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Understanding X-ray absorption spectra by means of
descriptors and machine learning algorithms
A. A. Guda 1✉, S. A. Guda 1,2✉, A. Martini 1,3✉, A. N. Kravtsova1, A. Algasov 1,2, A. Bugaev1, S. P. Kubrin4, L. V. Guda1, P. Šot5,
J. A. van Bokhoven5,6, C. Copéret5 and A. V. Soldatov1

X-ray absorption near-edge structure (XANES) spectra are the fingerprint of the local atomic and electronic structures around the
absorbing atom. However, the quantitative analysis of these spectra is not straightforward. Even with the most recent advances in
this area, for a given spectrum, it is not clear a priori which structural parameters can be refined and how uncertainties should be
estimated. Here, we present an alternative concept for the analysis of XANES spectra, which is based on machine learning
algorithms and establishes the relationship between intuitive descriptors of spectra, such as edge position, intensities, positions,
and curvatures of minima and maxima on the one hand, and those related to the local atomic and electronic structure which are
the coordination numbers, bond distances and angles and oxidation state on the other hand. This approach overcoms the problem
of the systematic difference between theoretical and experimental spectra. Furthermore, the numerical relations can be expressed
in analytical formulas providing a simple and fast tool to extract structural parameters based on the spectral shape. The
methodology was successfully applied to experimental data for the multicomponent Fe:SiO2 system and reference iron
compounds, demonstrating the high prediction quality for both the theoretical validation sets and experimental data.
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INTRODUCTION
X-ray absorption spectroscopy is widely employed to probe the
local atomic and electronic structure around the absorbing atom1–3.
The X-ray absorption near-edge structure (XANES), spanning a
region of 50–200 eV above the absorption edge, contains informa-
tion about the structural descriptors involving the bond distances
and angles, type of ligand surrounding, oxidation state, which affect
the spectral descriptors; edge position, shapes and positions of
spectral maxima and minima. An experienced researcher can, for
example, distinguish the pure metallic state from metal oxide
compound, or discriminate between tetrahedral and octahedral
surroundings based on a qualitative inspection of the related
spectral features.
Figure 1 shows a series of typical experimental Cu K-edge

XANES spectra for different copper compounds. The pre-edge
feature A originates from the transition to the spatially localized 3d
states. The pre-edge shape depends on the number of electrons in
the d-shell4, its intensity is proportional to the amount of 3d–4p
hybridization5, while its energy position can be employed to
realize the calibration of the 3d metal oxidation state6. The sharp
shoulder B on the rising edge is indicative of a linear or square
planar geometry with a lower energy of empty 4p orbitals
perpendicular to the chemical bonds7. A similar shoulder appears
in the spectra of metals. K-edge XANES of metals with an fcc
structure is further characterized by the splitting of the main peak
into M1 and M2 features. Intensities of M2 and M3 are sensitive to
the scattering from the second coordination shell8 similar to the
feature D in molecular covalent complexes, and their reduction
can be therefore used to probe the nanosized effects9. Positions of
M4 and further high-energy maxima relate to the interatomic

distances via the semi-empirical Natoli’s rule10. The absorption
edge position depends on the oxidation state11 and also
interatomic distances12. The intensity of the white line C is higher
in spectra of metal complexes with the octahedral coordination.
Planar complexes are characterized by energy splitting of this
peak13. Characteristic spectral features can be further established
for the K-edges of light atoms, L2,3 edges for 3d metals with strong
multiplet splitting, or L2,3 spectra for 4d metals possessing a
characteristic white line.
For a data scientist, the above-mentioned spectral features are

recognized as descriptors, and the relationships between spectral
descriptors and the structural ones (coordination number,
geometry, bond distances, angles…) can be established, for
example, by using machine learning (ML) algorithms. Using all
points of a spectrum as descriptors, Zheng et al.14 managed to
classify the atomic coordination environments via random forest
models. The convolutional neural network was applied to predict
Cu–Cu coordination numbers (CN)15 and to evaluate several CNs
for platinum nanoparticles to refine their sizes and shapes16.
Rankine et al.17 demonstrated the ability of a deep neural network
to predict a XANES spectrum from geometric information about
the local environment around the absorbing atom. To achieve
better performance of ML, the dimensionality of both spectral and
structural descriptors should be reduced. For example, 3 N atomic
coordinates for N atoms can be converted into radial and angle
distribution functions18 or into generalized radial distribution
functions19. Alternatively, geometry parameters can be filtered in
terms of their importance for XANES variation20. The multiple
points of a spectrum can also be reduced to only a few
descriptors. Commonly used spectral descriptors are the
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pre-edge centroid and the pre-edge area which are, for example,
combined to analyze the Fe oxidation state and coordination
number6. Carbone et al. demonstrated that the principal
components calculated from a series of theoretical spectra can
be used to realize the classification of four-, five-, and six-
coordinated metal environments21 and of type of functional
groups22. Recently, Torrisi et al.23 demonstrated the concept of
constructing descriptors from a polynomial fit of equidistant
energy intervals of the spectrum.
The present work aims to extend these approaches of

identifying descriptors of the spectral features, such as positions
of the absorption edge, minima, and maxima, their amplitudes,
and curvatures. We present a step-by-step procedure to prepare a
training set, evaluate the descriptors, train the machine learning
algorithm, apply cross-validation, and finally analyze the experi-
mental data. The variable structural parameters are introduced
and the problem of classification of the calculated spectra in terms
of these parameters is addressed. The analytical formulas
establishing the relations between the spectral features and the
structural parameters are then derived. Finally, we validate the
approach for a set of experimental spectra belonging to oxides,
silicates, geological samples (tektites, impactites), and amorphous
glasses as well as silica-supported Fe single-site catalysts prepared
via surface organometallic chemistry24–26.

