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Valley-filling instability and critical magnetic field for
interaction-enhanced Zeeman response in doped WSe2
monolayers
Fengyuan Xuan 1 and Su Ying Quek 1,2,3,4✉

Carrier-doped transition metal dichalcogenide (TMD) monolayers are of great interest in valleytronics due to the large Zeeman
response (g-factors) in these spin-valley-locked materials, arising from many-body interactions. We develop an ab initio approach
based on many-body perturbation theory to compute the interaction-enhanced g-factors in carrier-doped materials. We show that
the g-factors of doped WSe2 monolayers are enhanced by screened-exchange interactions resulting from magnetic-field-induced
changes in band occupancies. Our interaction-enhanced g-factors g* agree well with experiment. Unlike traditional valleytronic
materials such as silicon, the enhancement in g-factor vanishes beyond a critical magnetic field Bc achievable in standard
laboratories. We identify ranges of g* for which this change in g-factor at Bc leads to a valley-filling instability and Landau level
alignment, which is important for the study of quantum phase transitions in doped TMDs. We further demonstrate how to tune the
g-factors and optimize the valley-polarization for the valley Hall effect.
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INTRODUCTION
Valleytronics, the control and manipulation of the valley degree of
freedom (valley pseudospin), is being actively considered as the
next paradigm for information processing. The field of valley-
tronics dates back to investigations on traditional semiconductors
such as silicon1,2, but the ability to exploit valley polarization in
these materials has been limited3. A major impetus for the
renaissance of valleytronics is the recent discovery that H-phase
transition metal dichalcogenide (TMD) semiconductor monolayers
(MLs) are excellent candidates for valleytronics applications3,4. The
spin-valley locking effect in these MLs5 leads to long lifetimes for
spin- and valley-polarization, while individual valleys can be
probed and controlled using circularly-polarized light, paving
the way to use the valley pseudospin for information processing.
The valley Zeeman response in TMD MLs6–20 is also significantly
larger than in traditional semiconductors21–27.
When an external magnetic field is applied normally to the TMD

ML, the energies of the valleys shift in equal magnitude and
opposite directions. This Zeeman effect is quantified by the orbital
and spin magnetic moments, which contribute to the Landé
g-factors. In TMD MLs, the intrinsic Landé g-factors are about six
times larger6–8,10 than that in silicon, where only the spin
magnetic moment dominates21,22. The larger g-factors in TMD
MLs allow for greater control in tuning the energetics of the valley
pseudospins and results in a larger valley-polarized current, which
is important for observations of the valley Hall effect3. Besides the
Zeeman effect, an external magnetic field also results in a
quantization of states to form Landau levels (LLs).
Much of the current research on valleytronics seeks to

understand how to manipulate the valley pseudospins in TMDs3,4.
It has been found that carrier doping can dramatically enhance
the g-factors in TMD monolayers14–20, opening up the possibility
to tune the valley pseudospin by gating in a magnetic field. This

enhancement in g-factors has been attributed to many-body
interactions14–20,23,26, but a quantitative understanding is lacking.
To interpret the g-factor enhancement in doped TMDs, experi-
mentalists have typically relied on existing theoretical literature
dating back to the 1960s–1970s23,28. However, there are two
shortcomings of these theoretical approaches. Firstly, they are not
ab initio methods and cannot provide quantitative predictions.
Secondly, these studies all focused on silicon or III-V semiconduc-
tors, which are very different in nature from the TMD monolayers.
It is important to question if the experimental observations on
g-factors in doped TMDs serve only to validate in TMDs what was
already known for silicon, or if it is possible to observe emergent
phenomena not known before in conventional valleytronics
materials.
In this work, we develop an ab initio approach based on many-

body perturbation theory to compute the interaction-enhanced
Landé g-factors in carrier-doped systems. We predict that the
larger intrinsic g-factors in TMD MLs enable the observation of a
critical magnetic field Bc above which the interaction-induced
enhancement in the g-factors vanishes in doped TMDs. We identify
ranges of the enhanced g-factor g�enh for which the discontinuous
change in g-factor at Bc results in a LL alignment and valley-filling
instability for B≳ Bc. Such a phenomenon has not been observed
or predicted for silicon and other conventional valleytronic
materials. Our computed interaction-enhanced g-factors for hole-
doped ML WSe2 agree well with experiment14,16,18 and can be
tuned by dielectric screening. The predicted valley-filling instability
for B≳ Bc provides theoretical insights into recent experimental
observations16 of a pronounced Landau level-filling instability at a
critical magnetic field which closely matches our predicted values.
The associated alignment of LLs is of interest16 to investigate
quantum phase transitions in these doped TMDs29–34. The recent
observation of fractional quantum Hall states associated with non-
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abelian anyons in ML WSe235 highlights the potential of creating
pseudo-spinors from aligned LLs for topological quantum comput-
ing applications36.

