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Rapid and flexible segmentation of electron microscopy data
using few-shot machine learning
Sarah Akers 1, Elizabeth Kautz2, Andrea Trevino-Gavito1,3, Matthew Olszta2, Bethany E. Matthews2, Le Wang4, Yingge Du4 and
Steven R. Spurgeon 2✉

Automatic segmentation of key microstructural features in atomic-scale electron microscope images is critical to improved
understanding of structure–property relationships in many important materials and chemical systems. However, the present
paradigm involves time-intensive manual analysis that is inherently biased, error-prone, and unable to accommodate the large
volumes of data produced by modern instrumentation. While more automated approaches have been proposed, many are not
robust to a high variety of data, and do not generalize well to diverse microstructural features and material systems. Here, we
present a flexible, semi-supervised few-shot machine learning approach for segmentation of scanning transmission electron
microscopy images of three oxide material systems: (1) epitaxial heterostructures of SrTiO3/Ge, (2) La0.8Sr0.2FeO3 thin films, and (3)
MoO3 nanoparticles. We demonstrate that the few-shot learning method is more robust against noise, more reconfigurable, and
requires less data than conventional image analysis methods. This approach can enable rapid image classification and
microstructural feature mapping needed for emerging high-throughput characterization and autonomous microscope platforms.
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INTRODUCTION
Material microstructures govern the functionality of many
important technologies, including catalysts, energy storage
devices, and emerging quantum computing architectures. Scan-
ning transmission electron microscopy (STEM) has long served as
a foundational tool to study microstructures because of its ability
to simultaneously resolve structure, chemistry, and defects at
atomic-scale resolution for a range of materials classes1–3. STEM
has helped elucidate the nature of microstructural features
ranging from complex dislocation networks to secondary phases
and point defects, leading to refined structure–property mod-
els2,4,5. Traditionally, STEM images have been analyzed by a
domain expert manually or semi-automatically, utilizing a priori
knowledge of the system to identify microstructural features of
interest. While this approach is suitable for measuring a limited
number of microstructural features in small data volumes, it is
impractical for samples possessing high density, rare, or noisy
features6,7. Moreover, manual and semi-automatic approaches are
difficult to scale to include multiple data modalities and cannot be
performed at high speed, hindering our ability to perform in situ,
complementary or correlative studies harnessing the full potential
of modern instruments8. At a more fundamental level, variability
in how such measurements are conducted and a lack of
standardized approaches contributes to the broader issue of
reproducibility in experimentation9. Though these limitations
apply to all materials classes, they are particularly pronounced
for complex oxides, whose properties are heavily influenced by
even trace amounts of unwanted defects10–12. Hence, there is an
urgent need to develop approaches to characterize microstruc-
tural features with greater accuracy, speed, and statistical rigor
than is possible with existing methodologies.
A central challenge in quantitatively describing microscopy

image data (i.e., micrographs) is the wide variety of possible

microstructural features and data modalities. The same instrument
that is used to examine interfaces at atomic-resolution one day
may be used to examine nanoparticle morphologies or grain
boundaries the next. A common goal in any study employing
electron microscopy, in particular STEM, is to extract quantitative
and semantically-meaningful microstructural descriptors that can
be linked to underlying physical models13,14. For example,
estimating the area fraction of a specific phase or abundance of
a feature through image segmentation is an important part of
understanding synthesis products and phase transformation
kinetics15–19. Although several image segmentation methods exist
(e.g., Otsu20, the watershed algorithm21, k-means clustering22),
these are often not easily generalizable to different material
systems, image types, and may require significant tailored image
preprocessing.
Machine learning (ML) methods, specifically convolutional