RESULTS AND DISCUSSION
Descriptors of spectrum
In general, the theoretical XANES spectrum contains ~100 energy
points. A common approach to improve the efficiency of ML
algorithms is to reduce the dimensionality of such object by
extracting only informative features, notably the spectral descrip-
tors23. Table 1 and Fig. 2 describe a set of descriptors evaluated for
each spectrum: edge position (feature A), white line position and
intensity (feature B), first pit (minimum) position and intensity

(feature C), the curvature of the white line, projections on the
principal components (further called PC descriptors). The arctan-
gent function (red dotted line) was used to fit the whole spectrum
and the position of its center and slope were taken as the values
of edge position (EdgeE) and slope (Edgeslope). For some
deformations in the local geometry, the white line in the
calculated spectra can consist of several close maxima. For a
monotonic variation of descriptors across the training set we
performed an additional convolution (5 eV Lorentzian width) of
the spectral regions near extrema B and C before evaluating the
curvature, amplitude, and energy position of these features.

Fig. 1 Characteristic spectral features for different structural
motifs. Cu K-edge XANES spectra for different oxidation states and
local coordinations of the copper atom (from bottom to top): Cu0 in
fcc metal, linear CuI in Cu2O, pseudo-tetrahedral Cu

I and CuII in Cu
(phen)2 and [CuCl4]

2− complexes, square planar CuII in CuO, pseudo-
octahedral CuII in [Cu(H2O)6]

2+.

Table 1. Descriptors of spectra with their short notation and details
on the evaluation.

No. Short
notation

Descriptor Comment

1 PC1 Projections on the
first three principal
components of the
dataset

Principal component analysis is
performed for the whole
dataset of spectra consisting of
calculations for two-, three-,
four-, five- and sixfold
coordinated Fe, together for
Fe2+ and Fe3+.

2 PC2

3 PC3

4 EdgeE Edge energy Center and slope of the
arctangent function which fits
the whole spectrum.

5 Edgeslope Edge slope

6 WLint White line intensity Polynomial fit for the region of
the first maximum and first
minimum in the spectrum. For
better stability of the fit, the
spectra were convoluted with a
Lorentzian of 5 eV width.

7 WLE White line center

8 WLcurv White line curvature

9 PitE Pit energy

10 Pitint Pit intensity

11 Pitcurv Pit curvature

12 WL-Pitslope White line -
Pit slope

The slope of the line connects
the maximum of the white line
and the minimum of the
first pit.

13 rPC1 Projections on the
relative principle
components

Same as 1–3 but singular value
decomposition is performed
for a data set of spectra aligned
according to their edge energy
position.

14 rPC2

15 rPC3

Fig. 2 A set of suggested descriptors for a XANES spectrum. Edge
energy and edge slope are evaluated in point A, white line intensity,
curvature, and position are evaluated in B, pit intensity, curvature,
and position are evaluated in C. Arctangent function (red dotted
line) is used to determine the edge position and its slope.
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The same convolution was applied to the experimental spectra
before the evaluation of their descriptors.
Principal component analysis (PCA) was applied to the whole

data set of theoretical spectra. Based on the singular value
decomposition (SVD, see details in Supplementary Methods
Section) three first principal components were evaluated. Each
spectrum was projected on these components and the projections
were used as the descriptors of the spectrum. We also applied SVD
analysis to the data set where all edge positions (point A in Fig. 2)
were aligned. In such a way, another set of three principal
components was used to calculate projections of every theoretical
spectrum. We call these projections relative PC descriptors (rPC).
If compared with the descriptors based on the curvature of

fixed energy intervals for spectrum, as shown in the work Torrisi
et al.23 the search of minima and maxima along with edge
characteristics relies on physically motivated features of
the spectrum. As we show below the good prediction quality
can be achieved by using just 2 or 3 such descriptors. The stable
definition of the extrema may be tricky for flattened spectra or L2,3
edges with rich multiplet splitting. Such systems may require
additional spectral descriptors such as total variance, centers of
mass and areas, fitted peak profiles, etc. These descriptors are
beyond the scope of the present work but are included in the
supplementary software.

Relationship between spectral features and structure
3dmetal complexes can be found in a wide range of CNs and local
symmetries around the metal center. The type of ligands
determines the interatomic distances and symmetry for the given
oxidation and spin state of the metal. Valuable catalysts or
geological materials can contain iron ions in a silica matrix where
oxygen coordination provides both Fe2+ and Fe3+ oxidation states
along with several possible CNs. To address the problem of
quantitative iron speciation, we calculated the training set
consisting of spectra for Fe(SiO4)CN complexes for CN= 2–6. The
first shell distances and bond angles were varied for every CN
using the improved Latin hypercube sampling (IHS) resulting in
3000 spectra calculated for all CN. A chemical shift was then
applied for each spectrum to simulate absorption from Fe2+ and
Fe3+ sites for every deformation. Figure 3 shows the clusters used
for simulations and the variable structural parameters p. The
ranges of their variation are listed in Table 2.

