⋅ p Hamiltonian

HTSSðqÞ ¼ g0ðqxs2 � qys1Þ þ
P

i¼1;3
giμi � ðqxs1 þ qys2Þ

þ qxqyða3μ3 þ a1μ1Þ þ g23μ2s3;
(3)

where all g’s and a’s are real parameters.
The z-oriented Wilson loop50,51, z ±n ðkx ; kyÞ ¼ W ±

n0jẑjW ±
n0

� �
, is

calculated on the (001) surface, where W ±
n0

�� �
is the n-th Wannier

orbit with glide Gx (Gy ) eigenvalues ±e�iky ( ± e�ikx ) in the home
unit cell, R= 0 and ẑ is the position operator. Figure 2e shows z ±

along the high symmetry k directions for occupied states
hosting positive (+sector, red) and negative (−sector, blue)
surface glide eigenvalues. Employing the analysis for the two Z4
indexes (χx, χy) derived in ref. 42, the bulk topology of our system
is (χx, χy)= (2, 2).

Higher-order topological insulator protected by a glide
symmetry
In addition to the topological surface states belonging to the (d−
1) bulk-edge correspondence, i.e., the fourfold Dirac fermion and
the Mz-protected surface states, the Gx , Gy and Mz symmetries
can give rise to higher order (d− 2) bulk-edge correspondence.
We have considered the nanorod geometry, shown in Fig. 3a,

with open boundary conditions along the [011] and ½011�
directions, respectively, and periodic boundary conditions along
[100]. We find that the nanorod can support two pairs of hinges
modes along the intersection lines between the (011) and ð011Þ
surfaces and the (011) and ð011Þ surfaces, respectively. None of
the above surfaces hosts gapless surface states, since there is no
TCI phase supporting them. As discussed in ref. 22, the hinge
modes formed by the intersection of the (011) and ð011Þ facets
are generated via bending the (001) surface along the [001]
direction, which, however, preserves the Gy symmetry for the
hinges and the entire crystal. The original pair of Dirac cones
forming the fourfold Dirac fermion on the (001) surface become

gapped with opposite mass terms and reside on the (011) and
ð011Þ surfaces, respectively (red and black massive Dirac cones in
Fig. 3a). Hence, the surface insulating phases that reside on the
two facets differ by an odd Z2 index, leading to the emergence of
an odd number of helical hinge modes on the domain wall
between the two facets. Similarly, the hinge modes along the
intersection of the (011) and ð011Þ facets are generated via
bending the (010) surface along the [001] direction, which
preserve the Mz symmetry.
Figure 3b shows the band structure of the nanorod along the kx

symmetry direction where the two pair of hinge modes are denoted
in red and cyan, respectively. The distribution in real space of the
two types of hinge modes along the [100] direction are displayed in
Fig. 3c with the corresponding colors. For the purpose of clarity, on-
site potentials V= 0.2 eV are added on the hinges formed by
the fð011Þ; ð011Þg and fð011Þ; ð011Þg facets to better differentiate
the two hinge states in energy. The constraint imposed by the glide
symmetry Gy allows two possible topologies of hinge bands52, the
hourglass connectivity and the analog of the quantum spin Hall
(QSH) effect (see Fig. 3d). From the hinge modes in cyan displayed in
Fig. 3c, we find that the hinge band connectivity is the analog of the
quantum spin Hall effect (bottom panel of Fig. 3d).

DISCUSSION
In ref. 37, we demonstrated that 9 (Pbam (No. 55), Pccn (No. 56),
Pnnm (No. 58), Pnma (No.62), P4/mbm (No. 127), P4/mcn (No.128),
P42/mbc (No. 135), P42/mnm (No.136), P42/ncm (No. 138)) out of
230 SGs can host CICEs centered at certain TRIM points in the
absence of SOC. However, only two wallpaper groups, namely pgg
((001) surface of Pbam (No. 55)) and p4g ((001) surface of P4/mbm
(No. 127) and P42/mbc (No. 135)), containing double-glide lines,
can support fourfold Dirac fermions when SOC is introduced.
Consequently, only 3 (Pbam (No. 55), P4/mbm (No. 127), and P42/
mbc (No. 135)) of the 9 SGs can support the fourfold Dirac
fermions on their (001) surfaces. In SG Pnma (No.55), the CICE
resides on the (010) rather than the (001) plane, and the (010)
surface (pg) contains a single glide line. Therefore, the (010) TSSs
of the corresponding TCI are hourglass fermions instead. For the
rest 5 SGs, due to the lack of glide symmetry preserved on their
(001) surfaces, the nonsymmorphic fourfold Dirac or hourglass
fermions would not be expected.
In summary, the inclusion of SOC in the model Hamiltonian

describing our recently proposed family of butterfly-like CICE NLs in
SG Pbam (No. 55)37 unveils intrinsic connection of the CICE NLSM
and the TCI protected by two glide symmetries. The SOC drives the
TSM to a Z4 ¼ 2 TCI with higher order topology, supporting in turn
a fourfold Dirac fermion on the (001) surface protected by two
coexisting glide symmetries of WG pgg. As a candidate material of
this type of TCI, Sr2Pb3 (SG P4/mbm No. 127) has been studied in42.
Moreover, its higher order topology is corroborated by the
emergence of 1D hinge states protected by glide symmetry, which
has never been found before. This intriguing TCI phase provides a
platform for exploring exotic physics, such as the electron transport
and thermoelectric effect on the surfaces/hinges. Our proposed
glide-protected HOTI may have important implications on the
emergence of Majorana zero modes via proximity of the HOTI to a
superconductor53, which exhibit distinct features compared to those
in TI/SC heterostructures. Finally, our EBRs analysis of the tight
binding model in Supplementary Discussion demonstrates a rich
phase diagram featuring TCI, strong TI, and obstructed atomic
insulator (OAI) phases.
As described in detail in the Supplementary Note, we have

carried out systematic ab initio electronic structure calculations to
identify material candidates which exhibit (i) a single CICE in the
absence of SOC and (ii) fourfold-Dirac TCI/HOTI phase in the
presence of SOC. Unfortunately, this task has proved immensely
challenging and the calculations failed in finding such an ideal
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material. This is due to the fact that the band structures in real
materials are more complex involving multiple orbitals and bands.
Nevertheless, these calculations raise the intriguing question of
realizing these quantum states by designing new materials
according to our simple model, so that the topological nature
can be captured and not buried in the complex band structure. As
stated above, we have constructed a minimal (8-band in the
presence of SOC) tight-binding model with a bipartite lattice in
space group Pbam (No. 55), based on the Wyckoff position 2a with
site-symmetry group 2/m, and with two orbital per sublattice.
Even though we employed the (pz, dxy)-derived orbitals, this
choice is not unique and one can equally well use the (pz, s)-
derived orbitals. The conditions for the emergence of CICE nodal
lines in the absence of SOC are given by Equations (4) and (5) of
ref. 37 with the additional proviso that no other band inversions
occur. The conditions to avoid additional band inversions in the
presence of SOC are given in the paragraph below Eq. (2) of this
work. The artificial system can be designed as layered structure,
where these conditions can be satisfied by tuning the interlayer
hopping or SOC parameters, such as γ, λ10,13, and ζ233.
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