RESULTS
Computational approach
For a many-electron system described by a static mean-field
Hamiltonian H nkj i ¼ Enk nkj i, it has been shown that an out-of-
plane magnetic field B results in the following expression for the
LLs at the K valley6:

ϵN;K ¼ EnK þ N þ 1
2

� �
2
m� μBB� g I

nKμBB; (1)

where n is the corresponding band index, EnK is the mean-field
single-particle energy at K, m* is the valley effective mass, μB is the
Bohr magneton, and N= 0, 1, 2, . . . is the LL index. The total
intrinsic single band g-factor consists of the orbital and spin
contribution, g I

nK ¼ g orb
nK � gssz;nK , where gs is taken to be 2.0 and

sz,nK is the spin quantum number. The orbital component of the
intrinsic g-factor is g orb

nK , defined as g orb
nK μB ¼ mz

nK :

mnK ¼ � i e
2_

∂kunkh j ´ ½Hk � Enk� ∂kunkj ijk¼K; (2)

where it is assumed that the LLs are within the quadratic region of
the band extrema6.
The above description does not explicitly account for the

energy dependence of the electron self-energy Σ(E). The change in
self-energy as the energy shifts with B leads to an effective
renormalized g-factor, g�nK , defined as ðϵ0N;K � ϵ0N;K0 Þ ¼ �2g�nKμBB
where

ϵ0N;K ¼ EnK þ ðN þ 1
2Þ 2

m� μBB� g I
nKμBBþ Σ ϵ0N;K

� �
ϵ0N;K0 ¼ EnK0 þ N þ 1

2

� �
2
m� μBBþ g I

nKμBBþ Σðϵ0N;K0 Þ:
(3)

The effects of the self-energy on the g-factors in carrier-doped
silicon systems have been addressed in part by Janak23 and
Ando28 using a two-dimensional electron gas (2DEG) model.
Janak’s work had ignored the formation of LLs, replacing ϵ0N;K with
the corresponding quasiparticle (QP) levels in the Bloch states23.
Despite this simplifying assumption, the approach yielded carrier-
density-dependent g-factors in agreement with experiments24.
Ando modeled approximately the self-energies for LLs, and
predicted that the g-factors should have an oscillatory depen-
dence on the carrier density28. This oscillatory dependence
primarily arises from the discrete nature of LL states. It was found
that the maximum values of the g-factors predicted by Ando’s
approach (corresponding to the maxima in the peaks in the
oscillations) agreed well with the experiments37. In both
approaches, it is deduced that the effect of many-body interac-
tions on the g-factors depends on the difference in occupations
between the spin-up and spin-down bands. In the case of doped
TMDs, where the spin and valley degrees of freedom are
coupled4,5, this difference in occupations corresponds to that
between the valley extrema at K and K 0.
In hole-doped TMDs, the large intrinsic g-factors6–8 imply that

the valley Zeeman effect provides the major contribution to the
difference in occupations between K and K 0—the effect of discrete
LLs on this difference is insignificant compared to that of the
Zeeman shift. Given the success of Janak’s approach, we proceed
to use the Bloch state formalism to quantify the change in
g-factors due to self-energy effects. Thus, following Janak,23 we
define g�nK as

E QP ;1
nK � E QP ;1

nK0

� �
¼ �2g�nKμBB; (4)

where

E QP ;1
nK ¼ EnK þ ΣðE QP ;1

nK Þ � g I
nKμBB

E QP ;1
nK0 ¼ EnK0 þ ΣðE QP ;1

nK0 Þ þ g I
nKμBB;

(5)

and obtain

E QP ;1
nK � E QP ;1

nK0 ¼ ΣðE QP ;1
nK Þ � ΣðE QP ;1

nK0 Þ � 2g I
nKμBB: (6)

As the change in energy ðE QP ;1
nK � E QP ;1

nK0 Þ is of the order of meV
for typical Zeeman shifts such as those reported here, we can
further linearize the change in self-energy using its derivative with
respect to the energy argument:

ΣðE QP ;1
nK Þ � ΣðE QP ;1

nK0 Þ ¼ dΣðEÞ
dE

ðE QP ;1
nK � E QP ;1

nK0 Þ (7)

and

g I
nK

g�nK
¼ 1� dΣðEÞ

dE
: (8)

Such a renormalization effect is missing in previous first-principles
calculations of g-factors in TMDs6–8.
The electron self-energy in this work is computed within the GW

approximation38 (see Methods), which uses the first-order term in
the perturbative expansion of Σ in terms of the screened Coulomb
interaction W. For undoped systems, dΣðEÞdE arises from the explicit
energy-dependence of Σ, which can be deduced from the ab initio
GW calculation. In contrast to the undoped system, doped systems
have partially occupied bands. Thus, if the band occupancies are
also changing in response to the magnetic field, there is an
additional term in dΣðEÞ

dE :

dΣðEÞ
dE

¼ ∂ΣðEÞ
∂E

þ ∂ΣðEÞ
∂f

∂f
∂E

; (9)

where f is the Fermi-Dirac distribution function. The second term
in Eq (9) can be simplified to give (see Methods):

∂ΣðEÞ
∂f

∂f
∂E

� jm�j
2π

WnkFðE ¼ EFÞ; (10)

where n is the band index of the frontier doped band, and EF and
kF are respectively the Fermi energy and Fermi wave vector. This
term comes from the screened-exchange contribution to self-
energy. WnkF (defined in Methods) is an effective quasi-2D
screened Coulomb potential, which can be evaluated completely
from the first principles. Since WnkF is positive, the second term of
Eq. (9) leads to an enhancement effect for the g-factor.
For an ideal 2D fermion gas, the second term of Eq. (9) reduces

to the term dΣ(E)/dE derived by Janak in ref. 23 (see also ref. 39 and
Supplementary Note). We note that the first term in Eq. (9) is
ignored in ref. 23. Also, in contrast to previous studies23,28, we
evaluate the screened Coulomb potential from the first principles.
In this work, we limit our considerations to doping densities

small enough that the Bloch states involved are within the
quadratic region of the valley extrema, so that Eq. (2) holds.

Renormalized g-factors in undoped TMDs
Table 1 shows the renormalized and intrinsic g-factors computed for
undoped monolayer WSe2, using the GW Hamiltonian. We see that
the magnitudes of the renormalized g-factors are reduced by ~20%
compared to the intrinsic GW g-factors, because ∂ΣðEÞ

∂E is in general
negative40. The exciton g-factors deduced using the renormalized
g-factors are in good agreement with experiment41–45. As discussed
in ref. 6, because the X0 and D0 excitons involve optical transitions in
a small region of the Brillouin Zone around K, the reorganization of
Bloch states into LLs does not shift the exciton energies on average.
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Interaction-enhanced g-factors in doped TMDs
We compute the g-factors for hole-doped ML WSe2 for the
valence band at K. Henceforth, the subscript vK is omitted. The
magnitudes of our computed valence band g-factors ∣g*∣
are plotted as red squares in Fig. 1b for ML WSe2 with different
hole densities. Our predicted g-factors agree well with those
deduced from multiple experiments10,14,16,18 on hole-doped ML
WSe2. The renormalized g-factor for the undoped system is
labeled g�0. Due to interaction-induced enhancement, the g-factor
increases significantly once hole carriers are introduced. This
enhancement reduces as the hole density is increased as expected
from the density dependence of the many-body Coulomb
interactions (see Supplementary Fig. 1).
We note that our numerical results for the screened Coulomb

potential, WvkF (see Eq. (12)) differ from those computed for an
ideal 2DEG23,46, although the corresponding numerical results for
the bare Coulomb potential match well with the ideal 2D case (see
Supplementary Fig. 1b). This observation implies that an ab initio
non-local description of the dielectric function of the quasi-2D
system is important for a quantitative prediction of the
renormalized g-factors. In both the ab initio and 2DEG
approaches, an increase in spin degeneracy reduces WvkF (see
Supplementary Fig. 1a). Thus, the large spin–orbit splitting of
~400meV in the valence band of ML WSe2 is an important

underlying reason for the huge g-factor enhancement observed in
experiment10,14,16,18.
We also plot in Supplementary Fig. 2 the renormalized g-factors

when the explicit energy-dependence of the self-energy is
ignored. The results show that the explicit energy-dependence
of the self-energy reduces the predicted ∣g*∣ values, resulting in
better agreement with the experiment.

