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Deep Bayesian local crystallography
Sergei V. Kalinin 1✉, Mark P. Oxley 1, Mani Valleti2, Junjie Zhang3,6, Raphael P. Hermann 3, Hong Zheng4, Wenrui Zhang1,3,7,
Gyula Eres 3, Rama K. Vasudevan 1 and Maxim Ziatdinov 1,5

The advent of high-resolution electron and scanning probe microscopy imaging has opened the floodgates for acquiring atomically
resolved images of bulk materials, 2D materials, and surfaces. This plethora of data contains an immense volume of information on
materials structures, structural distortions, and physical functionalities. Harnessing this knowledge regarding local physical
phenomena necessitates the development of the mathematical frameworks for extraction of relevant information. However, the
analysis of atomically resolved images is often based on the adaptation of concepts from macroscopic physics, notably translational
and point group symmetries and symmetry lowering phenomena. Here, we explore the bottom-up definition of structural units and
symmetry in atomically resolved data using a Bayesian framework. We demonstrate the need for a Bayesian definition of symmetry
using a simple toy model and demonstrate how this definition can be extended to the experimental data using deep learning
networks in a Bayesian setting, namely rotationally invariant variational autoencoders.
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INTRODUCTION
Macroscopic symmetry is one of the central concepts in the
modern condensed matter physics and materials science1–6.
Formalized via point and spatial group theory, symmetry under-
pins areas such as structural analysis, serves as the basis for the
descriptive formalism of quasiparticles and elementary excitations,
phase transitions, and mesoscopic order-parameter-based
descriptions, especially of crystalline solids. In macroscopic
physics, symmetry concepts arrived with the advent of X-ray
methods developed by Bragg, and for almost a century remained
the primary and natural language of physics. Notably, the rapid
propagation of laboratory X-ray diffractometers and large-scale X-
ray scattering facilities provided ample experimental data across
multiple material classes and serve as a necessary counterpart for
theoretical developments. Correspondingly, symmetry-based
descriptors have emerged as a foundational element of con-
densed matter physics and materials science alike.
The natural counterpart of symmetry-based descriptors is the

concept of physical building blocks. Thus, crystalline solids can be
generally described via a combination of the unit cells with
discrete translational lattice symmetries2,3,7. At the same time,
systems such as Penrose structures8–13 possess well-defined
building blocks but undefined translation symmetry. Finally, a
broad range of materials lack translational symmetries, with
examples ranging from structural glasses and polymers to
ferroelectric and magnetic morphotropic systems14–22. Remark-
ably, the amenability of symmetry-based descriptors have led to
much deeper insights into the structure and functionalities of
materials with translational symmetries compared to (partially)
disordered systems23–25.
The beginning of the 21st century has seen the emergence of

real space imaging methods including scanning probe microscopy
(SPM)26–28 and especially (scanning) transmission electron micro-
scopy ((S)TEM)29–31. Following the introduction of the aberration

corrector in the late ‘90s32 and the advent of commercial
aberration-corrected microscopes, atomically resolved imaging is
now mainstream. Notably, modern STEMs allow atomic columns
to be imaged with ~pm-level precision33. This level of structural
information allows insight into the chemical and physical
functionalities of materials, including chemical reactivity, mag-
netic, and dielectric properties utilizing structure-property correla-
tions developed by condensed matter physicists from
macroscopic scattering data34–40. Over the last decade, several
groups have extended these analyses to derive mesoscopic order
parameter fields such as polarization41–44, strains and chemical
strains45, and octahedra tilts46–48 directly from STEM and SPM
data. Strain measurements have also been done in reciprocal
space using nano-diffraction49, ultrafast CBED50, and a combina-
tion of 4D-STEM and machine learning51. In several cases, these
data can be matched to the mesoscopic Ginzburg-Landau models,
providing insight into the generative mesoscopic physics of the
material52,53. Recently, a similar approach was proposed and
implemented for theory-experiment matching via microscopic
degrees of freedom54–56.
Yet, despite the wealth of information contained in atomically

resolved imaging data, analyses to date were almost invariably
based on the mathematical apparatus developed for macroscopic
scattering data57–61. However, the nature of microscopic measure-
ments is fundamentally different. For the case of ideal single
crystal containing a macroscopic number of structural units,
the symmetry of the diffraction pattern represents that of the
lattice and the width of the peaks in Fourier space is determined
by the intrinsic factors such as angle resolution of the measure-
ment system, rather than disorder in the material. The presence of
symmetry breaking distortions, such as the transition from a cubic
to tetragonal state, is instantly detectable from peak splitting. For
microscopic observations only a small part of the object is visible
and the positions of the atoms are known only within an
uncertainty interval; this uncertainty can be comparable to the
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magnitude of the symmetry breaking feature of interest such as
tetragonality or polarization. Thus, questions arise: What image
size is it justified to define the symmetry from the atomically
resolved data? and What level of confidence can be defined?
Ideally, such an approach should be applicable not only for
structural data, but also for more complex multi-dimensional data
sets such as those available in scanning tunneling spectroscopy
(STS)62 in scanning tunneling microscopy (STM), force-distance
curve imaging63 in atomic force microscopy, or electron energy
loss spectroscopy (EELS)64,65 and ptychographic imaging66–68 in
scanning transmission electron microscopy (STEM).
Here we propose an approach for the analysis of spatially