The calculated spectra for Fe2+ are shown in Fig. 4. The library
of spectra for Fe3+ contains the same entries but shifted according
to the 1 s core level energy difference evaluated within an
accurate molecular orbital approach (see Methods section).
Therefore, the total number of spectra in the training set was
6000, i.e. twice more than shown in Fig. 4.
Each spectrum in the training set is characterized by several

descriptors (Table 1). The whole training set can be projected on a
2D plot for the selected pair of descriptors. Figure 5 compares the
distribution of points in the training set over different 2D maps
where each point is colored according to its structural parameters.

Fig. 3 The structures and their deformations applied for constructing the training set. Fe(SiO4)CN clusters constructed for coordination
numbers CN= 2, 3 …6. The variable structural deformations p1...p5 are applied to each structure and reproduce variety of iron local
geometries in the amorphous silica.

Table 2. The ranges of variation for structural parameters p1, p2, p3, p4.

CN Deformation Range

2 p1 1.8–2.3 Å

p2
p3 120°–180°

p4 0°–70°

3 p1 80°–135°

p4 60°–120°

p2 1.8–2.3 Å

p3
4 p1 65°–180°

p2
p3 1.8–2.3 Å

p4
5 p1 1.8–2.3 Å

p2
p3
p4 60°–90°

p5 90°–120°

6 p1 1.8–2.3 Å

p2
p3
p4 60°–90°

p5 90°–120°
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From a mathematical point of view, each color in Fig. 5 defines a
class. If points for different classes are well separated on the 2D
map, the chosen pair of descriptors is appropriate for the
classification. For demonstration, we selected those pairs of the
descriptors which separated points according to iron coordination
number, Fe‒O distances, or oxidation state. In particular, the best
descriptors for discriminating different CN were the curvature of
the white line (WLcurv), pit energy position (PitE), edge position
(EdgeE). The average distances in the iron first coordination shell
could be distinguished according to the energy positions of the
pit (PitE) and edge (EdgeE). Projections on the principal
components were able to separate structures with different
distances and oxidation states, while pit energy and white line
position (WLE) distinguished between structures with different
oxidation states.
Beyond the two-dimensional scatter plots, which are informa-

tive for the qualitative selection of good descriptors, the best
quality of classification and the best choice of descriptors for ML
algorithm was determined (Table 3) for combinations of 1, 2, 3, or
4 descriptors to predict CN, oxidation state, or distance in a pure
compound (mixtures will be discussed further in section 2.4).
Two descriptors of spectra contain up to 95% of the information

necessary for discrimination between Fe2+ and Fe3+. Using the
value of the edge energy alone provided 80% of the prediction
quality. Considering the white line intensity in addition to the
EdgeE improved the quality to 90%. Other informative descriptors
for the oxidation state were the energies of the main maximum
and pit, the first principal components. Fe‒O mean distance is
uniquely characterized by the combination of edge and pit
energies (95% quality). Projections on the second and third
relative principal components, rPC2 and rPC3, were more
important for this task than the first PC. Higher CNs are
characterized by a sharp white line and a steep rising edge.

Good quality of prediction for CN requires to use of at least three
descriptors which include edge energy, slope, and curvature of
the main maximum. The lowest accuracy in cross-validation
analysis was observed for the standard deviation from the mean
that measures the disorder in the first coordination shell. Four
descriptors were necessary to reach the prediction quality equal
to 90%.
The optimal choice of the descriptors in Table 3 does not

guarantee their transferability to the experimental data and
problem of the multicomponent system analysis. In Section 2.4,
we address the quality of structural analysis by using descriptors in
the training set composed of linear combinations of spectra.

Analytical relations between descriptors: beyond Natoli’s rule
In the early eighties, Natoli formulated an empirical rule10 that
establishes dependence between peak positions in the XANES
spectrum and interatomic distances for the structures with similar
symmetry, which can be the case of metals within the same space
group (e.g., fcc Cu and Ni, Supplementary Fig. 3) and to structures
that undergo a volume expansion, such as palladium after
hydrogen sorption27. In the latter case, we have previously
observed that the relative intensities of the first two XANES
maxima are proportional to the H/Pd ratio in palladium hydride
samples28,29. Another example by Zhang et al.30 provides an
analytical relation between energy positions of maxima in U L3-
edge XANES spectra of uranyl complexes and distances between
the uranium absorber and oxygen ligand atoms. Representing a
useful tool for the analysis of XANES spectra, all these examples
are limited to the usage of only one spectral descriptor and one
descriptor of structure. In this section, we extend such methodol-
ogy to derive the analytical relation between any set of spectral
descriptors and structural parameters using machine learning
algorithm. The common approach to find simple analytical