Critical magnetic field
A subtle but important point is that Eq. (10) applies only when the
band occupancies are changing with B, and the Fermi level EF is
fixed. In electrostatic gating experiments, the carrier concentration
is fixed rather than the absolute Fermi level. However, the Zeeman
shifts in K and K 0 are equal in magnitude but opposite in sign
(Fig. 2a, B < Bc), and the density of states for the quadratic bands in
2D is independent of energy. So for B small enough that both
valleys have carriers (mixed-polarized regime; Fig. 1a), EF is fixed
while the band occupancies change and both terms in Eq. (9) will
apply, leading to the interaction-enhanced g-factors, which we
label as g�enh . However, above a critical magnetic field
Bc � jEFj=ðjg�enhjμBÞ, only one valley has carriers (Fig. 2a, B > Bc)
(see Supplementary Note for a more precise expression for Bc). As
B increases beyond Bc, a constant hole density is maintained when
EF shifts with the bands without changing the band occupancies.
Thus, for B > Bc, only the first term in Eq. (9) applies, similar to the
undoped case, leading to an abrupt drop in g* at B= Bc (Fig. 2b),
with a corresponding piecewise-linear Zeeman split EZ (Fig. 2c)
(see Methods). For a hole density of 2.5 × 1012 cm−2, Bc ≈ 17 T, and
we have g* ≈−12.2 for B < Bc and g* ≈−6.6 for B > Bc.
This abrupt drop in g* at a critical magnetic field has never been

reported or predicted before in traditional valleytronic materials
such as silicon. Indeed, Bc is inversely related to jg�enh j, and it is the
large intrinsic g-factors and hence large renormalized g-factors for
TMDs that allow for Bc to be small enough to be reached in
standard laboratories. For the same hole density of 2.5 × 1012 cm−2,
we predict Bc in silicon to be ~200 T. The larger intrinsic g-factors
for TMD MLs arise from the large orbital g-factors, which consist of
a valley term, an orbital term, and a cross term that involves
coupling between the phase-winding of the Bloch states and the
parent atomic orbitals.6

Since Bc is the value of B characterizing the onset of the fully-
polarized regime, Bc can be deduced using optical measurements
of the exciton and polaron energies for K and K 016. In Fig. 3a, we
plot these values of Bc (blue circles) and compare them with our
predicted values (red squares). The predicted dependence of Bc on

Table 1. GW single band and exciton g-factors of undoped ML WSe2
at the K valley.

Renormalized (g*) Intrinsic (gI)

gc↑ −4.36 −5.50

gc↓ −2.05 −2.59

gv↑ −6.63 −8.31

gv↓ −4.48 −5.62

gX0 −4.54

Expt. −3.741,42 −4.344 −4.3743 −4.445

gD0 −9.16

Expt. −9.342 −9.545 −9.954

c and v refer to the frontier conduction and valence bands, respectively,
while ↑ and ↓ refer to spin up and spin down bands at K. X0 and D0 refer to
the lowest energy spin-allowed and spin-forbidden optical transitions. The
exciton g-factors are defined by gX0= 2(gv↑− gc↑) and gD0= 2(gv↑− gc↓).

Fig. 1 Valence band g-factor in hole-doped ML WSe2. a Schematic figure of the energy dispersion of hole-doped WSe2 ML in the presence of
an out-of-plane magnetic field, in the mixed-polarized regime where the g-factor is enhanced. b Valence band g-factor ∣g*∣ in hole-doped ML
WSe2 as a function of hole density. Red squares: Calculated results; Dark blue and light blue circles: Experimental data from refs. 16,18,
respectively; Purple and green dotted lines: Experimental data from refs. 10,14, respectively (hole densities are given in a range only).
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the hole density agrees well with the experiment. Noting that the
definition of Bc as the onset of the fully-polarized regime can be
unambiguously determined in the experiment, the good agree-
ment with the experiment provides further evidence of the
accuracy of our predicted carrier-density-dependent g-factors.
How can one maximize the concentration of valley-(and spin-)

polarized carriers in the TMD ML? As the hole concentration
increases, Bc increases, giving a larger range of B for which g* is
enhanced by interactions (Fig. 3a). However, the magnitude of
g�enh decreases as the hole concentration increases (Fig. 1). These
competing effects imply that for any given B field B0, there is an
optimal hole concentration ρ0 which maximizes the Zeeman split
EZ (Fig. 3b). This optimal hole concentration ρ0 corresponds to the
hole concentration for which Bc= B0 (Fig. 3), and yields a
maximum concentration of valley-polarized carriers. These pre-
dictions are useful for realizations of the valley Hall effect and
other applications where a high concentration of valley-polarized
carriers is desired.