resolved data based on deep learning in a Bayesian setting. This
analysis utilizes the synergy of three fundamental concepts; the
(postulated) parsimony of the atomic-level descriptors corre-
sponding to stable atomic configurations, the presence of
distortions in the idealized descriptors (e.g., due to local strains
or other forms of symmetry breaking), and the presence of
possible discrete or continuous rotational symmetries. These
concepts are implemented in a workflow combining feature
selection (atom finding), a rotationally invariant variational
autoencoder to determine symmetry invariant building blocks,
and a conditional autoencoder to explore intra-class variability via
relevant disentangled representations. This approach is demon-
strated for 2D imaging data but can also be generalized for more
complex multi-dimensional data sets.

RESULTS AND DISCUSSION
Why local symmetry is Bayesian
Here, we illustrate why the consistent definitions of local
symmetry properties necessitates the Bayesian framework. As an
elementary, but easy to generalize example, we consider the 1D
diatomic chain formed by alternating atoms (1) and (2) with
coordinates generated by the rule xð1Þi ¼ xð2Þi þ a, xð2Þiþ1 ¼ xð1Þi þ b.
The atomic coordinates with some uncertainty stemming from the
observational noise, sampling, etc. are experimentally observed
and hence, the atomic positions, xexpj , that are the sum of the ideal
positions, xð1;2Þj , and noise, δ, are available for observation. We
assume that the atom types are not observed (e.g. they have
similar contrast), i.e., atoms (1) and (2) are indistinguishable.
Correspondingly, we aim to answer the question - what number of
observations can distinguish the simple chain, a= b, and diatomic
chain, a≠b? Note that this problem is equivalent to, e.g.,
distinguishing a square and tetragonal unit cell and can be
generalized to more complex cases with the addition of several
parameters.
The classical answer to this question is given by frequency-

based statistics. Here, an alternative hypothesis (i.e. single vs.
double chain) is formed where the point estimates for the average
lattice parameters and their dispersions are calculated and the p-
test can be used determine the correctness of the hypothesis.
However, this approach has several significant limitations: it does
not consider any potential prior knowledge of the system, it
implicitly relies on the relevant distributions being Gaussian, and it
is sensitive to the choice of an ideal system. A detailed analysis of
the relevant drawbacks is given by Kruschke69.
An alternative approach to these problems is via the Bayesian

framework, based on the concept of prior and posterior
probabilities linked as70,71:

p θijDð Þ ¼ p Djθið Þp θið Þ
p Dð Þ (1)

where D represents the data obtained during the experiment,
p Djθið Þ represents the likelihood that this data can be generated
by the model, i, with parameter, θi . The prior, p θið Þ, reflects the
prior knowledge about the model. The posterior, p θi jDð Þ,

describes the new knowledge (i.e., updated model and model
parameters) as a result of the observational data. Finally, p Dð Þ is
the denominator that defines the total space of possible
outcomes.
As an example, a set of diatomic chains is generated with bond

lengths derived from two normal distributions, N(µ= 0.5, σ2=
0.01) and N(µ= 1.5, σ2= 0.01), where μ is the mean and σ the
standard deviation of the distribution. These two sets of bond
lengths are treated independently and are referred to as odd and
even bond lengths, respectively. The likely distributions for this
case are also assumed to be normal distributions, N(µ= µ1, σ= σ1)
and N(µ= µ2, σ= σ2). A total of four parameters, µ1 and σ1for the
odd bond lengths and µ2 and σ2 for the even bond lengths,
exhaustively determine the parameter space. We refer to this
analysis as case-1.
The key element of Bayesian inference is the concept of prior,

summarizing the known information on the system70–72. In
experiments, the priors are typically formed semi-quantitatively
based on general physical knowledge of the material (e.g., SrTiO3

is known to be cubic with lattice parameter 3.1 Å). For this model
example, the prior distributions of all four parameters are formed
based on the first 10 observations, Y10. The prior distribution for µ1
and µ2 is a Laplace distribution, L(µ= Y10, b= 0.2*Y10), whereas for
σ1 and σ2 it is a uniform distribution, U(0, Y10). This method of prior
selection removes any a priori bias about the sample and only
uses data obtained from experimental images. However, the priors
can also be obtained from known materials properties (assuming a
perfect imaging system). The posterior distributions of the
parameters are updated with each datapoint. Figure 1a shows a
schematic of how the odd and even chain analyses can be
extended to a more general 2D Bravais lattice. Figure 1b shows
the final posterior distributions of the parameters involved, with
the posterior distributions after an update with first respective
datapoints of each set shown by the solid lines. The means of both
normal distributions are close to the real values and are far away
from each other.
For a non-trivial case, odd and even bond lengths are derived