Fig. 4 Visualization of the theoretical training set and the trends in variations of XANES spectra upon studied deformations. a Six
hundreds of Fe K-edge XANES spectra calculated for each coordination number by varying structural parameters (Fig. 3). b Comparison
between shapes of spectra upon variation of coordination numbers while all Fe-O bond lengths fixed to 2.1 Å. c Sensitivity of the spectrum to
variations of bending angles and interatomic distance for a five-coordinated model (only first coordination shell is shown for simplicity).
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relations between known parameters p1…pn and target variable y
is the construction of linear regression:

y ¼ w1 � p1 þ w2 � p2 þ ¼ þ wn � pn (1)

More complex cases include pairwise and higher degree
multiplications alongside parameters p1…pn. We are interested
in pretty solutions with good approximation quality. The
prettiness means the absence of large coefficients wi and the
smallest possible number of nonzero wi. For the integer relations
problem, the prettiness is achieved by applying special algorithms
of integer orthogonalization (see e.g., 31 and §2.2 in ref. 32). In a
real-valued case, we use feature selecting properties of the Elastic
Net algorithm33 combined with some heuristics. For the theore-
tical data set, we restrict ourselves to the parameters p1…pn and
their pairwise multiplications, thus the Eq. (1) takes the form

y ¼
Xn
i¼1

wi � pi þ
Xn
i¼1

Xn
j¼1

wij � pi � pj (2)

In the first step, the data were normalized to zero mean and
unit standard deviation. We implemented the elastic net method
that includes the LASSO34 and ridge regression. In the case of the
group of highly correlated variables, the LASSO algorithm tends to
select one variable from a group and ignores the others, thus
making feature selection. If the linear formula returned by Elastic
Net is heavy, we try to simplify it at the expense of model
precision. To do so, we sort the coefficients (wi, wij) returned by
Elastic Net by their absolute values and try to build a linear model
based on subsets of features with the largest absolute coefficients.
The analysis was performed for the subsets of each size: 1, 2, 3,…,
and for all of them R2-score was evaluated. Afterward, one can
choose between pretty models with moderate quality or more
complicated models with higher precision. Table 4 shows the
selected analytical relations between descriptors of spectra and
structural parameters.
Analytical relations between descriptors extend the qualitative

classification of the 2d scatter plots. The obtained formulas
explore dependencies between any number of spectral features

Fig. 5 Scatter plots for the selected pairs of descriptors. Each point corresponds to a single spectrum in the training set from Fig. 4a. The
color reflects the CN values in a, b, the average Fe-O distance in c, d, and iron valence in e, f.
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and structural parameters. While, in general, ML algorithms work
as a black box, Table 4 provides a geometrical interpretation of the
best combinations of descriptors. For example, up to 90%
prediction quality can be achieved for the interatomic distances
if the energy positions of the edge, first maximum, and minimum
are considered.
The accuracy of the quadratic analytical formulas for the

oxidation state is above 80%. The quality of analysis could be
improved if chemically relevant restrictions were imposed on the
Fe‒O distances for Fe2+ or Fe3+ ions in the training set. For better
generalization, we assumed that the ranges of variations of
structural parameters were equal for both the oxidation states.
Therefore, the chemical shift of the whole spectrum can be
misinterpreted by the edge shift upon distance variation. This
effect is partially accounted for by the main maximum intensity
(WLint) descriptor that enters the formula. The intensity of the
main maximum changes along with Fe‒O bonds contraction
therefore this descriptor can help to discriminate between shifts
related to the oxidation state or volume changes. Formulas for CN
depend on the curvature of the main maximum, which is
consistent with the general behavior of EXAFS oscillations, whose
amplitude is proportional to CN. One should note, however, that
this conclusion should not be generalized to the structures with
different types of bonds (e.g., metallic iron has larger CN, but the
white line intensity is higher in the octahedral Fe-O oxide).
The second part of Table 4 interprets the features of the XANES

spectrum in terms of geometry parameters. The slope of the edge
depends on the average distances and coordination number. The
curvature of the white line correlates with the disorder in the first
coordination shell of iron, i.e., larger disorder makes the first

maximum broader. The position of the first minimum is quite an
important feature in the spectrum though it is less often analyzed
as compared to the maxima. This feature is by almost 90%
determined by the CN and Fe‒O distance. Its intensity is
determined by the CN and disorder in the first coordination shell.

Fitting a multi-component system
If the distribution of absorbing atoms in a material is hetero-
geneous, a linear combination of theoretical spectra with different
oxidation states and coordination is required to describe the
experimental spectrum. In this section, we extend the descriptor
approach to the case of linear combinations and apply the
descriptor analysis to the experimental Fe K-edge XANES data of
iron oxide and iron silicate systems. The algorithm was applied to
56 experimental spectra of crystalline compounds35, glasses36,
tektites, and impactites37,38, as well as a single-site silica-
supported Fe catalyst24,39. Figure 6 shows experimental spectra
and Supplementary Tables 2–6 provide a description of each
sample and results of ML-analysis. Iron coordination and oxidation
state are heavily dependent on the conditions of synthesis.
Studied samples are inherently heterogeneous systems. In
particular, tektites are formed from molten high-speed ejecta
during the early stages of impact crater formation40. Impactites
have a more complex history of their formation and are the result
of the melting of various types of rocks located at different depths
in the Earth’s crust. Iron in the amorphous silica structure has the
potential to be a probe of impact rock formation conditions, such
as pressure (P), temperature (T), oxygen fugacity41,42.

