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Comparing crystal structures with symmetry and geometry
John C. Thomas1,2✉, Anirudh Raju Natarajan 1,2✉ and Anton Van der Ven 1✉

Measuring the similarity between two arbitrary crystal structures is a common challenge in crystallography and materials science.
Although there are an infinite number of ways to mathematically relate two crystal structures, only a few are physically meaningful.
Here we introduce both a geometry-based and a symmetry-adapted similarity metric to compare crystal structures. Using crystal
symmetry and combinatorial optimization we describe an algorithm to arrive at the structural relationship that minimizes these
similarity metrics across all possible maps between any pair of crystal structures. The approach makes it possible to (i) identify pairs
of crystal structures that are identical, (ii) quantitatively measure the similarity between crystal structures, and (iii) find and rank
structural transformation pathways between any pair of crystal structures. We discuss the advantages of using the symmetry-
adapted cost metric over the geometric cost. Finally, we show that all known structural transformation pathways between common
crystal structures are recovered with the mapping algorithm. The methodology presented in this study will be of value to efforts
that seek to catalogue crystal structures, identify structural transformation pathways or prune large first-principles datasets used to
parameterize on-lattice Hamiltonians.
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INTRODUCTION
The crystal structure of a material determines much of its functional
behavior, including its electronic, ionic, and mechanical properties.
The number of possible crystal structures is infinite, and a large
number of crystal structures have already been characterized1. This
number will undoubtedly continue to grow as researchers expand
into the vast, high-dimensional composition spaces of multi-
principle element alloys and functional compounds.
Although great effort has been expended to cataloging2–4 and

categorizing unique crystal structures and their chemical mani-
festations, challenges remain to realizing a universal classification
scheme. Such a scheme is becoming increasingly desirable with
the growth of first-principles databases, such as the Materials
Project5, AFLOW6, OQMD7, NOMAD8, and the Materials Cloud9.
Essential to a successful classification scheme is a robust method
with which to measure the structural similarity of two crystals.
Unfortunately, the comparison of two crystal structures is made
challenging due to their periodic nature, which allows for an
infinite number of mathematical representations. Symmetry can
be used to help classify crystal structures. However, while there
are only 230 crystallographic space groups, two crystal structures
belonging to the same space group can nevertheless be very
different from the point of view of local connectivity, unit cell size
and number of distinct sites within the unit cell.
Pathways that connect different crystal structures are also of

great importance. Many crystalline materials undergo structural
transformations as a function of temperature and pressure10–18.
Only a limited number of continuous pathways connecting
common crystal structures have been identified19–27. Knowledge
of these pathways, however, is often invaluable to understand and
manipulate phase transformations in shape-memory alloys and
actuator applications. The identification of pathways requires an
enumeration of possible mappings of one crystal onto another24

and a robust definition of a distance metric between crystal
structures to enable a ranking of such mappings.

Several methods and accompanying software packages have
been developed to compare and classify crystal structures. These
approaches tend to rely on structure standardization, space group
and Wyckoff position identification and comparisons of crystal
invariants28–31. Other methods rely on comparisons of pair
distribution functions32. Some of the well known or recently
released software packages include STRUCTURE-TIDY28, CRY-
COM30, CMPZ33, XTAL-COMP34, COMPSTRU31, SPAP35, the pymat-
gen Structure Matcher36, and AFLOW-XtalFinder37. While they all
have their merits, none determine the similarity between crystal
structures using combinatorial mapping approaches with a
rigorous quantification of strain and displacement costs that
account for symmetry. Furthermore, there are no software tools
generally available with which to systematically enumerate and
rank mappings between pairs of crystal structures.
In this paper, we describe an algorithm implemented in the

CASM software package15,38,39 to enumerate mappings between
pairs of crystal structures. As part of the mapping approach, we
introduce a geometric and symmetry-breaking distance metric
that measures the similarity between two crystal structures. The
tools allow users to answer three questions. Given two input
crystal structures:

● Are they identical up to a symmetry-preserving scaling factor?
● If the two crystal structures are not identical, how similar

are they?
● What are ranked pathways between the two crystal structures

and what is the orientation relationship between these crystal
structures for a particular path?

Answering these questions requires (i) a robust way to map one
crystal onto another and (ii) metrics of similarity between any pair
of crystal structures. In the next sections we describe the
mathematical underpinning of the crystal mapping tool imple-
mented in the CASM software package.
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RESULTS
The objective of this study is to obtain a relationship between the
spatial coordinates of atoms in two crystals, C1 and C2. The
approach relies on finding a distortion of crystal C2 such that, after
deformation, the atoms of C2 coincide exactly with sites of C1. In
this context, we refer to C1 as the parent crystal and C2 as the child
crystal. There are many possible ways to deform C2 such that it
maps onto C1. We denote by M the set of all possible ways to
relate C2 to C1 and refer to a particular element Mm as a mapping
of C2 onto C1. Different mappings Mm will require different
degrees of deformation.
Crystal structures are represented by lattice vectors and a list of

coordinates that correspond to the sites in the unit cell. We may
compactly specify the lattice vectors as columns of a 3 × 3 matrix
L ¼ ½ l1!; l2

!
; l3
!�. The fractional ( f

!
) and cartesian ( r!) coordinates

of an arbitrary point in space are related to each other as
r!¼ L f

!
.

A particular mapping of C2 onto C1 comprises two separate
operations. First, in the lattice-mapping step, C2 is rigidly rotated and
homogeneously deformed until a shared lattice is obtained that can
be used to define both structures simultaneously. Second, in the
atomic mapping step, each atom of C2 is assigned a companion in
C1 and displaced so that it is coincident with its companion. In the
next section we describe how the strain and displacement fields that
relate these crystal structures may be obtained.