from the normal distributions, N(µ= 0.95, σ2= 0.01) and N(µ=
1.05, σ2= 0.01). Here, the difference in the means is on the order
of the standard deviation. We refer to this analysis as case-2.
Figure 1b shows the final posterior distributions of the
parameters involved, with the posterior distributions after the
first update shown by the solid lines. To answer the question of
whether the set of bond lengths belong to a simple chain or a
diatomic chain, we construct the distribution of the difference in
bond lengths with a likelihood, N(µ= µ3, σ= σ3). For a simple
ideal lattice, this distribution should be centered at zero with no
standard deviation. Figure 1d shows the posterior distribution for
µ3 as a function of the number of datapoints. We then construct
an interval region of practical equivalence (ROPE), which is the
region around the hypothesis where the hypothesis is still true. A
decision on the validity of the hypothesis can be made by
comparing the highest density interval (HDI, 94% credible
interval) and the ROPE. For illustration purposes, the ROPE is
considered to be [−0.1, 0.1] in Fig. 1e and the HDI for µ3 is also
shown. Decision rules for different overlaps of HDI and ROPE are
discussed in e.g., ref. 70.
This simple example illustrates that for microscopic observa-

tions, many fundamental parameters are defined only in the
Bayesian sense as the posterior probability densities. They can be
related to the macroscopic definitions through concepts such as
the practical equivalence. For large system sizes, the Bayesian
estimates converge to the macroscopic model. We pose that the
Bayesian descriptions of symmetry and structural properties from
the bottom up should be Bayesian in nature, updating the prior
knowledge of the system with the experimental data.
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Local crystallographic analysis
As a second concept, we discuss established approaches for the
systematic analysis of atomic structures from experimental
observations and the deep fundamental connections between
the intrinsic symmetries present (or postulated) in the data and
the neural network architectures. For example, the classical fully
connected multilayer perceptron intrinsically assumes the pre-
sence of potential strong correlations between arbitrarily sepa-
rated pixels of the input image, resulting in a well-understood
limitation of these networks to only relatively low-dimensional
features. Convolutional neural networks (CNNs) are introduced as
a universal approach for equivariant data analysis where the
features of interest can be present anywhere within the image
plane. This network architecture implicitly assumes the presence
of continuous translational symmetry, similar to the sliding
window/transform approach73–75. While allowing derivation of
mesoscopic information, even for atomically resolved data, this
approach suffers from inevitable spatial averaging and ignores the
existence of well-defined atomic units.
If the positions of the atomic species can be determined, the

analysis can be performed based on the local atomic neighbor-
hoods (local crystallography)76,77 or the full atomic connectivity
graph. In these approaches, the full image is reduced to atomic
coordinates and the subsequent analysis is based on the latter. It
is important to note that in this case all remaining information in
the image plane is ignored, i.e., the full data set is approximated
by the point estimates of the atomic positions. Finally, the
combined approach can be based on the analysis of sub-images
centered on defined atomic positions78,79. In this case, the
known atomic positions provide the reference points and the
sub-images contain information on the structure and function-
ality around them.
For atomic and sub-image-based descriptors, the behavior

referenced to the ideal behavior is of interest and is defined by
high-symmetry positions or ideal lattice sites. If these are known,

then behaviors such as symmetry-breaking distortions can be
immediately quantified and explored. However, the very nature
of experimental observations is such that this ground truth
information is not available directly, necessitating suitable
approximations. For example, an ideal lattice can be postulated
and average parameters can be found using a suitable filtering
method. However, this approach is sensitive to minute distor-
tions of the image (e.g., due to drift) and image distortion
correction is required. Similarly, variability in the observed
images due to microscope configurations (mis-tilt, etc.) can
provide observational biases.
These examples illustrate that deep analysis of the structure

and symmetry from atomically resolved data sets necessitates
simultaneous (a) identification of ideal building blocks and
symmetry breaking distortions, while (b) allowing for general
rotational invariance in the image plane and (c) accounting
for discrete translational symmetry as implemented in the
Bayesian setting. Ideally, such descriptors will be referenced to
local features.

Bayesian local crystallography
Here, we aim to combine the local crystallography and Bayesian
approaches. The general workflow for deep Bayesian local
crystallographic analysis is shown in Fig. 2a. For the first step,
the STEM image or a stack of images are fed into the deep
fully convolutional neural network (DCNN). for semantic
segmentation and atom finding80,81. The semantics segmenta-
tion refers to a process where each pixel in the raw
experimental data is categorized as belonging to an atom (or
to a particular type of atom) or to a “background” (vacuum). The
atom finding procedure is then performed on segmented data
by finding a center of the mass of each segmented blob
(corresponding to an atom) with a sub-pixel precision. The details
of the DCNN configuration and implementation are available via
the AtomAI repository on GitHub82. The DCNN-derived atomic

Fig. 1 Symmetry in Bayesian setting. a Schematic illustration of the correspondence between even-odd chains and 2D lattice. b Final
posterior distributions of parameters (µ1, µ2, σ1, and σ2) involved in analysis of case-1, posterior distributions after first update are shown by
solid lines. c Final posterior distributions of parameters (µ1, µ2, σ1, and σ2) involved in case-2, posterior distributions after first update are
shown by solid lines. d Posterior distribution of µ3 as a function of number of datapoints for case-2. e High density interval (HDI) of µ3 (blue)
and region of practical importance (ROPE) (red).
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positions are used to define the stack of sub-images centered
on each atom and represent the image contrast in the vicinity of
each atom.
Note that this sub-image description is chosen since both the

