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A machine vision tool for facilitating the optimization of
large-area perovskite photovoltaics
Nina Taherimakhsousi1,7, Mathilde Fievez 2,7, Benjamin P. MacLeod 1,3,7, Edward P. Booker4, Emmanuelle Fayard2,
Muriel Matheron 2, Matthieu Manceau2, Stéphane Cros2, Solenn Berson2 and Curtis P. Berlinguette 1,3,5,6✉

We report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas
using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties
(substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—
called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the
perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the
process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area
perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition
process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow
characterization steps essential for the multi-objective optimization of thin film deposition processes.
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INTRODUCTION
The efficiencies of perovskite-based photovoltaic devices (17.9%
for 802 cm2 devices) are approaching those of crystalline silicon
devices (20.4% for 14800 cm2 devices)1, but the device areas are
not2,3. One key challenge in fabricating larger perovskite modules
is finding a solution-coating method that yields homogeneous
perovskite crystallization over large-area substrates4–7. The ability
to use “slot-die coating” to deposit films over large areas, for
example, would be highly advantageous due to the high-
throughput and efficient material use that can be achieved8–10.
To control the crystallization of slot-die coated perovskite films, a
gas-knife directs a stream of nitrogen gas onto the wet perovskite
precursor to locally trigger nucleation11–14. With this “gas-
quenching” method, slot-die coated mini modules can be made
with 19.4% efficiencies15. During the slot-die coating process, the
gas-knife can mechanically deform the wet precursor film and
create drying inhomogeneities such as thickness variations, cracks
and pinholes. To avoid the formation of morphological defects
and to control the final perovskite film thickness, careful
optimization of many coating parameters16,17 is therefore required
as it remains challenging to obtain homogeneous perovskite films
with this technique.
A major factor limiting the ability to make homogeneous

perovskite films by slot-die coating is the inability to quickly
quantify the homogeneity of the films. A method for rapidly
characterizing the homogeneity of these large-area perovskite
layers is necessary for process optimization. Few tools are
available for characterizing perovskite layer properties for large-
area samples. Optical spectra and X-ray diffraction (XRD) patterns,
for example, are typically measured on sample areas smaller than
a few mm2. Standard stylus profilometry instruments can measure
areas up to 225 cm2, but the measurement is destructive and the

acquisition time scales with device area and thus goes up
dramatically when working on large samples18,19. After perovskite
films have been integrated into devices, techniques such as
electroluminescence and light-beam-induced current can provide
spatially resolved information over large areas20, but device
preparation is time consuming. For these and other reasons,
researchers must often evaluate the perovskite film homogeneity
by either cutting large-area substrates into smaller pieces for
individual characterization, or by relying on manual visual
inspection alone.
Manual visual inspection is arguably the most effective method

for characterizing large-area perovskite films because it requires
no equipment and is fast. This method is highly subjective,
however, which makes it difficult to identify trends in film
morphology. This limitation motivated us to examine how the
visual inspection of perovskite films could be automated and
made quantitative using machine vision.
The present work builds on previous work applying machine

vision and machine learning techniques to the study of silicon
photovoltaics, thin films and bulk perovskite materials. For example,
machine vision techniques can detect scratches, cracks, dirt and
other defects in color or electroluminescence images of silicon
photovoltaic devices21–25. Liu and coworkers provide a recent survey
of the use of machine vision for inspecting silicon photovoltaics23.
Machine vision techniques can also quantify the thickness of thin
film materials and detect morphological defects such as pinholes,
cracks and dewetting26–30. Machine vision-assisted imaging can also
provide rapid, non-contact and spatially resolved information on the
homogeneity of entire thin film samples to facilitate large-area film
quality control30–33. While machine learning has been used to
optimize perovskite compositions for performance and stability34,35,
there has been less focus on leveraging machine learning or
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machine vision to optimize perovskite processing strategies. One
notable example employed a convolutional neural network to
detect the formation of bulk perovskite crystals as part of an
automated workflow for optimizing antisolvent crystallization
conditions36. The utility of machine vision for silicon photovoltaics
and the need for optimized large-area perovskite film deposition
techniques motivate the creation of machine vision tools tailored to
the analysis of the perovskite film morphologies.
In this work, we combine machine vision with white light