neural networks (CNNs), have recently been adopted for the
recognition and characterization of microstructural data across
length scales23–26. Classification tasks have been performed to
either assign a label to an entire image that represents a material
or microstructure class (e.g., dendritic, equiaxed, etc.)26–29, or to
assign a label to each pixel in the image so that they are classified
into discrete categories25,30–32. The latter classification type,
categorization of pixels in an image to identify local features
(e.g., line defects, phases, crystal structures), is referred to as
segmentation. Still, many challenges remain in the practical
application of segmentation methods, such as the large data set
size required for training and the difficulty of developing methods
that are generalizable to a wide variety of data. In deep-learning
and computer vision approaches, like a CNN, learning models of
image categories has typically required large databases of labeled
training examples33, such as the large image data set available
through the ImageNet database34,35. However, recent research has
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demonstrated effective and lightweight learning techniques that
require relatively few labeled training examples for the purpose of
automatic segmentation and denoising36,37. The ability to analyze
data sets on the basis of limited training data, as often
encountered in microscopy38,39, is an important frontier in
materials and data science. Unfortunately, even one labeled
example oftentimes includes tedious manual annotation of
thousands or even millions of pixels. The architecture developed
by Pelt and Sethian37, while much less complex than existing
networks and requiring fewer training points, still uses eight
manually annotated images of 512 × 512 × 512 cubic pixel
tomographic reconstructions. Additionally, the classification or
segmentation task is also dependent upon these labels, i.e., new
labels must be constructed in order to change the classification/
segmentation output.
Motivated by the ability of humans, and especially children, to

learn novel visual concepts with sufficient previous knowledge40

one-shot or few-shot approaches allow human-level performance
with fewer and less intensively labeled images (i.e., shots) and little
to no training41,42, but there are limited studies on such methods
in the materials science domain36. While many characterization
tools may provide just a few data points, a single electron
micrograph (and potentially additional imaging/spectral channels)
may encompass many microstructural features of interest. The
one-shot or few-shot learning concept also has significant
implications for the study of transient or unstable materials, as
well as those where limited samples are available for analysis due
to long lead-time experimentation (such as corrosion or neutron
irradiation studies). In other cases, there exists data from previous

studies that may be very limited or poorly understood, for which
advanced data analysis methods could be applied43.
In this work, we present a rapid and flexible approach to

recognition and segmentation of STEM images using few-shot
machine learning. Three oxide materials systems were selected for
model development (epitaxial heterostructures of SrTiO3 (STO)/Ge,
La0.8Sr0.2FeO3 (LSFO) thin films, and MoO3 nanoparticles) due to
the range of microstructural features they possess, and their
importance in semiconductor, spintronic, and catalysis applica-
tions44,45. While the three systems selected are all oxides imaged
in the STEM-HAADF mode, these data encompass a wide range of
morphologies, length scales, and microstructural features. It
should also be mentioned that the features of interest in these
systems and data sets (interfaces, nanoparticles) are commonly
analyzed in many other material systems, such as metals and
alloys. See Supplementary Note 1 for example applicability of this
method to a broader data set. We demonstrate that with only 5–8
sub-images (referred to here as chips) that represent examples of
a specific microstructural feature (e.g., a crystal motif or particular
particle morphology), our model yields segmentation results
comparable to those produced by a domain expert for all systems
studied here. The successful image mapping can be attributed to
the low noise sensitivity and high learning capability of few-shot
machine learning in comparison to other segmentation methods
(e.g., Otsu thresholding, watershed, k-means clustering, etc.). The
few-shot approach rapidly identifies varying microstrutural
features across STEM data streams, which can inform real-time
image data collection and analysis. More broadly, our findings
underscore the power of image-driven machine learning to enable
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Fig. 1 Few-shot model architecture. The raw STO/Ge image (a) is broken into several smaller chips (b) and a few user defined chips are used
to represent desired segmentation classes in the support set (c). Each chip then acts as a query and is compared against a prototype (d),
defined by the support set, and categorized according to the minimum Euclidean distance between the query and each prototype, yielding
the segmented image (e). Scale bar= 5 nm.
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improved microstructural characterization for materials discovery
and design.

RESULTS AND DISCUSSION
A deep-learning approach known as few-shot learning was
developed for superpixel semantic segmentation of STEM images,
i.e., the classification of superpixels in a STEM image. The premise
of this few-shot learning model is to use very few labeled
examples (<10) per class for the model to identify regions of an
image that correspond to each class. This superpixel segmentation
approach additionally allows us to leverage the repeating patterns
typical in material microstructures and use sub-images for
informing the few-shot network, bypassing the need for even a
single fully labeled training image. The general approach to image
segmentation using few-shot learning is schematically described
in Fig. 1. This methodology involves breaking an input image into
a grid of sub-images (referred herein as chips), model initialization,
inference, and output of a segmented micrograph. The process of
chipping relies on domain-specific knowledge of the materials
microstructure, as indicated in the annotations in Fig. 1a. Most
computer vision segmentation techniques provide pixel level
classification, referred to as semantic segmentation. While
technically more precise in terms of granularity, these methods
can be more error prone, e.g., in noisy images or in instances of
artifacts46. In cases where pixel to pixel variability ranges widely, a
chip may better capture microstructural features of interest as a
whole versus specific pixels. Additionally, recent developments in
few-shot texture segmentation47 may provide feasible routes to
semantic segmentation for STEM images.