original STEM data and DCNN reconstructions contain informa-
tion beyond atomic coordinates, such as column shapes and
unresolved features, and this needs to be taken into account
during analysis. It is important to note that the choice of sub-
image stack (original image, smoothed image, or DCNN output)
defines the type of information that will be explored. For
example, DCNN outputs define the probability density that a
certain image pixel belongs to a given atom class that is optimal
for exploration of chemical transformation pathways. At the
same time, original image contrast may be optimal for
exploration of physical phenomena. Finally, we note that the
extremely important issue in this analysis is the correction of
distortions for effects such as fly-back delays or general image
instabilities, which can alleviate unwanted artifacts and intro-
duce new ones. Several examples of these will be discussed
below. If necessary, these sub-images can be used to further
refine the classes using standard methods such as principal
component analysis (PCA) or Gaussian mixture modelling (GMM).
GMM is a type of clustering technique that assumes that each
cluster is a multivariate normal distribution. The clusters are
characterized by a mean and a covariance matrix. The
parameters (means and covariance matrices) of the clusters are
estimated by maximum a posteriori estimation83. However, as
mentioned above, these clustering methods will tend to separate
the atoms into symmetry equivalent positions, leading to over-
classification and poorly separable classes.
To avoid this problem, the subsequent step in the analysis is

the rotationally invariant variational autoencoder (rVAE). In
general, VAE is a directed latent-variable probabilistic graphical
model. It allows learning stochastic mapping between an
observed x-space (in this case, space of the sub-images) with a
complicated empirical distribution and a latent z-space whose
distribution can be relatively simple84. Recently, it has been used
by a subset of authors for exploring the (latent) order parameter

from imaging data on dynamically evolving systems ranging
from monolayer graphene85 to protein nanoparticles86. More
specifically, the VAE consists of generative and inference
models, which are Bayesian networks of the form p xjzð ÞpðzÞ
and q zjxð Þ, respectively. For the generative model, the latent
variable, zi, is a “code” (hidden representation) from which it
reconstructs xi. The potentially complex, non-linear dependency
between xi and zi is parameterized by a (deep) neural network
(NN) with weights θ, pθ xjzð Þ, which takes “code” zi as an input.
The inference model is used to approximate the posterior of the
generative model, pθ zjxð Þ, and represents a flexible family of
variational distributions parameterized by a NN with weights ϕ,
qϕ zjxð Þ. The NN-parameterized inference and generative models
are frequently referred to as encoder and decoder, respectively.
The point estimates for the parameters of the two networks
(θ and ϕ) are jointly learned by maximizing the evidence lower
boundary (ELBO) consisting of the reconstruction loss term and
Kullback-Leibler (KL) divergence term with a mini-batch
stochastic gradient descent (SGD). We note that a fully Bayesian
treatment of the encoder and decoder weights is also possible,
in which case the mini-batch SGD training procedure is
substituted by a full-batch Hamiltonian Monte Carlo. However,
as of now, aside from extremely high computational costs, the
fully Bayesian neural networks show surprisingly poor perfor-
mance on the data corrupted by noise87, which makes them
potentially suboptimal for experimental data.
Here, we aim to learn a rotationally invariant code for our

data. Unfortunately, standard neural network layers (fully
connected and convolutional) do not respect rotational sym-
metry or invariance. One potential way to circumvent this
problem is to use convolutional layers with modified, steerable
filters88. Another approach, which is specific to the VAE set up, is
to disentangle rotations from image content by making the
generative model (decoder) explicitly dependent on the
coordinates (Fig. 2b)89. In this case, we sample our ‘latent angle’
from a prescribed distribution (more details below) and use it to
perform a 2D rotation of the coordinate grid, R γð Þxg. The rotated
grid is then passed to a decoder where it is concatenated with

Fig. 2 Schematic of the Bayesian local crystallographic and c(r)VAE workflow. a General workflow of deep Bayesian local crystallographic
analysis. b Schematic of (conditional) rotational variational autoencoder, (c)rVAE, workflow. In (c)rVAE, the encoder layers can be either fully
connected or convolutional, whereas the decoder layers are always fully-connected layers (in the current implementation, inclusion of
convolutional layers breaks the rotational symmetry).
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“standard” VAE latent variables. Overall, the generative process
is defined as

p zð Þ ¼ N zj0; Ið Þ; p γð Þ ¼ N γj0; s2γ
� �

(2)

pθ xjz; γð Þ ¼ Bern xjg z; γð Þð Þ (3)

where p zð Þ is a standard normal prior for the continuous latent
code, p γð Þ is a normal prior for the latent angle γ with a
“rotational prior” s2γ set by a user, and Bern xjg z; γð Þð Þ is a
parametrized Bernoulli likelihood function where g is a decoder
NN with the coordinate transformation (followed by the
concatenation) as an “input layer”. We note that while priors
other than Normal, including von Mises and projected normal
distributions90, can in principle be used for the latent angle, we
did not find empirically any significant difference in the results
for the dataset discussed in this paper. The encoder in our
inference model outputs the approximate parameters of the
posterior distribution,

qϕ z; γjxð Þ ¼ N z; γjμϕ xð Þ; σ2ϕ xð Þ
� �

(4)

where μϕ xð Þ and σ2ϕ xð Þ correspond to the multi-head encoder
NN. The loss objective (the negative ELBO) is computed as