LL alignment and valley-filling instability
The abrupt change in g* at B= Bc also has other interesting
implications. We denote the Nth LL at K as “(N, K)”. As B increases
beyond Bc, the decrease in ∣g*∣ results in a decrease in the
magnitude of the slopes of the LL fan diagrams (Fig. 4a), leading
to a crossing between the energies of ð0; K 0Þ and (N, K) for some N
(purple circle, N= 5 in Fig. 4a) at B= BX. If this LL (N, K) has carriers,
such a LL alignment results in a valley-filling instability, where the
hole population is transferred back and forth between the two
valleys for small changes in B.
In Fig. 4b, the blue and pink shading indicate schematically the

filling of the LLs with holes, for a constant hole density. As the LL
degeneracy is proportional to the LL spacing, when (N, K) is fully
occupied, we shade the area from ϵN;K þ _ωc

2 down to ϵN;K � _ωc
2

(blue for K and pink for K 0), where the cyclotron frequency ωc is
given by ωc= eB/m*. When a LL (ϵN,K) is partially filled, the
corresponding portion starting from ϵN;K þ _ωc

2 is shaded. In Fig. 4c,
the same blue and pink colors are used to represent the total hole

Fig. 2 Magnetic field dependence of g-factor. a Schematic figure illustrating the Zeeman effect as B is increased with fixed hole density. The
black and red curves represent spin-up and spin-down bands, respectively. The pink and blue shaded regions illustrate the magnitude of hole
density due to the constant density of states in the quadratic band in two dimensions. As B increases for B ≤ Bc, the absolute Fermi level
position is unchanged, but the band occupancies change. For B > Bc, the Fermi level shifts with the band at K and the band occupancies
remain unchanged. b, c Plots of b ∣g*∣ and c valley Zeeman split EZ (labeled in a) as a function of magnetic field B for monolayer WSe2 with hole
density 2.5 × 1012 cm−2, which corresponds to EF= 12.2 meV (see panel a for the definition of EF).

Fig. 3 Critical magnetic field and Zeeman split. a Critical magnetic field as a function of hole density. Blue circles: experiment16; Red squares:
our predictions (b) 2D plot for EZ as a function of hole density and external magnetic field. This plot ignores valley-filling instability effects
discussed in Fig. 4.
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occupancy in each valley, at specific values of B. The hole
occupancy of individual LLs is further indicated by the thickness of
the black (for K) and red (for K 0) lines representing the LLs. Holes
preferentially occupy LLs with higher energies, and each LL is fully
occupied before the next LL lower in energy, resulting in a
symmetric zigzag fine structure about the original Fermi level EF.
We note that the large g-factors in ML WSe2 imply that this fine
structure does not have a significant impact on the difference in
hole occupancies between K and K 0, which is dominated by the
Zeeman shifts of the Bloch states. For the purposes of illustration,
we see that at B1 (Fig. 4b, c), the LLs from N= 0 to N= 5 at K, and
ð0; K 0Þ are fully occupied with holes, and all other LLs have no
holes. For B2 > B1, the LL degeneracy increases and ð0; K 0Þ
becomes partially occupied because the N= 0 to N= 5 LLs at K
can hold more holes, and are all higher in energy than ð0; K 0Þ. As B
increases slightly above Bc, at B3, only the K valley is filled with
holes. However, at B4, a magnetic field slightly larger than the
purple crossing point marked in Fig. 4a, b (BX), holes start to fill the
K 0 valley again because ð0; K 0Þ is higher in energy than (5, K). This
represents a valley-filling instability, where K 0 is depleted of holes
from B= Bc to B= BX, and filled again up to BX+ ΔB (see Fig. 4b
and Supplementary Fig. 3b), when the B field is large enough that
the N= 0 to N= 4 LLs at K can contain all the holes and the
system becomes fully polarized again. In practice, when holes
begin to fill ð0; K 0Þ, the mixed-polarized regime is reached and g*

becomes enhanced, leading to a change in the slope of the fan
diagram that is expected to result in a LL alignment not just for
B= BX but also for B up to BX+ ΔB.