Preprocessing
To separate and measure distinct phases that have varying
contrast in the STEM images, preprocessing of original image data
was required. A histogram equalization (HE) technique designed
to enhance local image qualities without introducing global
artifacts termed contrast limited adaptive HE (CLAHE)48,49 was
selected for use in this work. The details of the CLAHE
implementation are described in Table 1. CLAHE was first
performed on original images and then the processed image
was sectioned into a set of smaller sub-images, as shown in Fig.
1b. The chip size varied between 95 × 95 pixels and 32 × 32 pixels,
however all chips are resized to 256 × 256 in the ResNet101
embedding module. The variable size allowed for each chip to be
large enough to capture a microstructural motif and small enough
to provide granularity between adjoining spatial regions, as shown
in Fig. 1. The final preprocessing step is an enhancement
technique50 that marks the position and size of atomic columns
using a Laplacian of Gaussians (LoG) blob detection routine51. This
step was used on the LSFO system to enhance the extremely
subtle differences between classes.

Model architecture
The few-shot model inputs the preprocessed STEM image, typically
with high resolution on the order of 3000 × 3000 pixels, that has
been broken down into a series of smaller chips, xik, typically not
larger than 100 by 100 pixels. A handful of these chips are used as
examples, or a support set, to define each of one or several classes.
While most image applications for few-shot learning use disparate
xik to define a support set for each class (Sk)52–56, here Sk was created
by breaking the original image into a grid of smaller sub-images
(Fig. 1b). A subset of chips were labeled for each class. The set of
N labeled examples for k= 1, . . , K classes makes up the support set
defined by: S= {(x1, y1), . . . (xN, yN)}, where xi represents an image i
and yi is the corresponding true class label (Fig. 1c).
A Prototypical Network57 was selected in this work, given its

lightweight design and simplicity. This model is based on the
premise that each Sk may be represented by a single prototype, ck.
To compute ck, each xik is passed through an embedding function
fϕ, which maps a D-dimensional image into an M-dimensional
representation through learnable parameters ϕ. The transformed
chip, or fϕ(xik)= zik, then creates the prototype for class k as the
mean vector of the embedded support points ck, as follows:

ck ¼ 1
NSk

X

ðzi ;yiÞ2Sk
zi (1)

After class prototypes are created, an untrained Prototypical
Network classifies a new data point, or queryqi, by first
transforming the query through the embedding function and
then calculating a distance, e.g. Euclidean distance, between the
embedded query vector and each of the class prototype vectors
(Fig. 1d). After the distances are computed, a softmax normalizes
the distance into class probabilities, where the class with the
highest probability becomes the label for the query57. The final
output of the model, for each qi, is the respective class label
(Fig. 1e).

Model Inference
In order to quantify phase fractions in a STEM image (which can
range from nm to μm in spatial dimension) each chip is used as a
query point, qi, so that the entire set of query points, Q, makes up
the full image. The size of Q is directly proportional to the size of
each chip and the size of the full image, as shown in Table 2. All qi

first go through the embedding function and distances to each
prototype are computed using the selected distance function. The
network then produces a distribution over each of the K classes by
computing a softmax over the distances and assigns a class label
according to the highest normalized value57. In the current
implementation of the Prototypical Network, query chips must be
assigned to one of the pre-selected class prototypes. To account
for unknown features, the user is advised to add an additional
support class.

Table 1. Image preprocessing parameters listed by material system and task with respective libraries/methods for implementation.