photography to extract quantitative information relevant to the
optimization of a large-area perovskite film deposition process. We
demonstrate our machine vision inspection method by using it to
build comprehensive maps linking slot-die coating process
parameters (wet film thickness, gas knife speed) to perovskite
film properties (substrate coverage, film thickness and defect
density). We then combine the thickness map with an optical
model37,38 to generate a map of predicted device current density.
These maps enable the identification of optimal process condi-
tions that simultaneously maximize coating throughput, film
quality and predicted device current density. PerovskiteVision and
the optical model also enable the generation of spatially resolved
cell and module current density predictions. We experimentally
validated these predictions for devices with absorbers deposited
by slot-die coating using the previously identified optimal process
conditions. In this way, we show how applying machine vision to
the inspection of perovskite films can assist in the multi-parameter
multi-objective optimization of large-area perovskite film deposi-
tion processes and devices.

RESULTS
Image-based substrate coverage quantification
We used gas-knife-assisted slot-die coating (Fig. 1a) to deposit a
range of Cs0.16FA0.84Pb(I0.88Br0.12)3 (FA is the formamidinium ion)
films39 on 5 cm × 5 cm SnO2-coated ITO glass substrates. This
coating process employs a slot-die coating head to deposit a wet
film of precursor ink onto a substrate. A gas-knife that follows the
slot-die coating head then triggers perovskite crystallization by
directing a stream of nitrogen onto the wet precursor film11,12,40.
Our samples exhibited varying degrees of substrate coverage
depending on the deposition conditions. Under certain condi-
tions, the substrate was fully covered by a smooth, brown
perovskite layer (average roughness ~12 nm). In many cases,
however, the perovskite did not crystallize homogeneously,
yielding samples with partial coverage and rough morphologies
(e.g., micrometer-scale thickness and roughness variations)
(Fig. 1b). Supplementary Fig. 1 shows profilometry scans for both
the smooth and rough morphologies. The non-continuous
perovskite films obtained can cause short circuits in devices and
are not suitable for device fabrication.
We characterized the perovskite films using white-light photo-

graphy (see Methods). We then manually annotated regions of
full, partial or no coverage on a subset of the images (~10%).
Finally, we used the annotated images to train a convolutional
neural network (CNN) based on the existing VGG16 architecture41

to segment the raw images into areas of full, partial and no
coverage. Our model successfully distinguishes these various
types of regions in seconds without human intervention. Figure 1c
shows an example of the segmentation performed by the neural
network. We used the covered area of the segmented images as
the area of interest for subsequent analysis. We chose to express
the substrate coverage ratio as the ratio between the covered area
and the total coated area. Over the course of a typical process
optimization campaign, we observed a progressive rise in the
substrate coverage ratio (Supplementary Fig. 2).

Image-based film thickness quantification
Perovskite film thickness variations affect solar cell efficiency and
are undesirable. To assist in the control of film thickness, we
extended our CNN model to estimate the perovskite film thickness
with pixel resolution (1 pixel= 10 µm × 10 µm) within the covered
area. The thickness was estimated from the color data at each
pixel using a calibration curve obtained from profilometry
measurements performed on 11 spin-coated perovskite reference
samples. These samples had thickness ranging from 160 nm to
550 nm (see Methods and Supplementary Fig. 3). As some of our
slot-die coated perovskite samples had regions with thicknesses
outside of this 160–550 nm calibration range, we extrapolated the
calibration curve for thicknesses exceeding 550 nm when
necessary. Extrapolated thickness values never exceeded 800 nm
and were not used for any of the current-density predictions
described below. After calibration on only 11 samples, our CNN
model provided pixel-by-pixel thickness maps in the covered area
for our entire dataset of over 500 slot-die coated samples
(Supplementary Tables 2 and 3). Fig. 1d shows the thickness
map of the sample pictured in Fig. 1b.

Image-based morphological defect quantification
In addition to quantifying film thickness variations, it is also
important to quantify morphological defects present in a
perovskite film prior to device fabrication to assess the potential
performance loss in the completed device42. We therefore
developed an unsupervised model based on the work of Jeon
and coworkers43 to detect and quantify defects in the region of
interest where the substrate is fully covered by the perovskite film.
The resulting defect map (e.g., Fig. 1e) clearly matches the
morphological defects visible in the thickness map. This defect
map enables a variety of defect metrics to be calculated, such as
the fraction of the entire covered area of the sample containing
morphological defects (see Methods), or the total area of defects.
Areas containing defects are unlikely to contribute to device
current generation.