L ¼ LRE þ DKL qϕ zjxð Þkp zð Þ� �þ DKL qϕ γjxð Þkp γð Þ� �
; (5)

where the first term is a reconstruction error (which, in case of
Bernoulli likelihood, is equivalent to a binary cross-entropy loss),
and the second and third terms are the KL divergences
associated with image content and rotation angle, respectively.
Hence, for the rVAE, the latent space is configured to comprise

the rotational angle and additional unstructured latent variables.
We note that other (than rotation) affine transformations including
lateral offsets and scale can be added as well. These VAE
configurations are ideally suited for the analysis of the variability
in the STEM sub-image stack since uncertainties in the atomic
positions (if any) can be naturally accommodated through the
offset latent variables and the continuous or discrete rotations are
captured by the angle variable. The remaining latent variables can
be used in a manner similar to classical variational autoencoders84

to explore the variability of structural patterns in the latent space.
We used a 2-layer perceptron with 128 “neurons” in each layer

activated by hyperbolic tangent function for both encoder and
decoder. Their weights were trained using a mini-batch
stochastic gradient descent with Adam optimizer91 as imple-
mented in PyTorch deep learning framework92. The mini-batch
size was set to 32.

Application of rVAE to a multiphase system
The rVAE analysis of a multiphase system is illustrated in Fig. 3.
Here, Fig. 3a shows the atomically resolved STEM image of the
multiphase (LaxSr1-x)MnO3 (LSMO–NiO system. The dense NiO
inclusions with a rock salt structure in the perovskite LSMO matrix
are clearly observed, as visualized in the white inset. DCNN allows
one to locate virtually all the atomic units in the LSMO matrix and
a majority of the atoms in the NiO. The sub-image stack formed
from the DCNN output was analyzed by rVAE, A typical frame from
this stack for a window size of 36 pixels is shown by the red inset
in Fig. 4a. Figure 3b is a representation of the atomic
configurations in the latent space of the system. For the window
size of 36 pixels used here, there is little variation in the Z1
direction but significant variation in the Z2 direction.
The encoded angle, Fig. 3c, shows a clear checkerboard pattern

in the LSMO phase and is uniform in the NiO phase. The spatial
maps of the latent components are shown in Fig. 3d, e. Similar
contrast behavior to the encoded angle is observed in the latent
space Z1; shown in Fig. 4d where a clear variation between the
NiO and LSMO phases with some darker contrast near the

interfaces of the two phases. Latent parameter Z2, shown in
Fig. 3h, differentiates between the phases but has a limited range
is relatively featureless. These results can be understood by
examining the corresponding variable histograms shown in
Fig. 4f–h. The encoded angle is clearly split between two peaks
and the latent space histogram for Z1 also indicate a separation of
features. The second latent variable however form a single peak
that accounts for the lack of strong features observed in Fig. 3e.
We also tried the rVAE where in addition to angle latent variable
there are two special offset latent variables to account for
potential errors in the DCNN-detected atomic positions but found
that the introduced offsets variables generally form a single peak
and have limited contrast. This is illustrated in Fig. S1 where the
rVAE analysis augmented with the offset latent variables is
carryout using the same parameters as Fig. 3. While the latent
variables have switched, the interpretation of the other variables is
unchanged. For this reason, we will continue to use the rVAE
without offset latent variables throughout this paper.
An important parameter in this analysis is the choice of window

size with which to construct the stack of sub-images for training.
As a general rule, the window size should be commensurate with
the features of interest in the image being analyzed. Too small a
window will lead to frames containing only a single atom with
limited information about its immediate surroundings except
perhaps for some variation in the column shape. This is explored
in Supplementary Fig. S2a where the sub-image representation in
latent space consists of an array of single atoms. The encoded
angle and latent spaces for this window size, shown in Fig. S2c–e
are less distinct than those seen in Fig. 4. The latent spaces in
particular now have a much smaller range. The corresponding
histograms in Fig S2f, g are generally broadened and not
separated into distinct peaks. The corresponding results for a
window size of 60 pixels are shown in Fig. S2b and Fig. S2i–n. The
histograms for the encoded angle and one of the first latent
space both contain separated peaks and produce similar results to
those seen in Fig. 3. This is perhaps to be expected since the
window size is still small when compared to the main features of
the sample, i.e. the two distinct phases. For the larger window size
there is some horizontal streaking on the latent variables which is
most likely an indication of scan distortions in the image.
For completeness, we repeated the analysis on the DCNN