Material system

Task Method/Library LSFO STO/Ge MoO3

Image reading cv2.imread flag= 0 (grayscale) flag= 0 (grayscale) flag= 0 (grayscale)

Equalization CLAHE clipLimit= 2.0, clipLimit= 2.0, clipLimit= 2.0,

tileGridSize= (8, 8) tileGridSize= (8, 8) tileGridSize= (8, 8)

Chipping image_slicer tiles= 500 tiles= 1000 tiles= 256

Resizing (pixels) ResNet 256 × 256 256 × 256 256 × 256

LoG skimage max_sigma= 30, N/A N/A

num_sigma= 8, threshold= 0.1
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The model-specific implementation and parameters are given in
Table 2. While the selection of model parameters is often tedious,
specific model parameters in the few-shot context are generally
straightforward, since it is often possible to leverage pretrained
models for the embedding architecture. Here, a residual network
with 101 layers, ResNet10158, was used as the embedding
architecture. ResNet was specifically selected owing to its success
in several related image recognition tasks58. Any number of
networks may be used for encoding, including more lightweight
architectures such as smaller MS-D-Nets37, U-Nets59, or highly
specialized networks such as DefectSegNet31. ResNet is a popular
model that is widely available in several programming languages
with model weights available, making learned knowledge easily
transferable to STEM-specific tasks. Model weights for ResNet101
are available from PyTorch60 pytorch/vision v0.6.0, as trained on
the image database ImageNet61. We note that other networks
optimized for microscope images may yield performance gains in
training and inference, as well as permit greater batch sizes for
improved regularization. Additionally, the Euclidean distance
metric was used, since this metric generally performs well across
a wide variety of benchmark data sets and classification tasks57.
These pretrained models come with specified parameters and
trained model weights. However, any embedding architecture
may be used, especially those well-suited for segmentation62.
The similarity module can be any few-shot or meta-learning

architecture as well; however, Protonets are generally simple and
easy to implement. Parameters not necessarily specific to the
models—namely chip size and batch size—should take the size of
each distinct micrograph into consideration in addition to
computational memory capacity. A chip should generally encom-
pass a single micrograph and may take trial and error depending
on the size of the full image and magnification. The batch size is
simply the number of chips to evaluate at once. Generally, a
machine with at least 16 GB of RAM and 2.7 GHz of processing
power can reasonably compute model predictions at a rate of
about 1 chip per 0.5 s, with a batch size of 100 chips measuring
64 × 64 pixels. The compute time naturally depends on processing
power in addition to the chip size and the number of parameters
in the embedding module. In the case of training a few-shot
model, rather than simple inference as shown here, at least one

GPU is necessary and may take several days to reach convergence
given a sizeable database, such as a typical image database like
ImageNet61 contains 14 million images. The scope of this
manuscript will only discuss the former, using an untrained few-
shot model and pure inference to make judgments about
an image.

Classification
The segmentation output of few-shot classification using the
Prototypical architecture for three oxide systems is shown in Fig. 2.
The model output is a superpixel classification, i.e., every pixel that
belongs to a chip receives the same label and corresponding
color, much in the same way other computer vision applications
approach segmentation63. Here, the support set classes define the
set of possible output labels. The percentage of chips belonging to
each class, shown in Fig. 2 (right), can be scaled from percentages
to area using pixel scale conversions for a total area estimate for
each distinct micrograph.
The STO/Ge system presents a particular challenge for most

image analysis techniques in that the contrast varies irregularly
across the whole image. The sample also contains multiple
interfaces and is representative of typical thin film-substrate
imaging data. The selected LSFO image shows a secondary
phase in the perovskite-structured matrix, and the secondary
phase appears to have a gradient from top to bottom, which
drastically diminishes the very subtle differences between the two
micrographs. Separation of the two interpentrating microstruc-
tural domains is necessary to understand the synthesis process
and resulting properties, such as electrical conductivity. While
preprocessing can adjust for some of these irregularities,
traditional threshold-based segmentation techniques such as
Otsu’s Method20 and watershedding21 are not robust enough
for a consistent solution and even adaptive methods can fail
against a gradient and certainly when applied generally across
multiple images. Another approach to phase discovery has been
successfully demonstrated based on the use of a sliding FFT18.
While powerful, this approach requires periodicity in the image
and is less amenable to lower magnification images of the kind
shown Fig. 2c. In this case, a convolution of contrast, edge, and
sampling parameters makes straightforward interpretation of the
FFT difficult. In addition, this approach is less well-suited to
classifying amorphous materials, which may possess correlated
but not periodic order that is difficult to quantify locally. The few-
shot technique is not completely immune to these irregularities as
seen in Fig. 2a, where the segmented micrograph contains a
handful of misclassified chips. These misclassifications reveal some
sensitivity to support set selection, which is an important topic for
additional study. In general, we find that classification based on
support sets containing canonical features (well-resolved, uniform)
outperforms classification based on support sets containing
outlier (noisy, incomplete) features. In the LSFO system, few-shot
is slightly more inconsistent in identifying the (green) micro-
structural features, as shown in Fig. 2b. However, these issues may
be corrected with a post hoc spatial smoothing. For example,
chips completely surrounded by one label within some radius
would weight the class probability, or adjustments in the chips
that define the support set. Despite some irregularities, the few-
shot method is much more robust to noise within the full input
image when compared against other segmentation techniques.
Additionally, this few-shot method is easily generalizable to
several different material systems, since a single support set
defined by one image can be applied without adjustment to
multiple images of the same type for an unmatched time savings
in the analysis of image series. This feature is particularly
important in the case of large area mapping, as shown for the
MoO3 nanoparticles, where it is necessary to collect image
montages to survey the wide variety of possible particle