Identification of favorable slot-die coating parameters
We next applied PerovskiteVision to optical images of perovskite
films fabricated with various process conditions while optimizing
the gas-knife assisted slot-die coating process. We focused on two
main process parameters: the gas-knife speed and the wet
precursor film thickness. The gas-knife speed was manipulated
directly, whereas the wet film thickness is a theoretical quantity
controlled by the ink dispense rate, the coating speed and the
substrate width (see Supplementary Discussion). We selected 12
slot-die coated samples fabricated using nine gas-knife speeds to
illustrate how the process parameters controlled the substrate
coverage ratio, the mean film thickness and the defect density
(Fig. 2).
At reduced gas-knife speed (15–19mm.s−1), both thin and thick

wet films crystallized homogeneously, resulting in substrate cover-
age ratios over 60% (Fig. 2a). At intermediate gas-knife speeds
(21–23 mm.s−1), the substrate coverage dropped and the film mean
thickness increased. We attribute this trend to the presence of
thicker but fewer well crystallized areas on the substrate. At higher
gas-knife speeds (33mm.s−1), the mean film thickness increased
(Fig. 2b), as did the area of defects (Fig. 2c). The combination of
thick wet film and low gas knife speed led to the largest area of
defects of 1.5% (16mm.s−1, 1.8 µm, Fig. 2c). Overall, we identified
three samples where the substrate coverage ratio was over 60%
and the defect density was low: A (vgas-knife= 15mm.s−1; twet film=
2 µm), B (vgas-knife= 28mm.s−1; twet film= 1.2 µm) and C (vgas-knife=
15mm.s−1; twet film= 0.45 µm).
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Device photocurrent prediction using an optical model
The perovskite film properties (thickness, defects) extracted from
images using PerovskiteVision were then linked to photovoltaic
device performance using a separate, physics-based optical model
(Fig. 3). This model predicts an upper bound on the device
photocurrent density (Jsc) for a given perovskite film thick-
ness37,38,44,45 assuming an internal quantum efficiency (IQE) of 100%.

The model employs the transfer matrix formalism44,45 and the
optical indices and thicknesses of each layer in the device stack
(see inset of Fig. 3a). This optical model assumes spatially
homogeneous optical properties (i.e., refractive index and extinc-
tion coefficient are assumed to be the same at all positions in the
film). We obtained values for the optical properties of each layer
using a set of ellipsometry measurements (see Methods). We used

Fig. 1 Machine vision workflow for quantifying large-area perovskite film morphology from optical images using the PerovskiteVision
tool. a Schematic of the slot-die coating process, which involves coating of a wet precursor film onto a substrate followed by gas-knife-
assisted crystallization. b Typical photograph of perovskite layer slot-die coated on 5 cm × 5 cm substrate. A total of 504 slot-die coated
samples were imaged in this study. c Components of the PerovskiteVision tool for analyzing images of perovskite films. d Substrate coverage
map. Areas of full substrate coverage are shown in red, the blue areas indicate partial substrate coverage and the green areas indicate the
absence of perovskite film. e Thickness map extracted from the image color of the 5 cm × 5 cm substrate using experimentally calibrated
regression (Supplementary Fig. 9). f Defect map. White pixels contain morphological defects such as cracks or pinholes. Scale bars indicate
1 cm. g The outputs of PerovskiteVision are combined with a physics-based optical model to predict photovoltaic device current density.
These predictions enable the identification of favorable slot-die coating parameters.
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the optical properties obtained from ellipsometry data on 350 nm
thick spin-coated perovskite films as approximate values for all the
perovskite films studied. We account for lateral variations in the
perovskite film thickness by applying the optical model at each
10 µm × 10 µm pixel of the film thickness map generated by
PerovskiteVision. A current density of zero was predicted for
uncovered pixels.

Model validation for devices with spin-coated absorbers
To validate the optical model, we fabricated validation devices
using spin-coated perovskite films with a range of absorber
thicknesses (160, 250, 350, 550 nm) (Fig. 3a). These devices
employed the following structure: glass|ITO|SnO2|perovskite|PTAA|
Au (see inset of Fig. 3a). The optical model fits the experimental
data for the calibration devices well except for the devices with
the thinnest absorber layers (160 nm). For these devices, the
measured current density (Jsc) values were lower than the values
predicted by the model (see Fig. 3a and Supplementary Fig. 4).
Our observation of low Jsc values for devices with absorbers
thinner than 200 nm is consistent with the literature46,47. We
attribute these lower-than-predicted experimental Jsc values to
variations in the absorber optical and electronic properties caused
by the presence of PbI2 impurities in our films. Specifically, PbI2
impurities do not contribute to visible light absorption and could
therefore reduce the overall extinction coefficient of the
absorber48. Moreover, PbI2 impurities can hinder charge trans-
port49 when present in amounts greater than 6–9mol% relative to
the perovskite phase50,51. The effects of PbI2 impurities are not
accounted for by our optical model. Variations in the optical and
electronic properties of the absorbers caused by lead iodide may
therefore reduce the experimentally measured device current
densities below the upper bound predicted by our optical model.
While we observed PbI2 XRD peaks for every absorber thickness