Lattice mapping
We will first consider the mapping of the lattice of C2, denoted L2,
onto the lattice of C1, denoted L1. Our lattice-mapping approach is
similar to that of Trinkle et al.24. In the simplest case, the two sets
of lattice vectors are related via matrix multiplication according to

L1 ¼ F L2 (1)

¼ V Q L2: (2)

The deformation gradient tensor, F, which relates the two lattices,
can be uniquely decomposed as the product of a reorientation
matrix, Q, and the left stretch tensor, V, which is symmetric and
has positive determinant. We define a strain tensor in terms of the
left stretch tensor as

B ¼ V� I; (3)

where I is the 3 × 3 identity matrix. The strain tensor B (sometimes
called the Biot strain) is also symmetric. At small deformation, the
left stretch tensor is close in value to the identity matrix, and B
approaches zero. We note that the application of a rotation
followed by a left stretch tensor to the child lattice until it maps
onto the parent lattice is equivalent to an application of a right
stretch tensor followed by a rotation to the parent lattice.
The matrix L1 is one of many matrices that generates the same

lattice of crystal sites in the parent crystal. Any other matrix LðNÞ1 ¼
L1 N generates the same lattice as L1 if N is an integer matrix
having determinant ± 1. Such matrices are referred to as unim-
odular matrices. A more general equation relating L2 to L1 is thus

L1 N ¼ VðNÞ QðNÞ L2: (4)

Given L1 and L2, there are many possible lattice mappings,
corresponding to different choices of N, and each results in a
distinct left stretch tensor and reorientation matrix. Thus, B(N) and
Q(N) can both be considered as functions of the integer matrix N.
This is illustrated in Fig. 1 in two dimensions where the parent C1
has a rectangular unit cell and where the child crystal C2 is simply
a rotated version of C1. Two possible mappings are shown. In the
first mapping, the short axis of C2 is mapped onto the short axis of
C1. In this case, the mapping involves only a rigid rotation with a
zero strain cost. A unit sphere in C1 remains a unit sphere in C2. In
the second mapping, the long axis of C2 is mapped onto the short
axis of C1. This mapping requires not only a rotation, but also a
deformation, as illustrated by the transformation of the circle in C1
into an ellipsoid in C2.
Right-multiplying L1 by a different integer matrix, T1, whose

determinant has a magnitude greater than one would specify a
supercell of C1. For example, a determinant-three matrix would
specify a supercell having a volume three times that of the
primitive cell, L1, and contain three times as many basis atoms. By
considering supercells of C1 with lattice vectors S1= L1T1, it
becomes possible to identify mappings in cases when the number
of basis atoms in the primitive cell of C2 is an integer multiple of
the number of basis atoms in the primitive cell of C1. The integer
matrix T1 with determinant greater than one is referred to as the
supercell transformation matrix. The lattice-mapping relationship
of Eq. (4) can be generalized by allowing for mappings onto
supercells of C1 according to

S1 N ¼ L1 T1 N ¼ VðNÞ QðNÞ L2: (5)

The integer volume of the supercell, defined as the ratio of the
volume of the supercell S1 to the volume of L1 is equal to detðT1Þ.
The problem of finding lattice deformations that link two

periodic crystals can thus be reduced by Eq. (5) to counting over
all possible integer and unimodular transformation matrices and
recording the deformation and rotation tensors that link the two
structures. This process, while computationally challenging, will
provide an exhaustive list of deformations connecting the two
periodic unit cells. However, as detailed in the next section, the
symmetry of the underlying structures can be exploited to greatly
simplify this process.

Accounting for symmetry during lattice mappings
The point group symmetry operations that leave the parent or
child structures unchanged result in mappings between their
lattices that are equivalent. In this section we describe how

68°

22°

Reorientation

Fig. 1 Multiplicity of lattice mappings. Depiction of two possible
orientation relationships between C1 and C2. In one case, C2 is
rotated by −68∘ without an accompanying strain, in the other case,
C2 is rotated by 22∘ and also strained. Bottom illustration depicts the
definition of the strain cost both before and after removal of rigid
rotation. The strain cost is minimized at a unique value when the
rigid rotation is removed.
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symmetrically equivalent maps can be avoided while enumerating
all possible lattice deformations that relate two structures.
First, we only count over symmetrically distinct supercell lattices

of the parent crystal at each integer supercell volume. For a
particular supercell, S1, there are many possible representations of
its lattice vectors, each of which is generated by a particular
unimodular matrix N, as is the case for the primitive cell lattice
vectors. To enumerate distinct supercells, we employ a widely
used approach based on Hermite Normal Forms of integer
matrices40.
Once the symmetrically unique supercells of the parent lattice

have been identified, we can proceed with Eq. (5) by counting
over all unimodular matrices and recording the deformation
tensor that links the parent and child lattices:

S1N ¼ FðNÞL2 (6)

We can reduce the number of unimodular matrices N that need
to be considered by only using those that generate symme-
trically distinct transformations. To determine the symmetrically
unique unimodular matrices, we use a convenient identity
relationship between different representations of the same
symmetry operation. Let us denote the crystal point group
symmetry operations that leave the supercell and child lattices
unchanged as Gð1Þ and Gð2Þ, respectively. These symmetry
operations may be represented in their cartesian form, which
we denote as G, or in their fractional form, which we denote as
J . The cartesian and fractional representations are related
according to:

J ¼ L�1GL (7)

Cartesian symmetry operations are applied to the lattice by left
multiplication while the fractional symmetry operations are
multiplied to the right of lattice vectors. The cartesian symmetry
representation is unitary such that its inverse is equal to its
transpose (i.e., G�1 ¼ GT ). The fractional symmetry representa-
tion and its inverse are both unimodular integer matrices.
Simultaneously applying the cartesian symmetry operation and
the corresponding inverse fractional operation leaves the
underlying lattice unchanged. For example,

S1 ¼ Gð1ÞS1ðJ ð1ÞÞ�1
: (8)

Invariance relationships of this type for S1 and L2 can be
inserted into Eq. (6) to yield

Gð1ÞS1ðJ ð1ÞÞ�1
N ¼ FðNÞGð2ÞL2ðJ ð2ÞÞ�1

: (9)

Upon rearranging, this simplifies to

S1ðJ ð1ÞÞ�1
NJ ð2Þ ¼ ðGð1ÞÞ�1

FðNÞGð2ÞL2 (10)

S1M ¼ FðMÞL2 (11)

where M ¼ ðJ ð1ÞÞ�1
NJ ð2Þ and FðMÞ ¼ ðGð1ÞÞ�1

FðNÞGð2Þ are sym-
metrically equivalent unimodular and deformation matrices.
Counting over such deformation tensors that are related under
the symmetries of the parent or child structures may be
avoided by only using one of the symmetrically related
unimodular matrices. Thus for each distinct supercell of C1 we
only count over symmetrically unique unimodular matrices
when recording the set of deformation tensors that relate C1
and C2.