segmented data (Supplementary Figs. S3 and S4) and it proved far
more sensitive to window size; a 24-pixel window is used in the
analysis shown in Fig. S3. The most notable difference compared
to the raw analysis is a distinct transition from the perovskite to
the rock-salt structure in the sub-image representation in the 2D
latent parameter space in the vertical direction, as shown in
Fig. S3b. The perovskite phase of the first latent variable is almost
featureless but is strongly differentiated from the NiO phase. The
histograms of the encoded angle and first laten variable shown
in Fig. S3f and S3g, respectively are split into two peaks. The
histogram of the second latent variable is sharply peaked around
zero but still contains a significant range outliers. These seem to
manifest themselves in the NiO phase which is quite nonuniform.
The effect of window size variation is shown in Fig. S4. The sub-
image representation of the latent parameter spaces for the 12-
pixel window in Fig. S2a consists of a uniform circles and does not
exhibit the noncircular column distortion seen in Fig S2a. The
encoded angle and latent variables are shown in Fig. S4c–e. The
encoded angle has a patchy appearance with the smaller NiO
inclusions mostly obscured. The corresponding histogram in
Fig. S4f has almost collapsed into a single broad peak. The latent
variables, while still differentiating between thew two phases
have similar lack of structure in the perovskite phase and the
corresponding histograms consist of a single narrow peak. For a
window size of 36 pixels the latent parameter spaces shown in
Fig. S2b still exhibits a transition between the perovskite and rock
salt phases. The encoded angle and latent variables, shown in
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Fig. S4j, k all clearly differentiate between the two phases though
the latent variables have little structure in the perovskite phase.
What is notable however is that the scan distortions are clear in all
three. The histogram of the encoded angle in Fig S4i has collapsed
to a single sharp peak. The first latent space histogram has two
overlapping peaks consistent with the coloration of the two
phases, while the second has a single broad peak.
The structure of the distributions in the latent space of rVAE was

used to gain further insight into the analysis, as shown in Fig. 4.
The latent space distribution exhibits extremely interesting
behavior. Figure 5a shows the joint distribution of the latent

variables, visualized both as individual points and with a super-
imposed kernel density estimate (KDE). Note that each point
corresponds to the sub-image and describes the behavior of the
local neighborhood of a single lattice atom. The representation as
points and KDE allows the comparison between the total system
behavior (including the distribution of outliers) and the corre-
sponding densities (average behaviors) and is necessary given the
large number of points (from ~104 for single images to ~105 for
the stacks).
To extend this analysis, we note that the rVAE often tends to

disentangle dissimilar types of distortions within a system.

Fig. 3 rVAE analysis of multiphase (LaxSr1-x)MnO3–NiO system. a The original ADF image with the white box showing an enlarged section of
one of the (LaxSr1-x)MnO3–NiO interfaces. The red box contains a typical frame from the stack that was used for training which was
constructed using a window size of 36 pixels. The scale bar is 5 nm. b The sub-image representation in 2D latent parameter space. c The
encoded angle. d, e The latent variables Z1 and Z2. Insets in c, d show range of variation in image intensities. f–h The histograms of the
intensity distributions corresponding to (c–e).
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For example, experiments with a large number of different STEM
images (beyond those shown in this paper) illustrate that scan
distortions often tend to be described by one (group of) latent
variables, whereas systematic changes in the local structure are
described by the remaining latent variables. This property of VAEs
is generally well known in computer science applications such as
style networks; however, here we see that it applies for the
physical systems as well.
We further explore this separation of atomic units based on

neighborhood behavior using disentangled representations. As
observed in Fig. 3, the angle and latent variable 2 seem to offer
the optimal 2D basis to separate the atomic units, with clear
contrast and a lack of distortion behaviors. The corresponding
distribution and KDE plots are shown in Fig. 4b, illustrating three
clearly defined groups of points corresponding to the A-site and
B-site cations in the LSMO phase and columns in the NiO phases,
respectively. Note that the KDE peaks corresponding to the three
atomic types that jointly comprise >90% of points are fairly
narrow. At the same time, there are a large number of outliers
showing the presence of atoms with the behaviors falling on the
continuous lines between the three groups, forming the manifold
of possible states in the system.
Finally, we can gain further insight into the spatial distributions

and classes of behaviors via clustering in the latent space. Figure 4c
shows the Gaussian mixture model (GMM) clustering of points in

the latent space. Note that given the complex structure of the
distribution, the choice of a proper covariance matrix for the GMM,
or the exploration of different clustering methods, will highlight
different aspects of system behavior and hence offer a powerful
tool for the exploration of corresponding physics. Here, we show as
an example of the separation in three components. The spatial
distribution of the label maps is shown in Fig. 4b and images
corresponding to the centroids of the GMM classes are shown in
Fig. 4e–g. Components 1 (blue) and 2 (green) correspond to the A
and B sites in the perovskite, respectively, while component 3
(brown) corresponds to the NiO phase. To examine if additional
components can provide more information, we repeat the analysis
for five components in Fig. S5. The GMM analysis, shown in
Fig. S5a, shows four well-defined clusters with one component
more widely distributed. The spatial distribution of the compo-
nents is shown in Fig. S5b while the individual components are
shown in Fig. S5c–g. Once again, the first two components
correspond to the A and B sites of the perovskite and fourth
component corresponds to the NiO phase. The third component,
which is the distributed component in the GMM cluster plot. It
corresponds to a distorted NiO lattice and occurs at the edges of
the NiO inclusions at the interface with the LSMO phase. The fifth
component corresponds to a distorted A site in the LSMO. This is
distributed throughout the perovskite lattice, with some horizontal
stripes corresponding to the previously discussed scan distortions.