(Supplementary Fig. 5a), these impurities were likely to affect our
160 nm devices more than the thicker devices for two reasons: (1)
the 160 nm thick absorber exhibited the largest ratio of crystalline
PbI2 to perovskite XRD peak area (see Supplementary Fig. 5b); and,
(2) devices with thinner absorber layers are more sensitive to
variations in the absorber extinction coefficient46. These observa-
tions highlight a limitation of our approximation that the optical
properties of all the perovskite layers studied are the same as the
350 nm films used to build the model. This approximation,
however, enables the rapid generation of current density
estimates for spin-coated films of varying thicknesses without
additional optical property measurements. As we show below, this
approximation also enables current density predictions for devices
with slot-die coated absorbers.

Optimal slot-die parameters based on predicted photocurrent
Next, we used the calibrated optical model to predict device
current density as a function of the slot-die coating parameters
(i.e., gas-knife speed and wet film thickness) used during
perovskite film deposition (Fig. 3b). The economics of perovskite
photovoltaic module manufacturing using slot-die coating are
improved by increasing the process speed, fabrication yield and
device performance. Maximizing gas-knife speed, minimizing
defect density and maximizing device current density are
important steps towards achieving these high-level objectives.
We used these categories to compare the samples A, B, and C
using the process outcome maps given in Figs. 2 and 3b. Sample B
was fabricated using the larger gas-knife speed (28mm.s−1). The
defect density of all three samples was comparable (Fig. 2c).
Sample B led to the highest Jsc simulated value ~ 22.7 mA.cm−2

due to its optimal film thickness. In summary, PerovskiteVision
facilitated the selection of the process parameters used to create
sample B (gas-knife speed= 28mm.s−1, wet-film thickness=
1.2 µm) as the best among several candidates.

Model validation for devices with slot-die coated absorbers
We next applied PerovskiteVision to the analysis of photovoltaic
cells in which the perovskite layer was slot-die coated using the
favorable deposition parameters used to create sample B (see Fig.
3c–g). As different solution processing methods can yield different
perovskite film morphologies52, we used SEM to compare the
morphology of the resulting 550 nm thick slot-die coated film to
that of the 350 nm thick spin-coated film on which the optical
model was based. The spin-coated and slot-die coated films
exhibited comparable morphologies (Supplementary Fig. 11). We
therefore continued to use the optical properties of the 350 nm
thick spin-coated films as approximate values for all the films
studied, including the slot-die coated films.
We optically imaged the 550 nm thick slot-die coated film

before device fabrication to enable analysis of the film regions
which are later hidden by the deposition of electrodes. These
regions are important because they become the device active
areas. We fabricated 6 devices on the 5 cm × 5 cm slot-die coated
substrate (Fig. 3e). Based on the image of the sample before
device fabrication, we generated a perovskite film thickness map
for the active area of each of the six devices (Supplementary Fig.
6). We then used the optical model to convert these thickness
maps into spatially resolved Jsc maps for each device (Fig. 3f).
These current density maps also account for regions of poor
perovskite coverage using the coverage segmentation (Fig. 3d).
Specifically, only regions classified as fully covered contribute to
the predicted current generation (see device 3).
The correlation between the experimental and predicted

average device current densities is shown in Fig. 3g. Our approach
produces accurate Jsc predictions for devices 3, 4, and 5, which

Fig. 2 Linking the slot-die coating process parameters to the perovskite film morphology. a Substrate coverage ratio extracted from 12
slot-die coated perovskite film images during process optimization, defined as the ratio between the covered area and the total coated area.
b Mean thickness of the perovskite films. c Area of defects, calculated as the ratio of defect area (white pixels) to covered area.
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exhibit relatively ideal JV curves (see inset to Fig. 3g). These results
show that PerovskiteVision can predict an accurate upper bound
on Jsc, which takes into account lateral inhomogeneities in the
perovskite film (i.e., thickness variations and regions of partial
coverage). Our approach, however, overestimates the experimen-
tal Jsc for devices 2 and 6 (see Supplementary Table 6). This
illustrates a limitation of our approach—it does not account for
other types of non-idealities that may reduce device performance
by impacting the open-circuit voltage or fill factor.