Atomic maps
If the primitive cell of C1 or C2 contains more than one basis atom,
the atoms in C2 may need to be repositioned inhomogeneously to
coincide with sites of C1. This deformation of the atomic positions
can be represented by a displacement vector for each atom in the
unit cell of C2. We denote the site positions in the unit cell of C1 as

f r!ð1Þ
1 ; ¼ ; r!ð1Þ

nA g and the atom positions in the unit cell of C2 as

f r!ð2Þ
1 ; ¼ ; r!ð2Þ

nA g. All positions are in Cartesian coordinates. By
convention, we measure displacements by first deforming C2 via a
particular lattice mapping, making its lattice sites coincident with
lattice sites of C1. Then, we rigidly translate the basis of C2 by a
vector t

!
to bring the basis atoms of C2 into closer registration

with the sites of C1. An atomic displacement is then the vector
that translates a particular basis atom j of C2 to the position of
atom i of C1. Given a particular rigid translation t

!
, the

displacement vector that translates atom j of C2 onto site i of C1 is

d
!ð1Þ

i;j t
!� �

¼ b r!ð1Þ
i � VðN;T1ÞQðN;T1Þ r!ð2Þ

j � t
!c

S1
; (12)

where the operation b�cS1 selects the shortest possible displace-
ment vector with respect to periodic boundary conditions by
considering all possible lattice translations of the lattice S1.
Equation (12) demonstrates how the position of an atom in C2
must first be reoriented and deformed, according to the lattice
mapping, before relating it to an atom in C1 via translation. The

superscript of d
! ð1Þ

i;j indicates that it is the displacement measured
in the strain state of C1.
There are nA! ways to form (i, j) pairs between sites of C1 and C2.

We express a particular one-to-one assignment of atoms in C2 to
sites in C1 as the permutation p̂, such that ði; p̂½i�Þ is an assignment
of atom p̂½i� in C2 to site i in C1.

Geometric mapping cost
As shown in the previous sections, two arbitrary crystal structures
can be related to each other geometrically in a multitude of ways.
The set of strains relating the lattices of the two structures are
infinite, and for each possible strain map there are several ways to
displace the atoms to bring the two structures into perfect
coincidence. In this section and the next section we describe how
geometry and symmetry may be used to define useful “cost
metrics” that can capture the complexity of every enumerated
transformation pathway.
Equations (3) and (5) describe the relationship between two

lattices through a symmetric left stretch tensor (V) and the Biot
strain tensor (B). These tensors describe changes in both the
volume and shape of crystal C2. Volume change alone is a poor
measure of crystal structure similarity since volume depends
strongly on chemistry, temperature, and other considerations. The
volumetric dependence of the left stretch tensor is given simply
by detV ¼ VL2=VL1 . Consequently, we can renormalize the left
stretch tensor to make it independent of volume changes, yielding
the volume-normalized stretch tensor

~V ¼ 1

det Vð Þ1=3
V (13)

and the corresponding volume-normalized strain tensor

~B ¼ ~V� I: (14)

We use the volume-normalized strain to define cost functions of
lattice deformation in order to isolate shape-change effects from
volume-change effects.
We now introduce a lattice-deformation cost function that

measures the magnitude of lattice strain. In general, the Biot strain
tensor in Eq. (14) depends on the orientation of the coordinate
system used to define the lattice vectors of C1 and C2. However,
the lattice-deformation cost function should be invariant to
changes in coordinate system. A common metric of tensor
magnitude that is invariant to coordinate system is the Frobenius
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norm:

B : B ¼ P
i;j
B2ij ;

¼ tr B2
� �

:
(15)

To demonstrate that the Frobenius norm of B is a physically
meaningful metric of deformation, we consider a uniform sphere
of radius ρ as it is deformed by the volume-normalized stretch
tensor ~V. The displacement of a point on the sphere is

δ ρ!¼ ~V ρ!� ρ!¼ ~B ρ!; (16)

and the mean-squared displacement over the surface of the
sphere is the integral

avg δ ρ!�� ��2� �
¼ 1

4πρ2

Z
S
ρ2dω ρ!>~B

2
ρ!

� �
; (17)

taken over the domain of solid angle in three dimensions.
Expanding the integrand term by term and integrating yields

avg δ ρ!�� ��2� �
¼ 1

3
ρ2trð~B2Þ: (18)

The spherical radius ρ can be set to a physically meaningful
parameter, such as the Wigner-Seitz radius of the child crystal,

ρ
ðWSÞ
2 ¼ 3

4
Ω2

� �1=3

; (19)

to obtain a per-atom metric of lattice deformation. However, Eq.
(18) can also be normalized by ρ2 to obtain a scale-invariant metric
of deformation, which is how we shall specify the lattice-
deformation cost function:

cLðMmÞ ¼ 1
3
tr ~B

2
� �

: (20)

Measuring the degree of atomic distortion is simpler than
measuring the lattice strain. We measure the quality of a particular
atomic assignment p̂ with the mean-squared atomic displace-
ment:

cA Mmð Þ ¼ 1
ρ21

1
nA

X
i

d
!ð1Þ

i;p̂½i� t
!� �����
����
2

 !
(21)

As in the case of the lattice-deformation cost function, we
normalize the atomic-deformation cost by the squared Wigner-
Seitz radius ρ1 ¼ 3Ω1=4ð Þ1=3 to obtain a scale-invariant cost. The
cost function Eq. (21) is a function of both the rigid translation t