Table 2. Few-shot specific implementation information including
model parameters, image information, and computing device used for
the images shown in Fig. 2.

Material system

Parameter LSFO STO/Ge MoO3

Support classes 2 3 3

Batch size 8 8 16

Image size (pixels) 2048 × 2048 3042 × 3044 512 × 512

Total chips 500 1000 256

Chip size (pixels) 34 × 35 95 × 95 32 × 32

Encoding ResNet101 ResNet101 ResNet101

pretrained=
True

pretrained=
True

pretrained=
True

Distance metric Euclidean Euclidean Euclidean

Similarity module Protonet Protonet Protonet

Normalization Softmax Softmax Softmax

Training None None None

Computing device= CPU device= CPU device= CPU

The “pretrained" flag indicates that ResNet weights trained on ImageNet
are used in encoding.
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morphologies. Here again the few-shot method successfully
distinguishes several nanoparticle orientations from the carbon
support background, with minimal instances of inaccurate
labeling. We note the ability of the few-shot approach to
accommodate the visual complexity of S1 seen in Fig. 2c, with a
range of shapes, contrast, and sizes defining this flat category.
While S1 here is defined with several more chips than the others,
the model is able to reasonably perform a segmentation task
impossible using contrast based methods alone. Overall, we find
that the model generalizes well to different material systems
containing varying microstructural features.

Comparison to other methods
Initially, several image analysis techniques were explored in an
effort to quantify microstructral features of interest in specific
micrographs, i.e., segmentation. It was immediately obvious that
no single segmentation method would perform well in the
absence of preprocessing steps, such as contrast adjustments,
smoothing, and sharpening. Ideally, the aim of preprocessing in

these analyses is to globally minimize artificial contrast textures
and locally emphasize object edges, a critical noise reduction step
for most segmentation routines64. Given that preprocessing and
segmentation are often inseparable65, we examine comparable
segmentation methods in the context of both segmentation and
preprocessing together. In an effort to compare the few-shot
approach with more widely-used segmentation methods, an
example image from the STO/Ge system was analyzed using
techniques with varying noise sensitivity and segmentation
capabilities, with results shown in Fig. 3.
The simplest approach to segmentation falls under a family of

thresholding techniques shown in the first row of Fig. 3. The three
methods shown in the top row are designed to separate pixels in
an image into two or more classes, based on an intensity
threshold. The threshold in these methods is determined using
information about the distribution of pixel intensities either
globally (top row left) or locally using a neighborhood of pixels
(top row center and right). The neighborhood methods are
commonly more sensitive to noise, while Otsu’s more global
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support sets (center), and output of few-shot segmentation (right) are shown. The estimated proportion of each support set class is shown in
the inset bar chart for each system. Scale bars= 5 nm (a–b) and 5 μm (c).
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technique appears to separate foreground pixels (light) from
background (dark) relatively well.
Moving beyond simple thresholding, we begin to look towards

separating pixels into classes other than background and
foreground. The segmentation methods shown in Fig. 3 typically
have the ability to separate intensities into multiple classes again
defined by the distribution of pixel intensities in the image. Two
classes are specified for these routines in order to demonstrate the
premise that, ideally, the image could be segmented according to

