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Data-driven magneto-elastic predictions with scalable classical
spin-lattice dynamics
Svetoslav Nikolov1, Mitchell A. Wood1, Attila Cangi2,3, Jean-Bernard Maillet4,5, Mihai-Cosmin Marinica 6, Aidan P. Thompson 1,
Michael P. Desjarlais7 and Julien Tranchida 1✉

A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-
scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model
with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the
precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from
first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions
by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-
principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus,
magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.
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INTRODUCTION
Magnetism strongly influences thermomechanical properties in a
large variety of materials, such as single-element magnetic
metals1,2, steels3, high-entropy alloys4,5, nuclear fuels such as
uranium dioxide6, magnetic oxides7,8, and numerous other classes
of functional materials9. Despite the critical role of magnetism in
the aforementioned materials classes, modeling efforts to study
the interplay between structural and magnetic properties have
been notably lacking. Furthermore, there are unanswered
scientific questions regarding the significance of magnetism in
matter that is shock-compressed10,11 or exposed to strong
electromagnetic fields such as in coherent lights sources12,13,
pulsed power and high magnetic fields facilities14,15. Properties of
interest include phase transitions, thermal stability of magnetic
defects, magneto-mechanical couplings, but many of these
subjects are challenging or prohibited by state of the art
computational tools.
A prime but simple example of the computational advance

made herein is the heat-capacity of α-iron displayed in Fig. 1. The
experimental measurement of the heat capacity Cp diverges at the
magnetic Curie transition, characteristic of a second-order phase
transition16. Without a scalable coupled spin-lattice dynamics
simulation environment, that properly accounts for thermal
expansion and magnetic contribution to the pressure, reprodu-
cing the divergence of Cp (and of other thermomechanical
properties) at the critical point is not possible.
Accurate numerical simulations are critical for enabling

technological advances, as they shape our fundamental under-
standing of the underlying solid state physics that dictates
material behavior. Developing high fidelity models, however, is
challenging, because it necessitates capturing physical phenom-
ena that occur across several length and time scales. This can only
be achieved with sufficiently accurate multiscale simulation
tools17,18, which is the focus of this work.

Classical molecular dynamics (MD) simulations19 provide a
useful framework for multiscale modeling by leveraging intera-
tomic potentials (IAPs) to represent the dynamics of atoms on a
Born-Oppenheimer potential energy surface (PES)20. By utilizing
massively parallel algorithms21 and long time-scale methodolo-
gies22, MD enables bridging first-principles with continuum-scale
simulations23.
The absorption of machine learning (ML) techniques into the

creation of interatomic potentials has lead to classical MD
simulations that approach the accuracy of first-principles methods.
A large number of these highly accurate ML-IAPs24–30 have been
developed. In general, they are parameterized on training data
(configuration energy, atomic forces) from first-principles methods
like density functional theory (DFT)31 and utilize different flavors of
ML model forms to construct the PES. While they have proven to
be useful for large-scale simulations of materials properties32,33,
further progress in multiscale modeling is hampered by the
limitation of ML-IAPs to non-magnetic materials phenomena. Even
with highly accurate ML-IAPs, state-of-the-art MD simulations
cannot reproduce the divergent behavior of Cp near the critical
point (Fig. 1) because they fail to account for the magnetic
degrees of freedom34.
Coupling atomic spin dynamics with classical MD has been

pioneered by Ma et al.35–37. Herein, a classical magnetic spin is
assigned to each atom in addition to its position leading to a 6N-
dimensional PES (5N if the magnetic spin norms are fixed), instead
of the common 3N-dimensional PES in classical MD:

E ¼
XN
i¼1

ϵ frij; sig
� �

; (1)

where rij= ri− rj denotes the relative position between atoms i
and j, si the classical spin assigned to atom i, and N the number of
atoms in the system. In most classical spin-lattice calculations,
the 6N-dimensional PES is constructed by introducing an
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atomic spin model on top of a mechanical IAP35. For example, a
common approach is to combine a distance-dependent Heisen-
berg Hamiltonian with an embedded-atom-method (EAM)
potential37,38.
While these prior approaches recover experimental properties

on a qualitative level39,40, their combined representation of
phononic and magnetic degrees of freedom is not sufficiently
consistent for providing quantitative predictions at the level of
first-principles results. More recently, Ma et al. developed a
magneto-elastic IAP for magnetic iron based on data from first-
principles calculations41. However, this remained an isolated
attempt as there is no general methodology for generating a
magneto-elastic PES in a classical context that enables large-scale
spin-lattice dynamics simulations for any magnetic material.
In this work, we overcome this methodological obstacle by

providing a data-driven framework for generating magneto-elastic
ML-IAPs that (1) provide a consistent representation of both
mechanical and magnetic degrees of freedom and (2) achieve
near first-principles accuracy. We refer to our new class of IAPs as
magneto-elastic ML-IAPs as they generate a consistent PES
accurately representing the magnetic degrees of freedom and
the interplay between magnetic and elastic phenomena. Our
framework couples an atomic spin model (Heisenberg Hamilto-
nian) with an ML-IAP and provides a unified magneto-elastic PES
which yields the correct mechanical forces on the atoms in the MD
framework. The Heisenberg Hamiltonian is parameterized with
data from DFT spin-spiral calculations at different degrees of
lattice compression. In constructing the ML-IAP, we leverage the
flexible and data-driven spectral neighbor analysis potential
(SNAP) methodology30 which is trained on a database of magnetic
configurations generated using DFT calculations. We highlight the
influence of magnetization dynamics on thermo-mechanical
properties by assessing three different thermodynamic equilibra-
tion conditions. This allows us to conclude that a correction to the
magnetization dynamics (achieved by adapting the temperature-
rescaling method42) is necessary for accurate elastic predictions.
We apply our framework to generate a magneto-elastic ML-IAP

for the α phase of iron. We demonstrate that our potential is
transferable to an extended area of the phase diagram,
corresponding to a temperature and pressure range of 0 to
1200 K and 0 to 13 GPa (up to the α→ γ and α→ ϵ transitions,
respectively). The Curie temperature, which experimentally occurs
at ~1045 K, lies within this parameter space. After presenting our
training workflow, the “Results” section will probe the accuracy of
our magneto-elastic ML-IAP by performing magneto-static com-
parisons to first-principles measurements. We then stress that our
generated magneto-elastic ML-IAP can also be directly used in the
LAMMPS package21 to perform magneto-dynamic simulations

that take into account both the thermal expansion of the lattice
and magnetic pressure due to spin disorder. This enables us to
maintain a constant ambient pressure throughout all calculations
of thermomechanical properties, consistent with conditions
prevalent in experiments. As illustrated in Fig. 1, our framework
allows us to perform pressure-controlled quantitative prediction of
the critical behavior across a second-order phase transition within
a classical spin-lattice dynamics simulation.

RESULTS
In this section we outline our advancements in magnetic materials
modeling. We first present our training workflow and subse-
quently assess our results by comparing both static and dynamic
properties in α-iron against first-principles calculations and
experiments.
Figure 2 displays our training workflow. Further details to each

box in this diagram are presented as a subsection in the
“Methods” section. All atomic configurations in the training set
result from first-principles calculations performed with the same
DFT setup (same pseudo-potential and energy cutoff, similar

Fig. 1 Constant pressure heat capacity of α-iron versus tempera-
ture. The black triangles denote experimental measurements87,88,
the red squares our simulation results, and black dashed line
indicates the experimental Curie transition temperature. This
illustrates the well-known ferromagnetic–paramagnetic phase tran-
sition, where the heat capacity diverges at the Curie temperature.