Prediction of current density for photovoltaic modules
PerovskiteVision can also be applied to predicting the current
density of perovskite photovoltaic modules (Fig. 4). A module

consists of several cells electrically connected in series53–55. The
presence of morphological inhomogeneities in any of the cells
may limit the overall module performance. The position of the
module active area on a perovskite film containing morphological
defects can therefore strongly influence the resulting device
performance. Here, we use PerovskiteVision to assess a candidate
area for module fabrication on a perovskite film before fabricating
the module. This is achieved by using the tools described above to
convert an image of a perovskite film (Fig. 4a) into a current
density map of the sample (Fig. 4b) and by subsequently
analyzing this map within the designated module area.
We used PerovskiteVision to analyze a hypothetical 4 cm × 4 cm

module consisting of eight rectangular sub-cells (Fig. 4c).

Fig. 3 Prediction of the device current density (Jsc) from the perovskite film thickness using an optical model. a Experimental validation of
the optical model using spin-coated devices fabricated from perovskite films with various thicknesses (see also Supplementary Fig. 4). Inset:
Stack used for the optical model and device fabrication (see Methods). bMap of predicted device Jsc for different process conditions. This map
was generated by applying the calibrated optical model to the perovskite thickness map given in Fig. 1g. High-performing samples are
indicated with letters A, B, and C. c–g Application of PerovskiteVision and of the optical model to predict spatially resolved current density for
slot-die coated devices fabricated using the same process conditions as used for sample B. c is an image of the slot-die coated perovskite film,
d shows the segmentation of this image into fully covered, partially covered and uncovered areas. e shows where six devices (each of nominal
active area 0.33 cm2) were fabricated on the sample. Scale bars indicate 5 cm. f shows a spatially resolved current density prediction for each
device. This prediction is made by combining the coverage map and the thickness map with the optical model. Note that this causes device
#3 to have a region of zero current density. Device #1 also has a region of zero current density due to an incomplete top electrode.
g Correlation between the simulated and experimental device current density. JV curves for each device are shown in the inset. *Device #1
had an incomplete top electrode and was measured under different conditions than the other devices. The results from this device are
therefore not comparable to those from the other devices.
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The active area chosen for the hypothetical module contained
some pinholes, cracks and thickness variations (Fig. 4a, b and
Supplementary Fig. 7). These morphology variations resulted in
spatial inhomogeneity in the predicted current density (Fig. 4c).
The predicted current of cell #4 was lower compared to the other
cells (Fig. 4d). The low predicted current for cell #4 was caused by
the presence of a pinhole in the perovskite film that did not
contribute to the current generation. Owing to the series
connection of the cells, the total current of a module is
determined by the cell with the lowest current54. The incorpora-
tion of the defective cell #4 into the hypothetical module analyzed
here would therefore reduce the overall module performance. This
scenario illustrates how the information provided by PerovskiteVi-
sion enables a researcher to choose an alternative module
position or design to obtain a higher-performing module.

DISCUSSION
Here, we used machine vision to extract quantitative morpholo-
gical data from images of large-area perovskite thin films. While
the substrate coverage of a sample is usually assessed only by
visual inspection and seldom quantified, our approach makes
coverage quantification as easy as capturing a photograph. From a
single picture, PerovskiteVision extracts a holistic set of metrics
about the sample: substrate coverage ratio, perovskite mean
thickness and defect density. While profilometry provides reliable
thickness data, this method is slow, requires the creation of step-
edges and only reports the thickness at measured points. The
image-based thickness estimation and morphological defect
detection reported here can complement profilometry by provid-
ing fast, non-contact measurement with a nominal 10 µm × 10 µm
lateral resolution over an entire 5 cm × 5 cm sample. While
characterizing a large area sample by cutting it into pieces can

require hours of work, our non-destructive method characterizes
the whole sample at once and within minutes. Adapting our
approach to larger substrates could provide rapid, pixel-level
resolution of defects relevant to perovskite module manufacturing
quality control.
The information provided by PerovskiteVision can help increase