Our predictions provide important theoretical insights into a
recent experiment on doped ML WSe2

16, where optical absorption
plots showed a pronounced signature of the peak positions
changing from one inter-LL transition to another over a small
range of B close to the onset of the fully-polarized regime in the
experiment. This is consistent with the highest occupied LL in the
K 0 valley being emptied and partially filled with holes at B ~ Bc in
our predictions. The authors of ref. 16 attributed this observation
to the oscillatory g-factors predicted by Ando for silicon28.
However, in this theory, the changes in the g-factors are directly
related to the position of the Fermi level relative to the LLs, and
the g-factors, therefore, have an “oscillatory”28 dependence on B
rather than a pronounced change at one particular value of B as
seen in the experiment. Furthermore, such a pronounced
instability was not observed in experiments24–27 on the g-factors
in doped silicon and other traditional valleytronic materials for
which these oscillatory g-factors were predicted. Thus, this
pronounced instability observed in doped ML WSe216 is in fact a
manifestation of the valley-filling instabilities that are predicted
here to emerge specifically for doped TMDs. Our conclusion is
further supported by the fact that the measured values of Bc and
BX are respectively 32 and 38 T for jg�enh j � 1116, close to our
predicted values of 31 and 37 T for the same jg�enh j (see also
Supplementary Table 1).
The alignment of LLs is of interest to investigate quantum phase

transitions in these doped TMDs16,29–34. Given that the LLs are
expected to align for B between BX and BX+ ΔB, it is interesting to
predict how large ΔB can be and how sensitive ΔB is to

Fig. 4 LL fan diagram and valley-filling instability. a LL fan diagram for ML WSe2 valence band with a hole density of 5.2 × 1012 cm−2 (EF=
25.8 meV). The LLs are labeled by the LL index N and black/red lines and labels represent LLs in valley K/K 0. The slopes of the plots decrease in
magnitude when B increases beyond Bc, leading to a crossing between ð0; K 0Þ and (5, K) (purple circle). b Hole occupancies of LLs in valley K/K 0

denoted by blue/pink shading. If the Nth LL at K is fully occupied with holes for (B, B+ δB), the region ðϵN;K � _ωc
2 ; ϵN;K þ _ωc

2 � is shaded for
(B, B+ δB). Dashed fan diagram lines indicate ϵN;K ± _ωc

2 . Holes preferentially occupy LLs with higher energies, and each LL is fully occupied
before the next LL lower in energy, resulting in the zigzag-shaped fine-structure at E ~ EF. c Schematic figure for LLs at B1, B2, B3, and B4 as
marked in (b). The blue and pink shading represent the hole populations in K and K 0, respectively. The thickness of the black and red lines
representing the LLs indicates the hole occupancies of individual LLs in K and K 0, respectively (a thicker line carries more holes, and the
thinnest lines have no holes at all).
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fluctuations in g�enh . Not all values of g
�
enh will result in instability

(see Supplementary Fig. 3a and Supplementary Note). In
particular, if the energies of ð0; K 0Þ and (N, K) cross at BX, the
valley-filling instability only occurs if (N, K) is occupied with holes.
Supplementary Fig. 3c plots the ranges of g�enh for which a valley-
filling instability will occur, as well as the corresponding ΔB values.
We see that an optimal range of jg�enh j for LL alignment is
10:4< jg�enh j< 11:2. Here, ΔB is quite large (~8 T for jg�enh j � 10:4)
and is also fairly robust to changes in g�enh . The corresponding
values of Bc and BX fall within 30 to 40 T (Supplementary Table 1),
well within the reach of experiments.
The alignment of LLs in different valleys can in principle be

achieved for B < Bc if g�enh can be tuned such that ð0; K 0Þ matches
exactly with (N, K) for some N. However, once g�enh deviates
slightly from this value, due to fluctuations in the hole density or
dielectric environment (see Fig. 5), the LLs are no longer aligned.
Our predictions above enable the alignment of LLs while allowing
for some fluctuations in g�enh .

Tunability of interaction-enhanced g-factor
We further note that in addition to electrostatic gating which
changes the carrier concentration and thus g�enh (Fig. 1), g�enh can
also be tuned by dielectric screening (Fig. 5). The tunability of g�enh
with the background dielectric constant can be understood from
the fact that g�enh is related to the effective quasi-2D screened
Coulomb potential at the Fermi surface (Eq. (10)). This tunability of
g�enh provides a handle to control the valley-polarized current, Bc
and ΔB. We note that in ref. 16, the substrate for ML WSe2 is
hexagonal boron nitride (hBN), which has a large band gap and
minimal impact on the computed g-factors (see Supplementary
Fig. 1a). On the other hand, we predict that layered MoSe2, which
corresponds to ϵmed ~9, can reduce g�enh by more than 10%.