Fig. 4 Latent space distributions. Pair distribution for a latent variables and b encoded angle and first latent variable. c Gaussian mixture
model (GMM) clustering for latent spaces. d Original STEM image with superimposed class labels and GMM centroid images corresponding to
four components used. e–g Three components: component 1 (dark blue), component 2 (green), component 3 (brown). Analysis performed on
raw data using a window size of 36 pixels.
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The analysis is repeated on the DCNN segmented image shown in
Fig. S6. In this case components 1 and 3 correspond to the
LSMO lattice and component 2 corresponds to the NiO phase.
Components 1 and 3 are no longer easily identified as the A or B
sites of the perovskite but appear to be related by rotation. The
distribution of these components is essentially random throughout
the LSMO lattice rather than showing an alternating pattern seen
in Fig. 4b. This most like due to the loss of intensity and shape
information due to semantic segmentation.
To get further insight into the materials structure, we explore

the disentangled representations of the structural building blocks
using the conditional rotationally invariant variational autoenco-
der (crVAE) approach. The schematics of crVAE is shown in Fig. 2.
Here, the autoencoder approach is used on the concatenated
image stack (or its reduced representation) and the class labels.
At the decoding stage, the mini-batch with one-hot encoded
labels is concatenated with the unstructured latent variables. This
leads to the decoder probability distribution being conditioned
on the continuous latent code z and discrete labels c, pθ zjx; cð Þ.
The typical example of the crVAE application will be disentangle-
ment of the styles in the MNIST data set93. Whence simple VAE
will draw all the numbers and distribute them in the latent space,
the crVAE will draw the selected number and the latent space
representations will reflect writing styles—e.g. tilt, line width, etc.
The key aspect of using crVAE approach, as opposed of VAE
analysis of individual classes, is that the thus disentangled styles
will be common across the data set, reminiscent of hierarchical
Bayesian models. If the labels are known only partially, the
unknown discrete classes are sampled from a uniform categorical
distribution and an additional classifier neural network is added
turning the model into a semi-supervised generative model.
Recently, a subset of authors has shown that a semi-supervised
rVAE model can be used for creating nanoparticle libraries from
imaging data94. Here, we will limit ourselves to a scenario where
all labels are known.

As an example of crVAE analysis, shown in Fig. 5 is the latent
space representation for the three GMM components of the
LSMO–NiO system form Fig. 4. Here, the latent space is subdivided
into 3 × 3 regions and the corresponding images are recon-
structed. Shown are the images per se and the images with
subtracted average. Note that while direct physical interpretation
of this disentangled representations is complex, we note the
commonality in the character of changes in the vertical and lateral
directions for all three components. The central position of each
tableau shows the least variation from the mean value, with
higher than average values seen to the left and lower than
average values to the right.

Application of rVAE to a layered perovskite
We can extend this analysis to a system with a significantly more
complex lattice such as the Sr3Fe2O7 (SFO) layered perovskite.
Sr3Fe2O7 is a mixed valence Ruddlesden-Popper series compound
with double perovskite structure that nominally features tetra-
valent iron. Charge disproportionation to Fe(III) and Fe(V) was
observed by Mössbauer spectroscopy95,96. Spiral magnetic order
was observed by neutron diffraction97 and provides a rare
example of a magnetic cycloid arising from a ferromagnetic
nearest neighbor competing with antiferromagnetic next-nearest
exchange98. Further interest in this material arise from high
oxygen mobility99. The preparation of a near stoichiometric
compound requires high oxygen partial pressure100.
The rVAE analysis of SFO is shown in Fig. 6. The original STEM

image, Fig. 6a, clearly illustrates the layered structure of SFO. In
Fig. 6b the sub-image representation of the of the latent variable
shows a change of contrast from left to right and a change of
structure towards the top. Of most interest is the encoded angle,
Fig. 6c, which shows three separate values, one down the center
of the layers and alternating values either side. The histogram of
the encoded angle is shown in Fig. 6f where three peaks are
clearly present. The peaks have been labeled with colored circles

Fig. 5 Application of conditional rVAE to the (LaxSr1-x)MnO3–NiO system. Conditional rVAE analysis of the three GMM components from
Fig. 4 corresponding to the a, d A-site (component 1), b, e B-site (component 2) columns of the LSMO phase and c, f NiO phase (component 3).
The upper images are the raw images, and the lower images have the average of the 3×3 tableau subtracted.
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corresponding to those on Fig. 6c. The first latent space in Fig. 6d
exhibits a more complex periodic structure consistent with the
corresponding four peaked histogram shown in Fig. 6g. The
second latent space exhibits a gradual change in intensity from
left to right corresponding to the sample thickness variation,
which is also observed in the raw STEM image (Fig. 6a). The
corresponding histogram has a flattened peak corresponding to
this gradual change. Similar to observations for a 2-phase system,
these behaviors are now disentangled and can be explored
separately. We observed a similar separation for other STEM
images where scan distortions e.g., due to fly-back delays, were
clearly concentrated in a single latent variable.