research output by enabling high-quality samples (or sample
regions) to be selected for device or module fabrication based on
quantitative proof instead of qualitative visual inspection. During
process optimization, this inspection tool facilitates the creation of
quantitative maps linking process parameters to experimental
outcomes. These maps facilitate the challenging multi-parameter,
multi-objective optimization required to develop candidate
manufacturing processes.
Here, we estimated the perovskite film thickness by fusing

profilometry data with images of the perovskite films. We then
used an optical model to predict current density from the film
thickness estimates under the approximation that all the
perovskite films had the same refractive index and extinction
coefficient as our 350 nm thick calibration sample. To improve the
optical model accuracy, sample-to-sample variations in the
refractive index and extinction coefficients of the perovskite films
could be accounted for by fusing additional measurements (e.g.,
ellipsometry) with the image data. Photoluminescence imaging
could also provide a deeper opto-electronic quality assessment of
the perovskite/substrate interface and inform more sophisticated
device performance predictions.
Other variations on the methods described here could also be

useful for perovskite research. For instance, visual and X-Ray
diffraction signatures of perovskite degradation could be fused to
compare the stability of different materials56 or the efficacy of
various encapsulation strategies57,58. When brightfield photogra-
phy in transmission cannot be used (e.g., with opaque substrates),

Fig. 4 Predicting perovskite photovoltaic module current density using PerovskiteVision. a Picture of a slot-die coated perovskite film with
high coverage ratio but containing morphological defects such as cracks and pinholes. b Map of the predicted photocurrent density over the
entire sample. This map is generated by applying the optical model to the perovskite film thickness map. Scale bars indicate 5 cm. c Map of
predicted photocurrent density for an 8-cell photovoltaic module that could be fabricated using the perovskite sample shown in panel
a. d Average predicted current density for each of the eight cells of the module. The average and minimum Jsc across all eight cells are shown
in orange and blue, respectively. The module current density would be limited by the current density of the worst-performing cell (in blue),
predicted in this case to be cell #4, which contains a large pinhole.
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one could employ reflection imaging or replace white light
imaging with photoluminescence or hyperspectral imaging20. The
application to opaque substrates is particularly relevant to
facilitate quality control during perovskite/silicon tandem solar
cell fabrication59.
In summary, we applied machine vision to images of large-area

slot-die coated perovskite films to quickly extract pixel mappings
of substrate coverage, perovskite film thickness and defect density
values over 5 cm × 5 cm substrates. We used an optical model to
estimate device current density from the extracted perovskite film
thickness, taking losses due to morphological inhomogeneities
into account. This approach facilitated the multi-parameter, multi-
objective optimization of a gas-knife assisted slot-die coating
process by reducing the effort required to characterize the
samples produced at each process condition. The spatially
resolved current density predictions provided by PerovskiteVision
can help researchers select the best samples or the best regions
within inhomogeneous samples for cell or module fabrication.
Machine vision tools such as PerovskiteVision can provide multiple
types of film quality feedback to support techno-economic
decision making by process developers. This tool could also be
used for on-line feedback in manufacturing settings or autono-
mous laboratories60,61. In particular, the multiple streams of
information provided by PerovskiteVision could be employed in
algorithmically guided experimentation that models multiple
photovoltaic device properties62 or employs multi-objective
optimization algorithms63,64. Machine vision tools like Perovskite-
Vision have the potential to facilitate the quality control of large-
area films and the optimization of deposition processes in the
solar industry and beyond.

METHODS
Materials
PbI2 (99.99%, trace metal basis, LO279) was purchased from Tokyo
Chemical Industry (TCI). FAI, PbBr2 (99.999% trace metal basis), CsI
(99.999% trace metal basis), N,N-Dimethylformamide (anhydrous, 98.8%)
and Dimethyl sulfoxide (anhydrous, ≥99.9%) were purchased from Sigma.
SnO2 was formulated from an industrial nanoparticle solution and diluted
four times in deionized water.

Device fabrication
The 5 cm × 5 cm ITO substrates (~7 ohms per square) were cleaned by
sonication in acetone, isopropanol and deionized water, before being
dried by a nitrogen gun and then transferred to a 100 °C oven overnight
for further drying.

Deposition of electron transport layer
For SnO2 compact layer deposition, a nanoparticle solution was dissolved
in deionized water at 3% w and the prepared solution was spin coated at
2400 rpm for 2 s followed by 4000 rpm for 40 s. The obtained layer was
annealed at 80 °C for 1 min in air and used, after cooling, for perovskite
coating.