DISCUSSION
In summary, our ab initio calculations show that many-body
interactions in doped TMD MLs enhance the g-factors compared
to the undoped MLs, up to a critical magnetic field Bc above which
the g-factors revert to those in the undoped systems. Such a
phenomenon has not been predicted or observed in silicon and
other traditional valleytronic materials, because the corresponding
Bc would be much larger due to the smaller g-factors in these
materials.
The enhancement in g-factors arises from the effect of a

magnetic-field-induced change in occupancies on the screened-
exchange interactions. This effect is only present in the mixed-

polarized regime (B < Bc). As the carrier concentration increases, g*

decreases and Bc increases, so that for any value of the magnetic
field B0, the valley-polarization is maximized when the carrier
concentration is such that Bc= B0. This prediction has implications
for maximizing the valley- and spin-polarized current for the valley
Hall effect.
The computed interaction-enhanced g-factors agree well with

experiments for different doping concentrations. Both the explicit
dependence of the self-energy on energy and the effects of
changes in occupancies are required to obtain good agreement
with the experiment. The crucial energy dependence of the self-
energy implies that standard Kohn–Sham density functional
theory (DFT) cannot be used to predict the Landé g-factors of
doped systems. However, doping-dependent exchange-correla-
tion functionals that can accurately describe the dependence of
the self-energy on occupancies may capture the enhancement
effect due to changes in occupancies.
We further identify the values of g�enh and corresponding

ranges of B that lead to a valley-filling instability and expected LL
alignment, which are of interest for the investigation of quantum
phase transitions in doped TMDs29–34. Recent observations of
fractional quantum Hall states associated with non-abelian anyons
in ML WSe235 suggest that the creation of pseudo-spinors from a
linear combination of valley-aligned LLs can be useful for
topological quantum computing applications36.

METHODS
Intrinsic g-factor
To compute the intrinsic g-factors, we use the PBE exchange-correlation
functional47 for the DFT mean-field calculations48 and the details follow
those in ref. 6. For GW calculations of the intrinsic g-factors, we use a non-
uniform sampling method49 of the Brillouin Zone starting with a 12 × 12
k-grid as implemented in the BerkeleyGW code50. The energy dependence
of the dielectric function is treated within the generalized plasmon pole
(GPP) model40. An energy cutoff of 35 Ry with 4000 empty bands is used
for the reciprocal space expansion of the static dielectric matrix, which is
computed within the random phase approximation. The intrinsic single
band g-factor reduces by only 0.2 when an energy cutoff of 2Ry with 200
empty bands is used.

Renormalized g-factor for B < Bc
The renormalized g-factor g* is computed from the intrinsic g-factor gI and
dΣðEÞ
dE using Eq. (8). We approximate gI using the value in the undoped
system. The intrinsic single band g-factors from DFT calculations do not
change when ML WSe2 is doped with holes.
The first term of Eq. (9) can be obtained directly from the BerkeleyGW

output50.
Σ= iGW can be partitioned40 into the dynamical non-local screened-

exchange (SEX) and Coulomb-hole (COH) interaction terms Σ= ΣSEX+
ΣCOH. Only the screened-exchange term depends on the occupancies f and
contributes to the second term of Eq. (9). The screened-exchange energy
ΣSEX in our ab initio plane-wave calculation can be written as (see
Supplemental Note):

Σ SEX
nK ðEÞ ¼ �P

m

1
NqΩ

P
qGG0

fmK�q nKh jeiðqþGÞ�r mK � qj i mK � qh je�iðqþG0 Þ�r nKj i

´ ϵ�1
GG0 ðq; E � EmK�qÞvqþG

¼ �P
m

1
ð2πÞ2

R
BZd

2qWmqf mK�q;

(11)

where we define the quasi-2D screened Coulomb potential:

WmqðEÞ ¼ 1
L

P
GG0

nKh jeiðqþGÞ�r mK � qj i mK � qh je�iðqþG0 Þ�r nKj i

´ ϵ�1
GG0 ðq; E � EmK�qÞvqþG:

(12)