Fig. 2 Magneto-elastic ML-IAP training workflow. A training set of
DFT calculations is partitioned into those that train the SNAP
interatomic potential and those that train the spin Hamiltonian,
respectively. A non-magnetic interatomic potential is fit to config-
uration energies and atomic forces after the spin Hamiltonian
contribution is subtracted and is validated against magneto-elastic
properties computed in LAMMPS. Optimization of the spin
Hamiltonian and interatomic potential parameters is handled by
DAKOTA.
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k-point densities) as detailed in the “Methods” section. In contrast
to traditional force-matching approaches in the development of
classical IAPs, we treat the magnetic and phononic degrees of
freedom in the PES in a consistent and unified manner, as
indicated by the exchange of information between spin Hamilto-
nian and SNAP potential parametrization steps. After parameteriz-
ing our atomic spin Hamiltonian by leveraging DFT spin-spiral
results, its energy, forces, and stress contributions are subtracted
from each atomic configuration in the first-principles training set.
The ML-IAP is then trained to reproduce the non-magnetic
component of the first-principles data. Finally, both components
of the magneto-elastic PES are recombined to construct a unified
magneto-elastic ML-IAP that is consistently trained on first-
principles data. Optimization is handled by the DAKOTA software
package43 in both fitting steps. For the SNAP component of the
potential, DAKOTA optimizes the radial cutoff of the interaction
along with the weights of each training data set (energy and force
weights) to generate different candidate potentials. Those
candidates potentials are then recombined with the spin
Hamiltonian and tested against selected objective functions
(mean-absolute errors (MAEs) in lattice constants, cohesive
energies, elastic constants, forces and total energies). Table 1
summarizes the different groups of training data, the optimal
weights obtained for each of those groups, and the corresponding
energy and force MAEs. The target values for the objective
functions are based on both experimental and DFT data, as
outlined in Table 2. Objective function evaluations are done within
LAMMPS21.

Herein, the critical innovation that enables a leap forward in
predictive simulations of magnetic materials is this data-driven
workflow. Magnetic and phononic contributions to the PES are
taken into account explicitly and any miscounting is avoided (for
example, no double counting of the magnetic energy or
contribution to the pressure). The obtained magneto-elastic ML-
IAP can directly be used to run spin-lattice calculations in
LAMMPS21,38,44.

Magneto-static accuracy
We first assess the quantitative agreement of our magneto-elastic
ML-IAP by comparing with DFT results where magnetic order and
elastic deformations are coupled. This is done by leveraging a
particular subset of spin configurations referred to as spin-spirals,
for which the energy and corresponding pressure can be
evaluated from both DFT and classical magneto-elastic potential
calculations. Details about definition and computation of spin-
spirals can be found in the “Methods” section. Equation-of-state
calculations (energy and pressure versus volume) are performed at
the Γ point (corresponding to the purely ferromagnetic state) and
for spin-spirals corresponding to q-vectors along the ΓH and ΓP
high-symmetry lines. The calculations at the Γ point represent the
magnetic ground state and, hence, serve as a point of reference
for the spin spiral calculations. The geometric orientation of the
various computed spin spirals is visualized in Fig. 3. The first set
(q= 0.01 along ΓH and q= 0.07 along ΓP) represents long spirals,
close to the Γ point, the second set (q= 0.1 along ΓH and q= 0.14
in ΓP) represents spirals with intermediate periodicity, and the last
set (q= 0.2 along ΓH and q= 0.21 along ΓP) is chosen close to the
borders of the magnetic training set (see red demarcation lines in
Fig. 5 in the “Methods” section). The DFT results are obtained by
leveraging the generalized Bloch theorem, whereas our classical
spin-lattice calculations were performed by generating the
corresponding supercells (details given in the “Methods” section).
Excellent agreement between our classical spin-lattice model

and DFT is achieved at the Γ point and for the two first q-vectors
on each high-symmetry line (q= 0.01 and q= 0.1 along ΓH, q=
0.07 and q= 0.14 along ΓP) in the pressure range relevant for the
α-phase of iron (up to 13 GPa which corresponds to the α→ ϵ
transition). At higher q-vector values, the energy and pressure
predictions of our atomic spin-lattice model still agree reasonably
well with the DFT calculations. The observed deviation from the
DFT results can be explained by the limitations of our atomic spin-
lattice model: as both the pressure and the relative angle between
neighboring spins increase, fluctuations of the atomic spin norms
become more important. As discussed in the “Methods” and
“Discussion” sections, these are not included in the Hamiltonian of
our atomic spin-lattice model.