Deposition of perovskite layer
The perovskite precursor ink was prepared in a nitrogen-filled glovebox by
mixing PbI2, FAI, PbBr2 and CsI in a DMF:DMSO (4:1 ratio) solvent to obtain
0.6, 0.9, 1.2, and 1.5 M solutions with the following formula: Cs0.16FA0.84Pb
(I0.88Br0.12)3 and 6% Pb excess. This solution was held at 40 °C overnight
under magnetic stirring.

Spin-coating
The thickness calibration was performed on spin-coated perovskite layers
quenched using the anti-solvent method. For those samples, the
perovskite precursor solution was deposited onto the substrate, using a
3-step spin-coating protocol: 200 rpm for 5 s, 1000 rpm for 10 s and finally
6000 rpm for 20 s. During the final step, 700 µL of chlorobenzene was
dropped on the substrate 8 s prior to the end of the protocol.

The crystallization was completed by post annealing at 100 °C for 1 h in
a nitrogen atmosphere.

Slot-die coating
The precursor solution was transferred to the slot-die tubing system one
day after preparation in a glove box. A TC300 slot-die coater (Automatic
Research) was used to coat the perovskite layers onto the substrates. The
slot-die coating process consisted of a meniscus-assisted deposition of a
wet precursor film onto the substrate at a given coating speed (typically
28mm.s−1), ink volume dispense rate (100 µL.min−1) and coating gap
(100 µm), defining a theoretical wet film thickness from 1 to 4 µm on a 5 cm
wide substrate. The system was modified by the addition of a gas-knife,
which was fixed to the slot-die coating head at a height of 3 mm above the
substrate. The gas-knife was connected to a nitrogen cylinder. The gas flow
rate was fixed to 110 L.min−1. The gas-knife speed is fixed to the slot-die
coating head; its velocities range from 5 to 33mm.s−1 during the slot-die
coating process. The role of the gas-knife in crystallization is to quickly dry
the precursor film with a stream of nitrogen gas11–13. The substrate
platform controls the substrate temperature during coating from 25 °C to
100 °C. The slot-die coating process was conducted in an enclosed
environment with humidity set to 20–30% RH. Once the perovskite layer
coated, the substrates were stored in an ambient atmosphere (RH~ 40%)
before characterization.

Characterization
A purpose-built imaging system (Olympus DP70 microscope digital camera
connected to DP controller and DP manager software) was used to take
bright field photographs (Coherent Inc lamp ML-0405, cold cathode
fluorescent lamp) of the samples on a luminous background with the
following settings: size 4080 pixel × 3072 pixel, exposure time of 1 s, ISO of
200 and ×40 magnification. Film thicknesses were measured using a Bruker
Dektak profilometer. For calibration, 9 measurement points were used on
5 × 5 cm substrates.

Segmentation
The training, validation and test of the CNN models for the substrate
coverage quantification were performed using images from various
batches of slot-die coated perovskite films deposited using the slot-die
coating process described above. First, 42 pictures from four batches were
manually annotated to be used as a training set (Supplementary Table 3).
Then, the remaining 448 images were used without annotation for
validation and testing. In the first stage, we removed the black background
of the images and then eliminated the white sections of the image to
detect the total coated area. The total coated area was calculated using
Eq. (1):

total coated area cm2
� � ¼ coated area pixels

image pixels
´Asample cm2

� �
(1)

In which Asample was the initial sample’s surface area of 25 cm2.
We developed a segmentation model and used it to calculate the

covered area, partially covered, and uncovered areas. The segmentation
was conducted using a sliding window approach with window size of 50
pixels and 45 pixels overlapping65. We adapted a VGG1641,66 based CNN
model to classify each patch (i.e., the input for the CNN was of size 50
pixels × 50 pixels) into one of the covered, partially covered or uncovered
areas. The CNN classifier structure is presented in Supplementary Fig. 8 and
Supplementary Table 1. The surface area of each of the classified areas can
be calculated using the obtained pixels for each of the classes. Eq. (2)
shows the equation to calculate the surface area of the covered class.

covered area cm2
� � ¼ covered pixels

coated area pixels
´ total coated area cm2

� �
(2)

Defect detection
We analyzed the extent of defects in the covered area using an
unsupervised method derived from the work of Jeon and coworkers43.
This method uses the Canny algorithm and an adversarial image-to-
Frequency Transform to detect defects on a pixel-by-pixel basis. We
employed this algorithm because it was reported to demonstrate
outstanding unsupervised defect detection performance. We used the
output of this defect detection algorithm to quantify the surface area of
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defects such as cracks and pinholes within the fully covered regions of the
perovskite films.