Table 3. The quality of structural parameters prediction by using selected good combinations of the descriptors of spectra from data set in Fig. 4a.

Structural parameter Number of descriptors

1 2 3 4

CN Pitint 0.55 EdgeE
WLcurv

0.85 EdgeE
WLE
rPC3

0.95 EdgeE
Edgeslope
WLE
PitE

1.0

WLint 0.60

EdgeE 0.50 EdgeE
Edgeslope

0.80

WLcurv 0.55 EdgeE
Edgeslope
WLcurv

0.95

PC3 0.50 WLcurv
PitE

0.80

(WL-Pit)slope 0.55

Fe‒O mean distance PitE 0.80 rPC2 rPC3 0.95 PC2

PC3

rPC3

0.95 EdgeE
WLE
Pitcurv
PitE

1.0

PitE-WLE 0.80

Edgeslope 0.85 WLcurv
rPC3

0.95

WLE 0.60 EdgeE
WLE
PitE

0.95

rPC2 0.75 EdgeE
PitE

0.90

PC3 0.60

The standard deviation of distances from mean Pitint 0.20 WLcurv
Pitint

0.55 EdgeE
WLcurv
Pitint

0.85 EdgeE
WLcurv
WLint
Pitint

0.90

Pitcurv 0.10

EdgeE 0.05 Pitint
rPC2

0.50

rPC3 0.05 PC2

PC3

Pitint

0.80

rPC2 0.05 PC3

Pitint
0.50

PC3 0.05

Fe valence PC1 0.95 PC1

rPC3

0.95 EdgeE
WLcurv
PitE-WLE

1.0 EdgeE
WLE
PitE-WLE
Pitint

1.0

EdgeE 0.80

WLE 0.70 EdgeE
WLint

0.90

PC2 0.80 PC2

rPC2

rPC3

1.0

rPC1 0.60 WLE
PitE

0.90

PC3 0.60

R2 score and accuracy were used for regression and classification, respectively (1.0 means best accuracy, see Supplementary Equation 3 for definition).
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Figure 7 shows the steps required to apply the descriptor
approach to the multicomponent system. We have constructed a
database of linear combinations of theoretical spectra in the
training set, using several random concentrations for every pair of
spectra. The descriptors were then evaluated for the database. A
cross-validation procedure was applied to different combinations
of the descriptors to understand which combination works better
for the mixtures.
The appropriate choice of the descriptors for the given

structural property should provide good quality of analysis both
for the theoretical validation set and a set of experimental
references. Therefore, we have calculated the descriptors of the
experimental and calculated spectra for the reference structures.
The pairs of theoretical and experimental descriptors for the
known structures can be used in step 2.2 to calibrate the
descriptors in the theoretical training set for systematic energy
shifts or intensity differences. The calibration step for intensities
may be necessary when experimental spectra are measured in
fluorescence mode and are flattened owing to self-absorption. In
this work, we did not apply any calibration after the convolution of
theoretical spectra. In step 2.4, the reference spectra are used for
validation before predicting results for the unknown structures.
Figure 8 shows selected scatter plots for pairs of descriptors that
can discriminate efficiently between iron oxidation state, CN, and
average Fe‒O distance in the two-component mixture. While the
classes were well separated in Fig. 5, their overlap occurs in Fig. 8
due to the linear combinations added to the training sample. We
projected spectra of several references (hollow circles) on the two-
dimensional scatter plots. Reference oxides and silicates have
quite different structures from the entries in the training set, but

descriptors PitE, WLE, and WLcurv provided surprisingly good
quality for their analysis. α-Fe2O3 and NaFeSi2O6 were properly
projected to the region of 6-coordinated species. γ-Fe2O3

and Fe3O4 contain one-third of Fe ions in the tetrahedral positions
and this point is projected to the region where 4-, 5-, and
6-coordinated points are overlapped (Fig. 8a). Fe2SiO4 reference
has the longest Fe‒O distances equal to 2.2 A and it is properly
projected to the blue region of the plot in Fig. 8b, while γ-Fe2O3

has the shortest. In 8c, Fe2O3 and NaFeSi2O6 are assigned to Fe3+,
Fe2SiO4 to Fe2+, whereas Fe3O4 contains a mixture of Fe2+ and
Fe3+ sites.
The classes in the training set overlap when linear combinations

of spectra are introduced along with the pure species. Figure 8a
shows how CN classes are mixed if compared with Fig. 5a. The
points with intermediate average valence are also become
overlapped. In general, the prediction quality is 5–10% lower for
the mixture if compared to the pure compound. The main
difference was observed for the iron valence. For common
structural parameters, the oxidation state affects only the energy
position of spectra. Linear combination of spectra smears the
localized distributions of Fe2+ and Fe3+ points in the scatter plots
(compare Figs. 5e and 8c, respectively). Two descriptors can
provide the quality of valence discrimination in the mixture up to
80% and the use of three or more descriptors is appreciated. The
better choice should consider the joint analysis of descriptors from
several spectral regions. Thus, in ref. 43, the multivariate approach
was applied to XANES spectra to determine the iron redox state in
silicate glasses. It was demonstrated that using the full spectral
region from the pre-edge to the EXAFS provides more accurate
results. Pre-edge descriptors alone can be applied to the charge
state analysis as well. Wilke et.al. demonstrated for the Fe K-
XANES44 that the pre-edge contains information both about the
oxidation state and coordination number. The method analyses
the 2d scatter plot of the integrated pre-edge intensities versus
the pre-edge centroid positions. The set of reference spectra was
distributed in the localized regions attributed to the 4, 5, and
6-coordinated Fe ions in oxidation state Fe2+ and Fe3+. The
limitations of this methodology arise from the need for well-
defined reference spectra since pre-edge XANES simulations are
still difficult for real systems. However, no references were
reported with the CNs below 4.
Tables 5 and 6 demonstrate the best combinations of