Table 1. Training set for linear SNAP model.

# of Config. # of forces Target property Energy fit weight Forces fit weight Energy MAE (eV) Forces MAE (eV ⋅Å−1)

Eq. of state 403 65,286 Volumetric deform 4.2 × 103 2.0 × 105 1.6 × 10−2 2.4 × 10−1

DFT-MD, 300K 40 15,360 Bulk phonons 2.9 × 105 1.1 × 105 5.2 × 10−4 2.4 × 10−1

Liquid w/ spins 10 3000 Magnetic disorder 5.5 × 101 1.9 × 104 2.0 × 10−1 5.9 × 10−1

Liquid w/o spins 52 15,300 Structural disorder 3.3 × 103 2.0 × 104 2.2 × 10−1 8.0 × 10−1

Point defects 10 3096 Defect energetics 1.4 × 102 3.5 × 104 2.8 × 10−2 1.1 × 10−1

Martensitic transform 168 1008 α→ ϵ 4.0 × 102 2.3 × 103 9.2 × 10−2 2.3 × 10−1

Training set for linear SNAP model adapted from ref. 85 to include explicit spin degrees of freedom. Regression of SNAP coefficients takes into account both
configuration energies and forces from DFT, optimization of group weights is applied to either term independently. Weighted linear regression is carried out
via reported optimal fit weights, values have already been scaled by the number of training points each group contributes. The two last columns report the
obtained mean-absolute errors (MAEs) in eV per atom.

Table 2. Objective functions of the DAKOTA optimization.

SNAP Exp/DFT Units Error %

c11 243.25 239.55 GPa 1.54%

c12 135.65 138.1 GPa 1.77%

c44 118.73 120.75 GPa 1.67%

Bulk modulus 171.52 169.55 GPa 1.16%

0.5(c11–c12) 53.8 51.9 GPa 3.66%

Poisson ratio 0.358 0.36 – 1.10%

bcc energy −8.25 −8.26 eV 0.02%

bcc lat. const. 2.838 2.83 Å 0.30%

hcp energy −8.10 −8.19 eV 1.10%

hcp lat. const. 2.506 2.46 Å 1.80%

Objective functions of the DAKOTA optimization with ground truth values
taken from the present DFT calculations (at zero Kelvin) or experiments86.
Percent error is used as the objective function to avoid artificial importance
scaling based on units of the target property.
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Magneto-dynamic accuracy
Turning now to spin-lattice dynamics calculations based on our
magneto-elastic ML-IAP (as detailed in the “Methods” section), we
assess the quantitative accuracy with respect to experimental
measurements of changes in magnetic and thermoelastic proper-
ties as the material is heated. In making this comparison, it is
necessary to choose which thermodynamic state variables will be
held fixed and which will be allowed to vary with temperature.
Spin-lattice dynamics algorithms have been developed for
simulations in a canonical ensemble which preserves the number
of particles, the volume, and the temperature in the system37. Our
first set of simulation conditions, referred to as fixed-volume
conditions (FVC), hold the volume fixed while running dynamics in
the canonical ensemble at specified values of the lattice and spin
temperatures. A disadvantage of this choice is that the pressure
steadily increases as heat is added to the material, in contradiction
to the experimental observations, which are conducted at
constant pressure. To this date, an isobaric spin-lattice algorithm
has not been developed (preserving the system’s pressure rather
than its volume). However, our methodology as implemented in
LAMMPS enables us to compute the magnetic contribution to the
pressure. By alternating thermalization (coupled spin-lattice
dynamics in a canonical ensemble) and pressure equilibration
(frozen spin configuration in an isobaric ensemble) steps, it is
possible to control the pressure of our spin-lattice system. Hence,
we refer to calculations performed in this pressure-controlled
canonical ensemble as pressure-controlled conditions (PCC). In
both conditions, the temperature of the spin and lattice
subsystems is set using two separate Langevin thermostats (one
acting on the spins, the other on the lattice)37. Finally, this enables
us to define a third set of conditions: in addition to controlling the