!
and atomic assignment p̂, and we will show that it can be
minimized with respect to these two parameters. It is also
implicitly, via Eq. (12), a function of the integer matrices N and T1,
which determine the lattice mapping.
The lattice-deformation cost function cL Mmð Þ and the atomic-

deformation cost function cA Mmð Þ measure qualitatively distinct
aspects of crystal deformation. We define mappings to be
“optimal” if they simultaneously minimize both the lattice and
atomic-deformation costs. Specifically, we define the following
scalar total cost function:

c Mm;wLð Þ ¼ wLcL Mmð Þ þ ð1� wLÞcA Mmð Þ; (22)

which is a weighted average of the atomic and lattice-deformation
cost functions specified by a lattice weight parameter wL. The
presence of two cost functions (lattice and atomic costs) leads to
the well-known problem in multi-objective optimization where
there is usually no unambiguous ‘optimal’ mapping (The
exception to this is when C1 and C2 are structurally identical, in
which case some mappings have both zero lattice deformation
and zero atomic deformation). By introducing the total cost
function that is related to both these costs, the minima is well-
defined. Because the atom- and lattice-deformation cost functions
defined in Eqs. (20),(21) are both scaled to remove volumetric

dependence and are normalized per atom, we anticipate that a
50/50 weighted average, corresponding to wL= 0.5 should be
appropriate for many applications. Values of wL > 0.5 increase the
relative penalty of lattice deformation (thus allowing atomic
displacements to be relatively larger) while values of wL < 0.5
decrease the relative penalty of lattice deformation (thus biasing
atomic displacements to remain small).

Symmetry-adapted mapping cost
Crystal structures that differ by more than just their volumes can
still be very similar. For instance, the hexagonal close-packed (hcp)
structure may be deformed to have any c

a ratio without
qualitatively changing the crystal. Hcp structures that differ with
respect to their c

a ratio will have a nonzero geometric cost despite
being crystallographically identical. To enable the easy compar-
ison of such structures we define a “symmetry-adapted” mapping
cost that is invariant under deformations that preserve the
symmetry of the parent crystal.
The symmetry-adapted cost is obtained by removing any

symmetry-preserving deformations or displacements from the
mapping field. The symmetry-preserving Biot strain tensor, Bsym,
can be obtained by averaging the effect of each point group
operation on the calculated stretch tensor obtained from Eq. (5):

Bsym ¼ 1
NG2

X
G2

G2BGT
2 (23)

where G2 is the point group of the child structure (C2) and NG2 is
the number of operations in the point group. Formally this
corresponds to applying the Reynolds operator of the point group
to the Biot strain tensor. Obtaining the average over all possible
symmetrically equivalent Biot strain tensors leaves us with only
that part of the deformation that is invariant under symmetry.
Examples of symmetry-preserving deformations include simple
hydrostatic deformations of the unit cells and changes to the c

a
ratio in hcp.
The symmetry-adapted mapping score is computed using the

symmetry-breaking strain tensor defined as

Bsym�break ¼ B� Bsym (24)

The symmetry-adapted lattice cost is then calculated as:

cLðMmÞ ¼ 1
3
tr B2

sym�break

� �
(25)

The symmetry preserving score relative to the parent may be
calculated by utilizing the stretch tensor relative to the parent and
the point group operations of the parent.
The symmetry-adapted atomic cost can be obtained in a

manner similar to that described for the lattice-deformation cost.
First, we obtain the collective atomic displacements that are
invariant under the factor group of the parent structure by again
applying the Reynolds operator. Subsequently, the displacements
Eq. (12) that map the atoms of the child onto the atoms of the
parent can be projected on to the symmetry-invariant collective
displacements of the parent and removed to estimate the
symmetry-breaking displacements. To perform these steps it is
convenient to collect atomic displacements relative to the parent
crystal atomic positions as a vector containing 3n entries

D
!¼

dx1
dy1
dz1
� � �
dxn
dyn
dzn

2
666666666664

3
777777777775

(26)
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These atomic shuffles can be transformed by symmetry operations
in the factor group of the parent crystal according to

D0! ¼ G1 D
! (27)

where G1 is now a 3n × 3n matrix representation of a symmetry
operation in the factor group of the parent structure that acts on

the unrolled displacement vector D
!
. The 3n × 3n matrix repre-

sentations can be constructed from the 3 × 3 Cartesian represen-
tation and the permutation representation of the factor group
operations.
Symmetry-invariant modes can be constructed by applying the

Reynolds operator to the set of basis vectors (denoted I, the 3n ×
3n identity matrix) that span the full 3n × 3n space15,41:

hDi ¼ 1
NS

X
S

SiI (28)

where 〈D〉 is the symmetry-averaged basis vectors. Each column
of the 〈D〉 matrix corresponds to a collective displacement field
that is invariant to the symmetry of the parent crystal. Not all
columns are independent from each other and a set of spanning
vectors may be identified by performing singular value decom-
position (SVD) of the matrix

hDi ¼ WΣXT (29)

The dimensionality (r) of the symmetry-invariant space is equal to
the number of nonzero singular values (or diagonal elements) in Σ,
while a set of orthogonal vectors that span this space can be
derived from the r column vectors of W corresponding to the
nonzero singular values. This space of symmetry-preserving
distortions can be expanded into larger supercells, and their
symmetry-breaking deformation fields can then be obtained as:

D
!

p̂;sym�break t
!� �

¼ D
!

p̂ t
!� �

�
X
i

ðD!p̂ t
!� �T

D
!i

symÞD
!i

sym (30)

where D
!

sym is a matrix of symmetry-invariant collective atomic
modes calculated from Eq. (29) and expanded so that it accounts
for the total number of atoms in the supercell of C1 that is being
considered. D

!i

sym refers to the ith collective displacement mode in
this matrix.
The symmetry-breaking cost is then obtained as:

cA Mmð Þ ¼ 1
ρ21

1
nA

D
!

p̂;sym�break t
!� ���� ���2� �

(31)