descriptors in terms of their quality calculated over the whole
theoretical database or set of experimental references. The best
triples of descriptors are different for these two tasks. The fact can
be understood due to statistical considerations. The area of
variation of parameters in the theoretical training set is large and
includes even chemically irrelevant species, e.g., Fe3+ with
distances longer than in Fe2+. In contrast, the range of structural
parameters covered by experimental spectra is smaller and
represents a subclass of the training set. The R2 score quality is
evaluated in the cross-validation procedure and depends on the
size of the sample and its dimensions. Therefore Table 6 contains
also the mean absolute error evaluated along with R2 score for the
experimental validation set. The triples of good descriptors for
experimental analysis are listed in Table 6 for each structural
parameter: [WLE, PitE, rPC2] for CN, [WLint, Pitint, rPC2] for Fe‒O
distance, [EdgeE, WLE, PC3] for valence. Figure 9 reports the
predicted structural parameters for reference experimental spectra
compared with their actual values. Prediction for all experimental
spectra can be found in Supplementary Tables 8–10. The mean
absolute errors over the validation set were 0.1 for oxidation state,
0.4 for CNs, and 0.03 for distances. The largest errors of the ML
algorithm were observed for crystalline compounds, which have a
significantly different structure from entries in the training set.
The latter was adapted for Fe:SiO2 systems and contains silicon in
the second coordination shell, while some reference minerals are
composed of oxygen and iron/Al/CO in the nearest coordination

Table 4. Analytical relations between descriptors of spectra and
descriptors of structure.

No. Descriptor Analytical formula R2 score

Descriptors of structure

1 CN −0.85·WLcurv 0.7

−0.95·WLcurv + 0.36·PitE 0.9

3 Average Fe‒O distance,
(RFe-O)

0.94·Edgeslope 0.9

5 −0.40·WLcurv − 0.77·(PitE –
WLE)

0.9

6 0.5·Edgeslope – 0.55·PitE +
0.2·EdgeE

0.9

7 Fe oxidation state 0.97·EdgeE + 0.52·Pitint 0.7

8 1.11·EdgeE − 0.75·WLint −
0.13·(PitE − WLE)

2 + 0.13
0.8

Descriptors of spectrum

1 Edgeslope 0.95·RFe-O – 0.15·Std +
0.09·CN2 – 0.09

0.9

2 WLcurv −0.35·RFe-O − 0.83·CN 0.8

3 −0.95·CN − 0.39·RFe-O +
0.32·Std

0.9

3 WL-Pitslope −0.47·Std + 0.31·RFe-O +
0.96·CN

0.9

4 PitE −0.92·RFe-O 0.8

5 0.16·CN − 0.93·RFe-O 0.9

6 Pitint −0.97·CN + 0.67·Std 0.8

Label “RFe-O” is used for the average Fe‒O distances in the first
coordination shell. “Std” is used for the standard deviation of Fe‒O
distances from mean, the parameter which measures disorder in the first
coordination shell. Before constructing analytical dependencies, the
descriptors of the training set were normalized to zero mean and unit
standard deviation.
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shells. The methodology can be directly applied to a new training
set extended by ligands of different types. In this case, additional
labels (e.g., atom types) should be added as descriptors of
structure.

The obtained results for studied samples (“unknown” in Fig. 9)
are in good agreement with other experimental methods.
Mössbauer spectroscopy confirmed that the fraction of Fe3+ ions
was larger in impactites (zhamanshinite, irghizite). А number of
XAS-based38,45 and non-XAS investigations have shown that iron
oxidation state in tektites from different strew fields is about Fe2+

and generally Fe3+/ƩFe ratio <0.1542,46. Iron in impact glasses can
cover a wider range of Fe oxidation states37,47,48 as compared with
tektites, from purely Fe2+ to purely Fe3+, and Fe3+/ƩFe values are
mainly within 0.25–0.5942. Fe‒O distances are generally smaller for
Fe3+ ions and we observed a similar trend for impactites as
compared to tektites. Fe CNs in tektites is still a disputed issue.
EXAFS studies have reported that mean Fe CNs in tektites are
close to 445, whereas the coexistence of four and five-coordinated
Fe was observed in38. Our estimations fall in the range CN= 3.5 ÷
4.5, reproducing a similar trend as in EXAFS analysis. The absolute
values of CN obtained from EXAFS analysis highly correlate with
the Debye–Waller factor and can be affected also by self-
absorption effects in the fluorescence regime of measurements
(iron catalyst samples). Therefore, in the corresponding panel of
Fig. 9, we omitted the expected values of CN to avoid confusion.
Fig. 10 represents the formation process of the single-site Fe

catalyst on silica. The analysis for this system implies that Fe
remains at oxidation state +2 throughout the process consistent
with Mossbauer analysis and magnetic characterization24. It also
shows that after grafting of the molecular precursor, dimeric Fe(II)
tris(tert-butoxy) siloxide on SiO2 dehydroxylated at 1080 °C, the
coordination number of Fe – CN(Fe) – remains close to 4 (Fe@SiO2