The choice of window size is crucial for extracting some of these
features. The effect of using a smaller and larger window size on
the rVAE process is shown in Fig. S7. The 2D latent parameter
space for 32 pixels, shown in Fig S7a shows a gradual change in
contrast from left to right. The encoded angle in Fig. S7c is
basically constant in value. Examination of the associated
histogram (Fig. S7f) shows that the three peaks seen in Fig. 6f
have collapsed to a single sharp peak. The latent variables show a
gradual change in in tensity from left to right similar to that seen
in Fig. 6e. The results are similar for a larger window size of 60
pixels. It should be noted that the intermediate values the
encoded angle histograms first lose the central peak before

Fig. 6 rVAE analysis of Sr3Fe2O7 image. a Original STEM image with a sub-image inlayed in the red box. The scale bar is 2 nm b sub-image
representation in 2D latent parameter space, c encoded angle, d latent Z1 e latent variable Z2. and f–h, the histograms corresponding to
c–e. The circles on f correspond to the points on c. Analysis is performed on raw images using window size of 40 pixels. Insets indicate
intensity variation of each panel.
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collapsing to a single peak. For completeness, this analysis was
also performed on the DCNN segmented images and the results
are shown in Fig. S8 and S9. To obtain the same three peaked
encoded angle histogram a window of 34 pixels was used. The
peaks on either extreme are separated by a full 180 degrees and
are represented by the red and blue markers on Fig. S8c. They
represent the atoms at the edge of the bands. The range for the
raw image analysis was approximately half of this, perhaps
because of the noise level of the original data. The first latent
variable still reflects the banded structure but the second is
basically random. The results for the DCNN segmented data are
extremely sensitive to window size. As seen in Fig S9, varying the
window size by 2 pixels either way the three peaked encoded
angle histogram is reduce to either one or two peaks.
For completeness a clustering analysis has been performed on

the SFO results and these results and discussion are included in
the supplementary information (Figs. S10 and S11).
To summarize, we introduce a workflow for the bottom-up

symmetry and structural analysis of atomically resolved STEM
imaging data. For systems with known or ad hoc defined rotational
variants, the combination of Gaussian mixture modeling and
principal component analysis (GMM-PCA) allows separation of the
relevant structural units and structural distortions for individual
units. However, the GMM-PCA combination fails in the presence of
multiple rotational variants and especially general rotations, since in
this case the class will be assigned to each rotation of the same
structural unit. The use of the rVAE-crVAE approach proposed here
allows one to generalize the classification-distortion analysis for the
general rotational symmetry. We illustrate that the capability of
VAEs to produce disentangled representations can be beneficially
used to separate structural units, relevant distortions, and in certain
cases, the instrumental distortions, opening the pathway for
systematic studies of symmetry breaking distortions for a broad
range of material systems.
While implemented here for the analysis of structural STEM

images, we expect that a similar approach can be used for the
analysis of symmetry breaking distortions in e.g., scanning
tunneling microscopy (STM) images, and can be further extended
to the analysis of multidimensional data sets such as tunneling
spectroscopy in STM, EELS and 4D STEM in STEM, and so on.
Furthermore, similar to other Bayesian methods, it will be of
interest to explore physics-based prior distributions in the latent
space, beyond the class labels used here. Overall, we believe that
the combination of the capability to disentangle physical
phenomena via latent space representations and parsimonious
analysis makes the proposed workflow universal for multiple
physical problems.

METHODS
Thin film growth
The LSMO–NiO VAN and the single-phase LSMO and NiO films were grown
on STO(001) single-crystal substrates by PLD using a KrF excimer laser (λ=
248 nm) with fluence of 2 J/cm2 and a repetition rate of 5 Hz. All films were
grown at 200mTorr O2 and 700 °C. The films were post-annealed in
200 Torr of O2 at 700 °C to ensure full oxidation, and cooled down to room
temperature at a cooling rate of 20 °C/min. For out-of-plane transport
measurements, the films were grown on 0.5% Nb-doped STO(001) single-
crystal substrates. The film composition was varied by using composite
laser ablation targets with different composition.

Sample preparation
A polycrystalline rod of Sr3Fe2O7-x with 6mm in diameter and 50mm in
length was prepared using powders synthesized from solid state reaction
of stoichiometric SrCO3 and Fe2O3 at 1100 °C. The single crystalline
material utilized here was grown using a high pressure floating zone
furnace with O2 partial pressure of 148 bar. Refinement of neutron
diffraction data obtained at the NOMAD instrument of the Spallation

Neutron Source using GSAS-II101 revealed a single-phase material with an
oxygen content of 6.8, see Supplementary Fig. S12 and Table S1.

STEM
The plan-view STEM samples of Ni-LSOM were prepared using ion milling
after mechanical thinning and precision polishing. In brief, a thin film
sample was firstly ground, and then dimpled and polished to a thickness
less than 20 micrometer from the substrate side. The sample was then
transferred to an ion milling chamber for further substrate-side thinning.
The ion beam energy and milling angle were adjusted towards lower
values during the thinning process, which was stopped when an open hole
appeared for STEM characterization. The Sr3Fe2O7 sample(s) were prepared
by FIB lift out followed by local low energy Ar ion milling, down to 0.5 eV,
in a Fischione NanoMill.
The STEM used for the characterization of both samples was a Nion

UltraSTEM200 operated at 200 kV. The beam illumination half-angle was
30mrad and the inner detector half-angle was 65mrad. Electron energy-
loss spectra were obtained with a collection half-angle of 48mrad.

DATA AVAILABILITY
The Jupyter notebook containing links to the data and used for this analysis is
available at https://github.com/markpoxley/Bayesian_Crystallography.
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