CNN substrate coverage model training
Forty-two images from the data set were randomly selected as a training
dataset and were labeled by experts to provide a ground truth. To train our
CNN model we cropped each image into 50 × 50 pixel patches and
assigned a ground truth label of covered, partially covered, or uncovered
for each patch. Supplementary Table 2 presents the number of each
training, validation and test images for each class. The uncovered dataset
was augmented by applying a rotating and mirroring method obtaining a
total of 4904 images to balance the dataset. We used 70% of the images to
train, 20% to validate and 10% to test the CNN model with the five-fold
cross-validation method67. Several parameters including batch size,
learning rate, iteration, epochs were necessary to set to train the CNN
model. In the CNN model training a batch size of 100 and initial learning
rate of 0.001 were selected. The learning rate was optimized in each
iteration using the Adam optimizer68. The CNN model achieved a
maximum accuracy of 95.28% at the 9th iteration and the accuracy
dropped in the next iterations for the validation dataset. The accuracy was
95.28% for validation dataset and 88.69 % for test dataset. Supplementary
Table 4 demonstrates the confusion matrix of covered area, partially
covered and uncovered areas classes.

Thickness extraction from images using calibrated color data
The perovskite film thickness was extracted from the images based on a
calibration of the color data against profilometry data (Supplementary Fig.
9). Profilometry calibration data and images were acquired on a set of spin-
coated perovskite films with thickness varying from 150 to 600 nm,
corresponding to the typical perovskite film thickness range obtained by
slot-die coating (Supplementary Fig. 2). 135 thickness data points were
measured at nine positions on each of 15 sample images (Supplementary
Fig. 3a). The RGB and associated gray levels at the measured points were
obtained from the images and mapped to the profilometry thickness data.
The scatter plot shown in Supplementary Fig. 9 shows the non-linear
regression between thickness and gray level. This regression equation and
the averaged gray level of the pixels contained in the covered area were
used to report a mean film thickness value for each sample. The thickness
was reported for each pixel if it fell in the segmented covered area (Fig.
1d). This model was then applied on the 504 slot-die coated layers to
generate thickness estimates in two forms: either localized for mapping
purposes (Fig. 2b) or averaged for process optimization purposes (Fig. 3b).

Optical model for Jsc prediction
Optical simulations were performed using the TransferMatrix_VaryThickness
software provided for free by Stanford University37,38 and run with Matlab.
This software computes the current density using the transfer matrix
formalism44,45. Input parameters consist of the thicknesses, measured by
profilometry, and the optical indices of each layer composing the solar cell
(Fig. 3a-inset). We determined the latter by variable angle spectroscopic
ellipsometry carried out at three different incident angles (50°, 60°, and 70°)
with an energy range from 0.6 to 4 eV. Spectra were then fitted using
common optical dispersion models for interface layers and electrodes. The
perovskite layer was modeled by a triple amorphous dispersion law, so as
to represent the three oscillators at the origin of each absorption peak in
the UV-visible spectra44,45. To extract optical indices that are representative
of the layers within the solar cell, measurements were performed on the
following stacks: glass/ITO, glass/ITO/SnO2, glass/ITO/SnO2/perovskite and
glass/ITO/SnO2/perovskite/PTAA. For the perovskite films, we used the
properties obtained from ellipsometry data on 350 nm thick spin-coated
perovskite films as approximate values for all the perovskite films studied.
The output of the optical simulations is a curve of the current density as a
function of the perovskite film thickness. The optical model curve obtained
(Fig. 3a) was applied to estimate the device current density from perovskite
film thickness.

Experimental measurement of Jsc
Current-voltage curves of the photovoltaic devices were obtained using a
solar simulator (Oriel 92190, Newport) connected to a multimeter (SMU
2602A, Keithley) and under standard AM 1.5G illumination (1600W, Xenon
lamp, Ushio). The scans were performed in the following conditions:
Reverse scan 1.2 to −0.2 V, in ambient conditions and on a device active

area of 0.33 cm2. The devices were measured 5 times in a row and the
experimental error bars determined according to the standard deviation of
the 5 measurement values. The experimental data are reported in
Supplementary Tables 5 and 6 and Supplementary Fig. 10.

DATA AVAILABILITY
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