pressure, the spin thermostat can be set to match a given
magnetization value (i.e., the experimental magnetization) rather
than a temperature. We refer to this as pressure-controlled and
magnetization-controlled conditions (PCMCC). Figure 6 in the
“Methods” section displays the different definitions of the spin
temperature and the evolution of the pressure for those three
different conditions.
In practice, FVC, PCC, and PCMCC only differ in their

equilibration conditions (control of pressure and/or magnetiza-
tion), as each of the corresponding simulations are performed in a
canonical ensemble. We illustrate the predictive capability of our
magneto-elastic ML-IAP in α-iron for these equilibration conditions
in Fig. 4a–f (FVC: , PCC: , PCMCC: ). The agreement of the
following magneto-elastic properties with experimental results is
assessed: magnetization (Fig. 4a), heat-capacity Cp (Fig. 4b),
thermal expansion (cell volume on Fig. 4c), bulk modulus (Fig.
4d), and two shear constants, (c11− c12)/2 and c44 (Fig. 4e, f). The
“Spin-lattice dynamics” subsection of the Methods section details
the computation of those temperature-dependent elastic
constants.
We first work under the FVC ( ), keeping a constant volume

and equal spin and lattice temperatures (Figs. 4c and 6). At
constant volume, our model predicts a Curie temperature of
~716 K (Fig. 4a). Specific heat calculations shown in Fig. 4b were
performed by computing the derivative of the internal energy,
taking both the lattice and magnetic contributions into account.
The SNAP contribution (lattice only) was first isolated and
determined to be a constant value of 26.4 Jmol−1 K−1, in good
agreement with the Dulong-Petit value of 3R45. The magnetic
contribution offsets the total specific heat at low temperature, as
the magnetization steadily decreases (thus steadily increasing the
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Fig. 3 Magneto-static accuracy results. Plots of the equation of state data from first-principles calculations (VASP computations) and our
magneto-elastic ML-IAP (LAMMPS computations) for seven different spin-spirals: a Γ point (b) vectors along the ΓH high-symmetry line, and c
vectors along the ΓP high-symmetry line. Visualizations of the corresponding spin-spiral supercells and associated q-vectors are shown to the
right of and above each plot, respectively.

S. Nikolov et al.

4

npj Computational Materials (2021)   153 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



magnetic energy). Also at low temperature, deviation between
simulations and experiment (highlighted by the semi-transparent
blue region in Fig. 4b) occurs due to quantum effects which
reduce the experimental heat capacity below the 3R value. The
FVC heat-capacity is determined at constant volume, although we
use the symbol Cp on the axis label because the enhanced
simulations described below are indeed conducted at constant
pressure conditions. In those constant volume conditions, the
pressure evolution with temperature increase is substantial (up to
12 GPa, almost corresponding to the α→ ϵ transition, as can be
seen on Fig. 6), which has a strong impact on the underlying
elastic properties. Interestingly, at the Curie temperature (here
716 K), the increasing pressure exhibits an inflection point,
confirming the importance of spin fluctuations on the thermo-
elastic properties. The temperature dependence of three elastic
constants is shown in Fig. 4d–f. For the bulk modulus, FVC does
not agree well with experimental data, especially at higher
temperatures. The FVC results tend to overestimate the stiffness,
which most likely arises from the build-up of thermal stresses in
the material. Under these conditions a nearly temperature-
invariant c44 response is predicted, which is in strong contrast to

trends in experiment. Despite these shortcomings, the FVC
calculations actually match the experimental data for shear
constant (c11− c12)/2 relatively well throughout the entire
temperature range. In general, the fixed volume assumption
made under FVC fails to account for thermal expansion, leading to
incorrect elastic predictions.
We correct this shortcoming of the model by working under