A summary of the mapping algorithm
The mapping algorithm described above is schematically illu-
strated in Fig. 2. The figure shows the steps involved in mapping a
two dimensional honeycomb arrangement of atoms (labeled C2)
on to a parent square lattice (labeled C1). First the algorithm
counts over all symmetrically distinct supercells of the parent
square lattice that contains two atoms. The first lattice map,
labeled F1, involves a large shear and tetragonal deformation of
the child lattice. The second lattice map (F2) relates the child
structure to an equivalent but geometrically different supercell.
The lattice undergoes a tetragonal deformation and a smaller
shear distortion. Finally, F3 relates the child structure to a supercell
of the square lattice that is different from those depicted in the
first two deformations. Having enumerated some of the strain
deformations, the algorithm then deforms the child structure and
rigidly translates the atoms such that at least one of the atoms is
in perfect coincidence with the lattice points of the parent
structure. Figure 2 illustrates the effect of applying the homo-
geneous strain distortion and rigid translation to the child
structure across all three lattice maps. The other atom then needs
to be displaced along the highlighted vector for each of the three
maps to bring it into perfect coincidence with the parent

structure. Having recovered the parent crystal structure from the
honeycomb child structure, the algorithm estimates the scalar
costs associated with each deformation and displacement
through Eqs. (20),(21),(31),(25).

Finding optimal maps
In the previous sections we outlined how a set of mappings M
linking any two arbitrary crystals can be generated. First a set of
strains linking the crystals is generated by counting over all
symmetrically distinct lattices. For each strain map, a set of n!
atomic maps can be generated by assigning and displacing every
atom in the child so that it comes into perfect coincidence with its
counterpart in the parent. We also defined two ways of
quantifying the extent of distortion in each of these maps
through cost functions. The first, which we refer to as the
geometric cost calculates a scalar quantity for the strain and
atomic deformations in each map Mm. The second, called
symmetry-adapted cost, uses the symmetry of the underlying
parent crystal structure to calculate these costs over only the
symmetry-breaking parts of the strain and displacement fields. In
both cases we define a total cost function that combines the
individual contributions from the strain and atomic distortions to
calculate a single scalar mapping cost for every mapping in M. In
this section we discuss optimization algorithms that can be
leveraged to quickly and efficiently obtain the map with the
lowest total mapping cost and an algorithm to systematically
traverse the multitude of mappings in increasing order of their
mapping costs
The lattice-deformation cost function for a particular super-

cell transformation T1 can be optimized simply by counting
over unimodular matrices N in Eq. (5). Some of the simplest
examples of N matrices describe operations such as a swap or
permutation of lattice vectors, or the replacement of a lattice
vector by its negative direction. Although N must always have a
determinant of ±1, there is no limit on the magnitude of its
coefficients. However, if N includes coefficients of very large
magnitude, the lattice vectors S01 ¼ S1 N that define the lattice
become increasingly elongated, and favorable mappings
become unlikely. To minimize the range of values of N that
must be considered, we first obtain the reduced cells of S1 and
L2 using, for example, the Lenstra–Lenstra–Lovász algorithm42.
The reduced cells are maximally compact, such that their lattice
vectors have the minimal possible lengths and the angles
between lattice vectors are as close to 90∘ as possible. The
reduced cell is not unique, although conventions do exist, such
as the Niggli reduced cell, that provide a unique definition, to
within a rigid rotation. If both L(2) and S(1) are in reduced form,
we need only consider lattice-equivalent transforms that have
small entries, e.g., {−1, 0, 1}, or {−2,…, 2}. Once a range for the
elements of N has been decided upon, it is straightforward to
count first over distinct supercells {T1} and then over
unimodular matrices {N} within the specified range and record
the lattice-deformation cost for each (T1, N). We find it useful for
many cases to simply retain all such mapping relationships,
sorted by their weighted lattice-deformation cost or to find the
best or K-best lattice-mapping relationships. The algorithm
remains unchanged when using the symmetry-adapted lattice
costs as defined by eq. (25).
A total mapping of C2 onto C1 comprises the ordered tuple

Mm ¼ ðT1;N; t!; p̂Þ, where T1 and N are integer matrices
specifying the lattice mapping, t

!
is a rigid translation of crystal

C2 relative to C1, and p̂ is a permutation specifying the atomic
mapping. The optimal atomic mapping for a given lattice
mapping (i.e., N and T1) is one that minimizes Eq. (21) with
respect to both t

!
and p̂. The rigid translation that minimizes Eq.

(21) for a given permutation operation, p̂, is simply the translation
that yields zero average displacement of the atoms in C2
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(if nonzero, the average displacement amounts to an overall ‘drift’
of C2 relative to C1). The permutation operation p̂, in contrast, is a
discrete variable– the minimization of Eq. (21) with respect to p̂ for
a particular choice of t

!
is a discrete combinatorial optimization

problem. Fortunately, since Eq. (21) is a simple linear combination
of contributions from ði; p̂½i�Þ pairs, this optimization is classified as
a linear assignment problem, for which well-known solution
methods exist43.
Because the atomic-deformation cost function in Eq. (21)

depends on both the discrete assignment p̂ and the continuous
translation vector t

!
, we propose an iterative procedure to

optimize the atomic-deformation cost. In the first step, we
identify potential rigid translations of C2 that are likely to be
near the optimal translation. These are translations that bring
an atom in C2 into coincidence with a chemically compatible
site of C1. It is preferable at this step to pick an atom from
among the minority species. For example, if C1 and C2 each
have two Cu atoms and four Au atoms per unit cell, we would
pick as candidate translation vectors t

!0
κ those that map one Cu

atom of C2 onto each of the two Cu atoms in C1. In general, we
denote the number of minority species in C2 as ms

Next, we find the optimal atomic assignment for each
attempted translation t

!0
κ , κ= 1,…, nms where nms is the number

of minority species. To do so, we construct the atomic assignment
cost matrix, Cð t!0

κÞ, for each rigid translation. The (i, j) element of
the cost matrix is the pairwise cost contribution of assigning site j

in C2 to site i in C1 for the rigid translation t
!0

κ . The elements of the
cost matrix are

Ci;jð t!
0
κÞ ¼

1
nA

d
!ð1Þ

i;j t
!0

κ

� �����
����
2

if si ¼ sj

1 if si≠sj

8><
>: (32)

where an element of the cost matrix is infinite (or at least very
large) when the species at sites i and j, labeled si and sj,
respectively, are chemically incompatible. This ensures that
chemically incompatible assignments are excluded from the
optimal assignment. Once the cost matrix is constructed accord-
ing to eq. (32), the optimal assignment p̂?κ is the solution to

p̂?κ ¼ argmin
p̂

X
i

Ci;p̂½j� t
!0

κ

� �
: (33)

The minimization of Eq. (33) can be solved by the Hungarian
algorithm44 (used in this work) or via linear programming
methods43.
Once the optimal assignment is found for an attempted

translation, t
!0

κ , we update the translation by subtracting the
average displacement (i.e., drift) due to that assignment p̂?κ
according to

t
!