the two distinct micrographs. These approaches also typically
involve blurring filters and/or morphological operations66 in order
to remove pixels that are not a part of a larger group or shape.
While shape edges are more defined in the middle row of Fig. 3
than in the top row, we note that the resulting segmentation still
appears to be background/foreground and misses the distinction
between micrograph structures. One obvious limitation of a direct
implementation of these methods is that the resulting classes will
always be based on intensity and not on the size or shape of the
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Fig. 3 Comparison of analysis techniques. An image from the STO/Ge system (top) is analyzed with a suite of image processing techniques
with varying noise sensitivity and labeling capabilities. The thresholding techniques (top) typically separate background from foreground in
an image. The strict segmentation techniques (middle) have the ability to separate the image further into multiple classes, though the classes
are defined solely on pixel intensity. The clustering techniques (bottom) separate an image into classes based calculated image properties
such as a centroid (KNN), structural similarity threshold (SSIM), or a prototype (few-shot). Scale bar= 2 nm.
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underlying micrographs. It may be possible to layer these
methods with a shape detection routine where shapes of
approximately the same size may be clustered into the same
class. However, we found that clustering shapes post foreground/
background segmentation was not able to distinctly separate
microstructural features in an unsupervised manner, i.e. without
tedious and manual intervention.
Rather than adding a shape clustering routine to an already

segmented image, we implemented cluster based methods on
either the raw image, or neighborhoods of the raw image in the
bottom row of Fig. 3. A common unsupervised K-Nearest
Neighbors (KNN) clustering method is shown in the bottom row
right, where we again see clustering results based on pixel
intensity or background/foreground separation. Bottom row
middle shows the first non-intensity based approach. An average
structural similarity index measure (SSIM) is computed pairwise for
100 × 100 pixel non-overlapping neighborhoods as a measure of
similarity between regions. The average SSIM for each neighbor-
hood is a bimodal distribution that can be grouped into two
classes as shown in bottom row center of Fig. 3. However, the
cutoff in SSIM must be manually determined. Lastly, the few-shot
segmentation technique described in this manuscript is shown in
bottom row left, where we see perfect segmentation between the
two regions of distinct micrographs. We have included few-shot as
a clustering technique, since a neighborhood is compared to a
prototype analogous to the way clustering techniques compare to
a centroid.
The results presented here have been assessed qualitatively,

given that no standard comparison data sets exist to address the
fidelity of few-shot learning in standard quantitative practice. This
gap also points directly to the high cost of manually labeling data
and perhaps opens an opportunity for few-shot assisted annota-
tion. We have attempted a comparison to hand-labeled data, as
shown in Supplementary Note 4, which shows overall good
classification with some variation at feature boundaries, but
further work is needed to more rigorously assess performance.
Additionally, we have shown only one type of few-shot
architecture here, though a number of other architectures and
configurations may well outperform the simplicity of the
Prototypical Network, including Siamese Networks67, Relation
Networks68, Conditional Networks56, etc. However, we have found
that a Relational-Conditional Network may be more sensitive to
noise and less adept to out of distribution samples. (See
Supplementary Note 2 for a Relational-Conditional Network
result).
In summary, here we developed a flexible few-shot learning

approach to STEM image segmentation that can significantly
accelerate mapping and identification of phases, defects, and
other microstructural features of interest in comparison to more
traditional image processing methods. We studied three different
materials systems (STO/Ge, LSFO, and MoO3), with varying atomic-
scale features and hence diversity in image data for model
development. Segmented images using the few-shot learning
approach show good qualitative agreement with original
micrographs.
When compared to other techniques, we find that noise

sensitivity and/or labeling capability remain challenges for
adaptive segmentation and clustering algorithms. We note that
in the present study we have not examined the robustness of the
few-shot approach to image artifacts or high noise levels because
of a lack of established ground truth for quantitatively bench-
marking the present data sets. These topics merit additional future
study. In addition, the effect of orientational disorder was not
systematically considered, but recent work69,70 has shown that
rotationally invariant variational autoencoders may help address
such disorder. However, analysis of a larger MoO3 image set
shown in Supplementary Note 3, demonstrates the qualitative
robustness of the approach to both feature intensity variation and