PCC ( ) which allows for thermal expansion. As can be seen on
Fig. 4c, the cell volumes are relaxed at each finite temperature,
until the pressure in the system drops to ~0 GPa. As shown in Fig.
4a, the thermal expansion incorrectly moves the onset of Curie
transition to ~536 K. As the average interatomic distance
increases, the strength of the exchange interaction is lowered,
thus decreasing the transition temperature. The computed heat-
capacity (Fig. 4b) now corresponds to the derivative of the free
energy, and to an actual Cp measurement. However, as in the FVC,
the low agreement between the experimental and computed
magnetization evolution leads to an offset in the initial Cp and
does not match the Dulong-Petit value at low temperature. The
PCC fares better in reproducing the experimental bulk modulus up
to the Curie transition (no hardening observed). PCC also does
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Fig. 4 Magneto-dynamic accuracy results. Plots a–f show magnetoelastic data obtained with our magneto-elastic ML-IAP. The green ( ),
blue ( ), and red ( ) markers indicate the choice of equilibration conditions: fixed-volume conditions (FVC), pressure-controlled conditions
(PCC) and pressure-controlled and magnetization-controlled conditions (PCMCC), respectively. In all plots, experimental data (extracted from
five different references87–91) is denoted by the filled triangles (▲), and the dotted black lines ( ) represent the experimental Curie
temperature. The plots in a, b show magnetization and specific heat comparisons between different ensembles and experiments. The light
blue region in (b) indicates the low temperature regime T≲ 250 K where quantum effects reduce the experimental heat capacity below the
classical Dulong-Petit limiting value of 3R45. The data in plot c illustrates how the lattice expands with temperature. An inherent offset exists
between our model (trained to match the DFT data at 0 K) and experimental measurements. Plots d–f show d bulk modulus, e (c11− c12)/
2 shear constant, and f c44 shear constant for the three aforementioned sets of conditions.
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better in terms of the shear constant c44, as it is able to reproduce
the thermal softening seen in experiments. However, for shear
constant (c11− c12)/2, PCC underestimates the extent of the
thermal softening. Overall, PCC does better than FVC in terms of
elastic properties, but deviates more in terms of magnetic
predictions compared to experiment. By shifting the Curie
transition towards lower temperatures, it reduces the range of
validity of our elastic calculations.
In order to improve the magnetic predictions of α-iron, we

finally consider the PCMCC scheme ( ). The present calculations
are aimed at probing the influence of the magnetization dynamics
on thermo-mechanical properties of materials. For FVC and PCC,
two main physical limitations associated to the classical spin
dynamics model can be observed: an offset of the predicted Curie
transition, and the magnetization versus temperature trend (as
clearly displayed on Fig. 4a, b). The Curie transition offset is mainly
attributed to our choice of parametrization of the magnetic
interactions (see “Methods” section). Compared to experimental
measurements, our low temperature magnetization trend is
immediately decreasing. This, for example, strongly impacts the
Cp measurements (Fig. 4b), as it generates a large magnetic
energy decrease, leading to an offset from the Dulong-Petit value
at low temperature. In order to improve this limitation of classical
spin dynamics and better observe the influence of magnetization
dynamics on the thermo-mechanical properties predicted by our
model, we follow the approach developed by Evans et al.42.
However, our simulations account for thermal expansion, so that
our magnetic temperature rescaling has to be slightly modified
compared to their approach. A full magnetization versus
temperature calculation in the PCC has to be performed before