κ ¼ t
!0

κ �
1
nA

X
i

d
!ð1Þ

i;p̂?κ ½i� t
!0

κ

� �
: (34)

Fig. 2 Schematic of the mapping algorithm. A summary of the steps involved in generating a map between a parent structure with a square
lattice and a child structure with the atoms arranged in a honeycomb pattern. Three lattice and atomic maps that relate these structures are
illustrated, with the final step being the evaluation of the lattice and atomic cost functions.
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Next, we calculate the atomic-deformation cost, eq. (21), for the
assignment/translation pair ðp̂?κ ; t!κ Þ and record the result. This
must be performed for each attempted translation κ= 1,…, nms.
The optimal atomic assignment p̂?κ for the imposed lattice map is
the one with the lowest atomic-deformation cost.
In certain extreme cases, it may be necessary to perform

additional optimization steps. When calculating the revised atomic
displacements due to the augmented translation t

!
κ , it should be

verified that the average total displacement (i.e., drift) is indeed
equal to zero, i.e.,

1
nA

X
i

d
!ð1Þ

i;p̂?κ ½i� t
!0

κ

� �
¼ 0 (35)

Violations of Eq. (35) may occur due to the periodic boundary
considerations imposed in Eq. (12). If an outlier atom has a very
large atomic displacement under translation t

!0
κ , it may indicate

that atom p̂½i� in C2 is nearly midway between two periodic images
of site i in C1. In such a case, a small change in rigid translation
may affect a large change in the displacement of the atom (e.g.,
the revised translation swaps the first- and second-nearest
periodic image of atom i). If a violation of Eq. (35) is encountered,
it indicates that the optimal atomic assignment may be unstable
relative to small rigid translations in the vicinity of t

!0
κ . As such, the

augmented translation t
!

κ may be recalculated iteratively until Eq.
(35) is satisfied, with the augmented translation at each iteration
added to the list of plausible translations to be considered for
solution of the linear assignment problem.
Minimizing the symmetry-adapted atomic cost requires addi-

tional steps. Unlike the geometric-cost function of eq. (21), the
symmetry-adapted atomic cost can only be calculated once a
particular assignment of atoms has been chosen. As a result the
Hungarian algorithm cannot be directly applied to obtain the
minimum cost assignment. The algorithm can, however, be
adapted to systematically search over suboptimal maps to arrive
at the assignment of atoms that minimizes the symmetry-adapted
cost. To do this, we adopt Murty’s algorithm45 to generate a queue
of suboptimal maps that are arranged in increasing magnitude of
their geometric cost (Eq. (21)). We then search this queue up to
some maximum depth that is user specified and recalculate the
symmetry-adapted cost for each of these elements. The element
with the minimal symmetry-adapted cost is then recorded as the
optimal map. This algorithm is guaranteed to provide the optimal
map if all n! assignments are enumerated. However in practice we
have found that the assignment that minimizes the symmetry-
adapted cost is often found by searching over the first
5–10 suboptimal assignments. A detailed algorithm outlining a

methodology to systematically enumerate all possible suboptimal
maps is outlined in the supplementary information.

Case studies
We illustrate the mapping algorithm by first comparing the
geometric-cost functions against the symmetry-adapted cost
function for two parent structure prototypes. Next we demon-
strate how well-known structural transformation pathways can be
identified by systematically analyzing all possible mappings and
their associated cost function values.
The hexagonal close-packed (hcp) crystal structure is usually

characterized by two lattice parameters that are conventionally
denoted a and c. The distance between the atoms in a particular
triangular layer of hcp is equal to a while the spacing between the
layers is half the c lattice parameter. The underlying crystal
structure remains qualitatively unchanged across all values of a
and c. It is desirable to use a mapping function that is insensitive
to such changes in the crystal structure. Figure 3 compares the
difference between the geometric and symmetry-adapted lattice
costs for a child structure with a wide-range of c

a ratios that is
mapped on to a parent crystal with a c

a � 1:6. The geometric cost
rises rapidly at values that deviate from the parents’ lattice
parameters. On the other hand the symmetry-adapted cost
remains exactly zero across the full range of values.
Figure 4a shows the crystal structure of an orthorhombic phase,

denoted O0, that is frequently formed in titanium-rich alloys46.
Similar to hcp, the O0 crystal structure consists of triangular layers;
however, they do not adopt the ideal stacking as in hcp as is
illustrated in Fig. 4a. Furthermore, the unit cell of O0 is slightly
strained relative to that of hcp. As a result, the O0 structure has a
lower symmetry than hcp. We ignore the lattice strain for the
purpose of demonstrating our algorithm. Figure 4b compares the
geometric cost against the symmetry-adapted cost when map-
ping O0 onto a reference O0 structure as a function of the shuffle
amplitude of alternating close-packed layers of O0 (i.e., along the
arrows in Fig. 4a). The geometric cost rapidly increases with the
shuffle amplitude until it reaches a maximum before it starts
decreasing. The decrease in geometric cost is due to the
periodicity of the parent crystal structure. In contrast to the
periodically varying geometric cost, the symmetry-adapted cost
remains identically zero. The shuffle of alternating close-packed
planes as shown in Fig. 4 do not result in further symmetry
breaking of O0 and thus do not incur a cost penalty. We note that
as the layers are translated relative to each other in O0, a particular
shuffle amplitude will result in the formation of perfect hcp. It is
not possible to easily identify shuffles that increase the symmetry

Fig. 3 Geometric cost versus symmetry-adapted cost. A compar-
ison of the symmetry-adapted cost with the geometric cost when
mapping an hcp crystal structure with varying c/a ratio onto a
reference hcp crystal with a c/a ratio of ≈1.6.