rotation. The few-shot techniques explored in this manuscript
provide powerful resources to combat these issues and remain
flexible enough to accommodate a suite of materials. While few-
shot machine learning has been increasingly successful in rapidly
generalizing to new classification tasks containing only a few
samples with supervised information, it is a known problem that
the empirical risk minimizer can be slightly unreliable71, leading to
uncertainty in the reliability of the model for any given support
set. We can mitigate some of this uncertainty with careful
selection of the support set in order to avoid driving the model
toward a non-optimal solution with mistakes in the support set,
for instance. Another way we can alleviate some of the uncertainty
in solutions is to actually train the few-shot model with large
volumes of labeled data, when available, so that new classification
tasks already have the benefit of optimization, even in a
completely new and different material systems. A post-
processing routine of spatial structural statistics may also provide
a means for smoothing spurious segmentation predictions from
an otherwise uniform material region; however, it is possible that a
true signal could be smoothed out as an artifact with such
approaches.
Aside from uncertainties in performance, the benefits in model

generalizability also limit the amount of physically meaningful
information we can extract from the model itself. One route for
future exploration is the use of multiple data streams, such as
spectral (electron energy loss spectroscopy (EELS) and energy-
dispersive X-ray spectroscopy (EDS)), as well as diffraction (4D-
STEM) in a multi-modal few-shot model. Insights in the multi-
modal context would help to extract more physically meaningful
information and likely enhance the segmentation performance. In
theory, this same model should generalize to a wide variety of
STEM images and our preliminary results on other systems are
indicative of this. Yet still unknown are the effects of the size and
variety of the examples in a support set for a given class.
Simulation studies are being designed to help answer these
questions and more, including the possibility of using other
models for embedding and the benefit of model training. Recent
work in few-shot for texture segmentation47 also indicates that
pixel level annotation may be possible, pushing the accuracy of
this approach beyond chip-level resolution. Ideally, few-shot
segmentation can also help curate and annotate these large
training sets, something that is otherwise extremely costly to do
manually and at scale. In summary, this approach offers a
potentially powerful means to standardize and automate the
analysis of materials microstructures for a single image, paving the
way for high-throughput characterization architectures.

METHODS
Experimental materials and methods
The three experimental systems were prepared as follows. SrTiO3 films
were deposited onto Ge substrates using molecular beam epitaxy (MBE), as
described elsewhere44. La0.8Sr0.2FeO3 films were deposited onto SrTiO3

(001) substrates using MBE, according to a procedure described else-
where45. Cross-sectional STEM samples of the thin films were prepared
using a FEI Helios NanoLab DualBeam Focused Ion Beam (FIB) microscope
and a standard lift out procedure. Bulk MoO3 particles were drop cast onto
a lacey carbon grid from suspension in ethanol. High-angle annular dark
field (STEM-HAADF) images of the STO/Ge were collected on a probe-
corrected JEOL ARM-200CF microscope operating at 200 kV, with a
convergence semi-angle of 20.6 mrad and a collection angle of
90–370mrad. STEM-HAADF images of the LSFO and MoO3 were collected
on a probe-corrected JEOL GrandARM-300F microscope operating at
300 kV, with a convergence semi-angle of 29.7 mrad and a collection angle
of 75–515mrad. The original image data analyzed in this work varied
between 3042 × 3044 pixels (for STO/Ge), 2048 × 2048 (for LSFO), and
512 × 512 for MoO3. Because of its beam sensitivity, the STO/Ge images
shown were collected using a frame-averaging approach; a series of 10
frames were acquired with a 1024 × 1024 px sampling and 2 μs px−1, then
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non-rigid aligned and upsampled 2 × using the SmartAlign plugin72. Tens
of images were collected from each material system and a range of
selected defect features were used in this study.

Computational methods
The specific implementation of the preprocessing techniques and
parameters for the few-shot model are described in Tables 1 and 2,
respectively. All methods were implemented using the Python program-
ming language v.3.6 available at http://www.python.org. Each image was
processed using a 16 GB RAM 2.7 GHz Intel Core i7 MacBook Pro.

DATA AVAILABILITY
The raw images, support sets, and query sets for each of our analyzed images, as well
as additional classification of MoO3 nanoparticles, are available on FigShare73.

CODE AVAILABILITY
The exact codebase for this work is unavailable to the public due to proprietary
reasons. However, the Prototypical Network code57 is available on Github (https://
github.com/jakesnell/prototypical-networks).
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