Here, Ω is the cell volume, Nq is the number of q-points, and vq is the
Coulomb potential with the slab Coulomb truncation scheme applied51.
Wmq is an effective quasi-2D screened Coulomb potential defined in valley
K and L is the height of the supercell for ML WSe2. The non-local nature of
the dielectric matrix is fully taken into account in ϵ�1

GG0 ðq; E � EmK�qÞ. The

Fig. 5 Tunability of jg�enh j using dielectric screening. Ab initio
valence band g-factor jg�enh j as a function of background dielectric
constant ϵmed for a hole density of 5.18 × 1012 cm−2.
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second term in Eq. (9) is then given by (see Supplemental Note):

∂ΣðEÞ
∂f

∂f
∂E

¼ �
X
m

1

ð2πÞ2
Z
BZ
d2qWmq

∂fmK�q

∂E
� jm�j

2π
WnkF ðE ¼ EFÞ: (13)

Here, we have neglected the contribution of intervalley scattering to the
self-energy. Our calculations show that the intervalley contributions to the
plane-wave matrix elements f nKh jeiðqþGÞ�r mK � qj ig are an order of
magnitude smaller than the intravalley ones. We compute g�vK by
evaluating WvkF ab initio using the random phase approximation for the
dielectric matrix. Due to the partial occupancies, we calculate the dielectric
matrix using a dense reciprocal space sampling of 120 × 120, a 2Ry G-
vector cut off and 29 bands. g* is unchanged when we use instead 4Ry and
299 bands, and reduces by ~3% when a 240 × 240 k-mesh is used. Care is
taken to include the effect of spin–orbit splitting at the valleys. For the
effective mass, we use our DFT value of m*=−0.48me, which agrees well
with the experimentally deduced value for hole-doped WSe252. If electronic
screening is ignored, the effective quasi-2D bare Coulomb potential Vmq is
defined by:

VmqðEÞ ¼ 1
L

X
GG0

nkh jeiðqþGÞ�r mk � qj i mk � qh je�iðqþG0 Þ�r nkj iδGG0vqþG:

(14)

Our first-principles results for VvkF (Supplementary Fig. 1b) agrees with the
analytically-derived 2D Coulomb potential. At low doping densities, VvkF is
very large, which would change the sign of g* compared to the intrinsic g-
factor, indicating that screening is important for a meaningful description
of g*.

Renormalized g-factor for B > Bc
For B > Bc,

dΣðEÞ
dE ¼ ∂ΣðEÞ

∂E . We define g�nK as

ððE QP ;2
nK � E QP ;2

nK0 Þ � ðE QP ;1
nK � E QP ;1

nK0 ÞÞ ¼ �2g�nKμBðB2 � B1Þ; (15)

Equivalently,

ðE QP ;2
nK � E QP ;1

nK Þ ¼ �g�nKμBðB2 � B1Þ; (16)

where

E QP ;1
nK ¼ EnK þ ΣðE QP ;1

nK Þ � g I
nKμBB1

E QP ;2
nK ¼ EnK þ ΣðE QP ;2

nK Þ � g I
nKμBB2;

(17)

so that

E QP ;2
nK � E QP ;1

nK ¼ ΣðE QP ;2
nK Þ � ΣðE QP ;1

nK Þ � g I
nKμBðB2 � B1Þ: (18)

Since

ΣðE QP ;2
nK Þ � ΣðE QP ;1

nK Þ � dΣðEÞ
dE

ðE QP ;2
nK � E QP ;1

nK Þ; (19)

we obtain

g I
nK

g�nK
¼ 1� dΣðEÞ

dE
¼ 1� ∂ΣðEÞ

∂E
: (20)

Background dielectric constant
A uniform background dielectric constant (ϵmed) can be simply added to
the dielectric function of the system to obtain the total dielectric function:
ϵðr; r0;ωÞ ¼ ϵWSe2 ðr; r0;ωÞ þ ϵmed � 1. In our first-principles calculation, the
dielectric function is expanded in a plane-wave basis:
ϵðr; r0;ωÞ ¼ P

qGG0eiðqþGÞ�rϵGG0 ðq;ωÞe�iðqþG0 Þ�r0 . Thus we approximate the
effect of screening by a dielectric medium by modifying the static
dielectric matrix as follows:

ϵGG0 ðq; 0Þ ¼ ϵWSe2
GG0 þ ðϵmed � 1ÞδGG0 : (21)

We approximate the dielectric screening from a substrate using ϵmed=
(1+ ϵsub)/253, where ϵsub is the dielectric constant of the substrate.
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