Fig. 4 Geometric cost versus symmetry-adapted cost. A compar-
ison of the symmetry-adapted costs against the geometric costs
when mapping the O0 structure with varying shuffle amplitude onto
a reference O0 structure. a A schematic of the O0 crystal structure.
The arrows signify a shuffle mode of the triangular layer of blue
atoms between rigid triangular layers of green atoms. b Comparison
between the symmetry-adapted and geometric costs.
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of the underlying crystal with just the symmetry operations of the
low-symmetry structure.
There is a large number of structural relationships between any

pair of crystals. As an illustration, we explore mapping relation-
ships between well-known crystal structures such as bcc, fcc, hcp,
and ω. The ω phase can be described as alternating triangular and
honeycomb layers, with the atoms of the triangular layers residing
above and below the centers of the hexagons of the honeycomb
layers. Figure 5 plots the lattice and atomic displacement costs for
different mappings of fcc, hcp, and ω onto bcc. Three pathways
connecting bcc with hcp, fcc, and ω are highlighted in Fig. 5b. Also
included are different mappings of bcc onto bcc, which are
denoted with a circle.
Several of the mappings with small mapping scores in Fig. 5

correspond to the end points of well-known pathways that
convert one crystal structure into another. Among them are the
Bain path that connects bcc to fcc19,26,27, the Burgers path that
connects bcc to hcp20,26,27 and a path that converts bcc into
ω21,22,27. Each pathway is linked to a particular mapping relation-
ship. The Bain path, illustrated in Fig. 6, converts bcc into fcc
through a tetragonal tensile strain of the bcc unit cell vectors

along one of its cubic axes. The mapping corresponding to this
path only has a lattice cost, but no atomic displacement cost. The
resulting fcc crystal can be converted to another bcc crystal
through a Bain path along a different fcc cubic axis. This leads to
the mapping relationship between two bcc crystals denoted by
the circle with a lattice cost of ≈0.1 in Fig. 5.
The Burgers path, which connects bcc to hcp, connects end

states with a mapping that has both a lattice cost and an atomic
displacement cost. As illustrated in Fig. 6, the Burgers path couples
a compressive tetragonal distortion of bcc along one of its cubic
axes, followed by a shuffle of (110) planes as referenced to the
original bcc lattice. While the lattice cost of the Burgers path is
smaller than that of the Bain path, it does have a sizable atomic
displacement cost.
A third well-known path, due to Silcock21 and de Fontaine22,47,

connects bcc to ω. Early descriptions of the bcc to ω path invoked
a transverse shuffle of ð112Þ planes along the (111) direction21,48.
Later, de Fontaine pointed out a more intuitive description in
terms of longitudinal shuffles of (111) planes22. This is illustrated in
Fig. 7, where every two out of three (111) planes of bcc collapse to
form a honeycomb layer, thereby forming the ω crystal structure
consisting of alternating honeycomb layers and triangular layers.
The supercell of bcc must have an integer volume of three and has
a hexagonal unit cell, with its A

!
and B

!
vectors spanning one

family of (111) planes and its C
!

axis perpendicular to the same
family of (111) planes of bcc (i.e., A

!
is parallel to ½101�, B

!
is

parallel to ½011� and C
!

is parallel to [111]). As is evident in Fig. 5,
the mapping between bcc and ω corresponding to the Silcock-de
Fontaine path has a very small lattice cost but a large atomic
displacement cost due to the collapse of adjacent (111) planes.
Figure 8 explores the structural relationship between hcp and

common crystal structure prototypes such as bcc, fcc, ω, and a
family of topologically close-packed phases. The Burgers transfor-
mation relating bcc and hcp requires a large atomic shuffle and a
small lattice strain. The transformation pathway to the fcc
structure with an atomic cost of ≈0.07 can be viewed as
successively applying the Burgers and Bain transformation to hcp.
Structural relationships between hcp and the ω crystal structure

have been extensively explored by Trinkle et al.23,24. Our mapping
algorithm shows that two of these transformation pathways,
labeled TAO-1 and Silcock, have the smallest cost. The Silcock
pathway primarily involves atomic shuffles within the basal plane
such that the (0001) planes of hcp are transformed into the ð1120Þ
planes of ω. The TAO-1 transformation pathway, which is
predicted to have the lowest barrier in pure titanium23, transforms
the basal plane of hcp to ð0111Þ planes of ω. Both transformation
pathways require significant shuffles but are accompanied by
small strain distortions.

Fig. 5 Mapping costs of common structures onto bcc. The lattice and atomic costs when mapping bcc, fcc, hcp, and ω onto a reference bcc
crystal structure. a Most mappings have large mapping costs. b Several well-known transformations, such as the Bain, Burgers, and de
Fontaine-Silcock path, have smaller mapping costs.

Fig. 6 The Bain and Burgers paths. The bcc crystal can be
converted to fcc through a tetragonal strain known as the Bain
path19 or it can be converted to hcp along the Burgers path, which
combines a compressive tetragonal strain with an atomic shuffle20.
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Figure 8 also shows mapping costs for transformation pathways
that link hcp to a family of topologically close-packed structures.
These pathways, as described by Natarajan and Van der Ven25,
involve a transformation of a subset of the hcp close-packed
triangular layers into kagome nets and a dissociation of other
close-packed triangular layers into three new, less dense triangular
layers. The formation of a kagome net from a triangular lattice can
be realized with in-plane shuffles while the dissociation of
triangular lattices into three new triangular lattices occurs with
out-of-plane shuffles. A large number of topologically close-
packed phases that include C14, C15, and C36 Laves phases,
CaCu5, Be3Nb, and Co7Gd2 can be generated from hcp through a
combination of in-plane and out-of-plane shuffles25.