1), whereas it decreases to 3 after thermolysis at 1020 °C (Fe@SiO2

2) consistent with previously reported characterization data that

Fig. 6 Overview of the experimental validation dataset. The types of systems covered by the theoretical Fe(SiO4)CN training set (a) and series
of analyzed experimental Fe K-edge XANES spectra for (b) glasses, tektites, impactites, (c) single-site silica-supported Fe catalyst, (d) crystalline
minerals. Only presented energy intervals of spectra were used for the analysis of Fe valence, Fe-O distances, and coordination numbers. See
the complete list of studied samples and their description in Supplementary Tables 2–5.

Fig. 7 The flowchart demonstrating how the descriptor analysis
was applied to the mixture of spectra. Before training the
algorithm, we normalize the descriptors to make them comparable
(for a set of descriptors subtract the average and divide all entries by
standard deviation over the set).
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show a similar decrease of CN(Fe), albeit to a value of 224. This
confirms that thermal treatment leads to Fe(II) species with low
coordination number, probably situated between 2 and 3. It is
noteworthy the sample prepared at lower temperature both for
the hydroxylation and thermolysis steps display Fe sites with a
larger coordination number of 4.
As a concluding remark, we note that usually, the ML

algorithms work as a “black box” for researchers since it is
difficult to understand what structural information is contained
in each part of the spectrum. We approach such understanding
by using selected descriptors of the spectrum instead of
individual points. The whole spectrum is substituted by several
descriptors that intuitively characterize its shape, i.e. energy
position of edge, minima, maxima, their intensities, and
curvatures. Machine learning analysis established the rational
choice of the combinations of descriptors providing the highest
prediction accuracy for the structural parameters both for pure
compounds and their mixtures. To visualize the spectrum-
structure relations we use scatter plots and derive analytical
dependencies between the descriptors of the spectrum and
structural parameters.
Rational choice of descriptors isolates those features of

spectra that are most sensitive to specific structural parameters,
avoiding fitting the whole spectrum. The major problem of the
practical application of ML methods for experimental data
analysis arises from the systematic differences between theore-
tical calculations and measured data. This discrepancy can arise
either from limitations of the theoretical approach or the
experimental artefacts. The benefit of using descriptors over the
full-spectrum stands in the possibility to correct the systematic
differences by calibration on a dataset of theoretical and
experimental spectra of reference compounds. However, as all
methodologies based on supervised learning, our results are
limited to the family of structures described by the training
set. As an illustration, the algorithm was trained on Fe-O-Si
system; it will thus fail for predicting proper parameters for
metallic Fe or sulfide compounds that belong to very different
types of materials. This certainly calls for expanding the
training set in order to allow for distinguishing, for instance,
the ligand types apart from coordination number or interatomic
distances.
The further development of the approach is directed toward

new ways of descriptor evaluation. A complete set of descriptors
should provide the same amount of structural information as in a
full spectrum. We foresee that a combination of descriptors from
complementary experimental methods (nuclear magnetic reso-
nance, electron paramagnetic resonance, X-ray diffraction, etc.)
would significantly improve the quality of prediction.

Fig. 8 Scatter plots for the selected pairs of descriptors for the
library of mixtures. Descriptors were calculated for the theoretical
database extended with the linear combinations of the spectra from
Fig. 4. The experimental data for selected references (hollow circles)
were projected onto each plot. Compare to the analogous Fig. 5
constructed for pure compounds.

Table 5. Descriptor performance over the database of linear combinations
(mixtures) of theoretical spectra from the training set in Fig. 4a.

Structural parameter Best combination of 3 descriptors R2 score

CN EdgeE,PitE –WLE,WLcurv 0.70

Average Fe‒O distance EdgeE, WLE, PitE 0.90

Fe oxidation state EdgeE, PitE, WLint 0.80

R2 score is obtained in a 10-fold cross-validation procedure.

Table 6. Descriptor performance over the database of experimental
references.

Structural parameter Best combination of 3
descriptors

R2 score Mean error

CN WLE, PitE, rPC2 0.80 0.4

Average Fe‒O
distance

WLint, Pitint, rPC2 0.85 0.03

Fe oxidation state EdgeE, WLE, PC3 0.85 0.1

R2 score and mean error are obtained by comparing the known
experimental values and predicted values by the algorithm trained over
the database of linear combinations of theoretical spectra. See Fig. 9 and
Supplementary Tables 8–10 for details.
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METHODS
XANES simulations and energy alignment
Fe K-edge XANES spectra were calculated utilizing the full potential finite
difference method49 implemented in the FDMNES software50. The
photoelectron wave functions were evaluated on a grid of points in a
5.5 Å sphere around the absorbing atom with 0.2 Å interpoint distance. To
account for the core-hole lifetime broadening and instrumental energy
resolution, theoretical spectra were further convoluted using the
arctangent function to model the energy dependence of the
Lorentzian width.
For an accurate energy calibration of the spectra, the iron 1 s core level