DISCUSSION
We have described an approach to enumerate mappings between
any pair of crystal structures. The approach first identifies
symmetrically distinct lattice maps and accompanying strains that
deform the lattice of the child structure onto that of the parent. For
each lattice map, the basis atoms within the child structure are
displaced until they coincide perfectly with the parent structure. As
there are an infinite number of ways to mathematically link two
crystal structures, we introduced two cost metrics that serve as a
measure of the distance along a map. The geometric-cost metric
measures the size of the strain and displacement fields required to
bring the two structures into coincidence. The symmetry-adapted
cost metric measures only that part of the distortion field that breaks
the symmetry of the parent crystal structure. Finally we outlined
optimization and search algorithms that can be employed to obtain
the structure mapping with lowest cost metric and a family of

suboptimal structural transformations. The mapping algorithm can
be used to connect ordered crystals to unordered host structures or
other ordered phases at the same composition. The algorithm has
been implemented within the CASM software package15,38,39. The
implementation can be used to generate maps between any pair of
crystal structures and to assign a cost to each map.
The pathway generation scheme outlined here has several

similarities to that introduced by Trinkle et al.24. For example, the
enumeration over possible lattice mappings using unimodular
matrices has much in common with the approach of Trinkle et al.24.
There are, however, several crucial differences. First, the approach of
this work explicitly leverages the symmetry of the underlying parent
and child crystal structures to prune the set of possible maps and to
discern a symmetry-adapted mapping score. As outlined in section
Accounting for symmetry during lattice mappings, strain deforma-
tions that are identical under the point group operations of the two
crystal structures are screened using eq. (10). Trinkle’s algorithm relies
on comparisons of the eigenstrains of the deformation tensors to
prune elements of the map set M that represent the same
deformation field but are numerically different. Second, our approach
employs the Hungarian algorithm (and Murty’s algorithm) to system-
atically enumerate all feasible assignments of atoms between the
child and parent structures when generating displacement fields. In
contrast, a brute force approach that only counts over “small”
displacements of each atom is used in24. Finally, we propose a way of
characterizing the complexity of the transformation pathway using a
symmetry-adapted cost metric. This cost metric accounts for only
symmetry-breaking deformation fields and enables the comparison of
qualitatively similar crystal structures that might have very different
lattice parameters and atomic coordinates. This is an especially

Fig. 7 The de Fontaine path between bcc and omega. The ω crystal structure can be formed from bcc by collapsing two out of every three
bcc (111) planes22.

Fig. 8 Mapping costs of common structures onto hcp. Mapping costs of bcc, fcc, hcp, and ω onto a reference hcp crystal. a A large number
of mappings have large atomic costs. b Several previously identified mappings20,23,25 have much smaller mapping costs.
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powerful feature that, to our knowledge, has not yet been exploited
in any previously developed crystal mapping algorithms.
Our systematic enumeration of pathways between common

crystal structures as summarized in Figs. 5 and 8 has revealed that all
known structural transformations can be associated with pathways
that have the smallest or close to the smallest mapping costs. The
mapping costs enable the systematic exploration of physically
meaningful structural transformation pathways. An analysis of
transformation pathways relating several commonly occurring
crystal structure prototypes49 using the algorithm outlined in this
study has revealed seven new structural transformation pathways.
Using this algorithm to link all known crystal structure prototypes
will undoubtedly generate a rich database of phase transformation
pathways that will provide insights about a wide variety of structural
phase transformations.
The algorithms described here and its implementation within

CASM should prove invaluable in organizing high-throughput first-
principles databases by enabling a precise cataloguing of crystal
structures and the identification of relaxations to new structures
due to dynamical instabilities. Similarly, the algorithms will benefit
the field of alloy theory39,50,51, where cluster expansion Hamilto-
nians are trained to first-principles energies of a large number of
chemical decorations over the sites of a particular parent crystal
structure52–64. In many instances, a subset of orderings on a parent
crystal exhibit dynamical instabilities and relax to a decoration on a
different parent crystal structure59,65. These relaxations contam-
inate the training dataset of a cluster expansion and must be
detected and eliminated from the training pool. A robust mapping
and distance metric is necessary to establish whether a particular
ordering can still be considered a decoration on the original parent
crystal structure. The mapping tool can also be used to identify
symmetric equivalence of deformed crystals, as for example, the
crystallographic models of sheared bicrystals used to calculate
generalized stacking fault energies66.

METHODS
Mapping crystal structures
Transformation pathways connecting various crystal structures were gener-
ated with the Clusters Approach to Statistical Mechanics (CASM) code. Figures
4 and 3 were generated by employing the symmetry-adapted and geometric-
cost metrics to quantify the complexity of the transformation pathways. The
mapping costs shown in Figs. 5 and 8 were generated by searching for
symmetrically distinct transformation pathways connecting hcp and bcc to
several commonly occurring crystal structures. For each set of parent and
child structures, we considered all symmetrically distinct supercells of the child
containing at most 12 atoms. Lattice mappings relating the child super-
structure to a corresponding superstructure of the parent were generated by
counting over all unimodular matrices containing entries with a maximum
magnitude of 2. We then recorded the five best atomic maps for each lattice
map with the optimality measure being given by the geometric cost. The
symmetry-adapted cost metrics were calculated for each of these sets of
lattice and atomic maps using Eqs. (24), (31). The symmetry-adapted lattice
costs were calculated relative to the parent structures.

DATA AVAILABILITY
The crystal structures used in this study are provided in the Supplementary
Information.

CODE AVAILABILITY
The algorithms described in this study have been implemented in the Clusters
Approach to Statistical Mechanics (CASM) open source code that is
available for download from https://github.com/prisms-center/CASMcode. The
mapping algorithms are seamlessly integrated into the workflow of CASM and are
leveraged when populating internal configurational databases from electronic
structure calculations or when importing arbitrary structures through the “casm
import” command.
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