energy shifts between Fe2+ and Fe3+ oxidation states for each
coordination number were estimated within the molecular orbital
approach. The energy levels and the corresponding wave functions were
calculated by density functional theory using the B3LYP exchange-
correlation functional51. The largest available QZ4P basis set implemented
in the ADF-2019 software52,53 was used. For every coordination number in
the range between two and six, we constructed a symmetric complex with
Fe-O distances equal to 2 Å and evaluated transition matrix elements in the
50 eV energy interval both for the Fe2+ and Fe3+ oxidation states. The
proper oxidation state was achieved by specifying the charge and spin

state of the whole complex. After the convergence of the self-consistent
procedure was achieved the charge states of iron atoms were confirmed
by Mulliken charge analysis. Chemical shifts of the 1 s core levels were
evaluated and applied to the spectrum calculated by the finite difference
method. In this way, we simulated absorption from Fe2+ and Fe3+ sites for
given values of structural parameters.

Machine learning algorithms
When we apply machine learning based on spectrum descriptors (calculate
the quality of labels prediction, predict labels for experimental data) we
use Extra Trees regressor or classifier models54. It consists of several
randomly generated decision trees. A decision tree represents a flowchart
of threshold conditions on parameters and divides the parameter space
into non-intersecting rectangles, in each of which, for regression, the
objective function μ(E, P) is approximated by a linear one using the least-
squares method and for classification - probability table is calculated. The
results obtained from several trees are averaged.
For XANES approximation (Supplementary Fig. 8) we use a supervised

machine learning algorithm based on the Radial Basis Functions (RBF) that
construct a continuous approximation of spectrum, μ(E), as a function of
structural parameters P = (p1, p2, …, pk). The RBF method is a well-proven

Fig. 9 Experimental validation of the Extra Trees algorithm trained over the theoretical data set. Prediction is based on three descriptors:
[WLint, Pitint, rPC2] for distances (a, b), [EdgeE, WLE, PC3] for iron valence (c, d) and [WLE, PitE, rPC2] for CN (e, f). The green bars in a, c, e are the
values reported in the literature, and ones in b, d is the results of EXAFS and Mossbauer analysis performed independently by present authors.
The error bars in b indicate the range of uncertainties provided by the EXAFS analysis. See also Supplementary Notes section for details.
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mesh-free method55–57. The unknown function bμ(E, P) is represented in
terms of a set of basis functions characterized by certain factors and
polynomial terms as follows:

bμ E;Pð Þ ¼
XN
i¼1

wi Eð Þ � K jjP � Pi jjð Þ þ PolynomialE Pð Þ (3)

where K(r) is the radial basis function, PolynomialE(P) is a polynomial
function of k-dimensional vector of structural parameters P with energy-
dependent coefficients. The training set is composed of N calculated
spectra. The points (N= 600 for each structure in Fig. 3) in the space of
structural parameters P were chosen according to the IHS58. The unknown
factors wi and the polynomial coefficients are obtained by the ridge
quadric regression method. Every basis function is a function of distance
from the training set point Pi. In our task, good results were obtained using
linear basis functions and a second-order polynomial (see also Supple-
mentary Table 1 for comparison with other ML methods).
It is important to define a proper norm in (1) to measure the distance

between P and Pi for a good quality of the approximation. Structural
parameters p1; p2; ¼ ; pk have a different scale, e.g., interatomic distances
and angles. Moreover, the variation of the target function,
bμ E; p1; p2; ¼ ; pkð Þ, greatly varies for different structural parameters.
Spectrum changes caused by angle transformation are an order of
magnitude less than caused by interatomic distance modification. That’s
why we estimate first the average partial variance of the target function
(Δiμ) for each pi and rescale structural parameters in the following way:

p0i ¼ pi
Δiμ

maxpi �minpi
(4)

The quality of approximation and prediction is calculated during 10-fold
cross-validation. The training set, composed of spectra (the task of XANES
approximation as a continuous function of structural parameters) or
descriptors (the task of structural parameters prediction based on several
spectral features) is divided randomly into 10 parts, nine of which are used
for algorithm training and the tenth for validation. The quantitative
measure of the quality is the R2 score for the regression task and accuracy
for the classification. Details of their evaluation are described in
Supplementary Methods section, while supplementary Jupyter Notebook
reports the steps necessary to repeat the calculations in the manuscript
Fig. 10.
Section 2.4 of the main text deals with multicomponent systems. The

algorithm training is then performed on the linear combinations instead of
pure theoretical spectra. In total, more than 5000 pairs were constructed
for randomized fractions of components with different CNs, valences, and
Fe-O distances. The flowchart in Fig. 7 describes the details of the
procedure for mixture analysis. We found the prediction quality may be
improved for reference experimental data when sampling was performed
according to the adaptive sampling scheme. Although the IHS scheme
provides the uniform sampling over each structural parameter
the adaptive sampling (or active learning)59,60 chooses the points in the
training sample to ensure a uniform variation of the XANES in the selected
region of structural parameters. Both training sets are available as SI.
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