evaluating which spin temperature corresponds to a give lattice
temperature (see “Methods” section for more details). Figure 4a
shows that the obtained magnetization under PCMCC closely
matches that of experiment. Most prominently, the resulting Cp
agrees well with experiments (Fig. 4b). The Dulong-Petit value is
recovered at low temperature, and the Cp discontinuity at the
Curie transition is well captured. The thermal expansion trend is
also in much better agreement with experiments, with very
comparable slopes between ~200 and 750 K (Fig. 4c). Up to
~600 K, PCMCC agree very well with the experimental values for
(c11− c12)/2 (Fig. 4e) but at 800–1000 K a slight hardening is
observed, which contradicts experimental data. For the bulk
modulus, PCMCC correctly predicts the nearly linear trend up to
the Curie temperature.
We note that in all three sets of conditions, a rapid increase of

about 25–30 GPa in the bulk modulus is observed as we move
across the critical point. This jump was found to be strongly
impacted by the underlying mechanical potential. The prediction
accuracy could possibly be improved by including additional,
finite-temperature objective functions in the fitting procedure. The
PCMCC prediction of the shear constant c44 closely matches the
PCC data. This tends to indicate that this shear constant c44 is not
impacted significantly by the spin dynamics. For both pressure
controlled conditions (PCC and PCMCC) the maximum deviation
from experiments occurs near 700 K and is ~14%.

DISCUSSION
We presented a data-driven framework for automated generation
of magneto-elastic ML-IAPs which enable large-scale spin-lattice
dynamics simulations for any magnetic material in LAMMPS. This
framework was demonstrated by generating a robust magneto-
elastic ML-IAP for α-iron. First we investigated the magneto-static
accuracy (energy and pressure) with respect to equivalent first-
principles calculations. It was demonstrated that the generated
magneto-elastic ML-IAP (which represents the corresponding 5-N
dimensional PES) is in close agreement with first-principles
magneto-elastic calculations. This was achieved by properly
partitioning the PES into magnetic and mechanical degrees of
freedom. Subsequently, we investigated the magneto-dynamic
accuracy by comparing predicted finite temperature magneto-
elastic properties (magnetization, heat-capacity, thermal-expan-
sion, bulk modulus, and shear constants) across the
ferromagnetic–paramagnetic phase transition from spin-lattice
dynamics simulations against data from experiments. In the
course of this, we analyzed the choice of simulation conditions
(control of pressure and magnetization) and highlighted the
importance of thermal and magnetic pressure contributions. This
is an important advance over traditional classical magnetization
dynamics methods, where contributions from thermal expansion
or spin pressure due to disorder are negated. We demonstrated
that spin-lattice dynamics simulations of controlled pressure and
constrained magnetization yields qualitative agreement with the
measured magneto-elastic properties.
Our framework enables predictions of critical properties across

the second-order phase transition within classical spin-lattice
dynamics simulations, such as the divergent behavior of the heat
capacity around the Curie temperature (Figs. 1 and 4b). We
provide a more comprehensive perspective on our results by
comparing them within the context of other first-principles and
classical methods. At low temperature, first-principles methods
can capture the electronic component of the heat-capacity, up to
the Dulong-Petit value45,46 (the difference with our model is
highlighted by the blue area on Fig. 4b). However, computing Cp
across the Curie transition requires a dynamic treatment of large
spin-ensembles whose calculation is computationally expensive in
terms of first-principles methods. Classical IAPs do not explicitly
treat magnetic degrees of freedom and, thus, cannot reproduce

Fig. 5 Spin-spiral calculations. Comparison of spin-spiral results
along sections of the ΓH and ΓP high-symmetry lines. The upper
plot displays the per-atom energy, the middle one the atomic
moment fluctuations (in Bohr magneton per atom), and on the
bottom the evolution of the pressure. The energy and pressure
fluctuations are plotted with respect to the magnetic ground state
at the Γ point. The green and red dots represent experimental
measurements obtained by Loong et al.92 and Lynn93. In all three
plots, the dashed lines correspond to the DFT results, and the
continuous lines to our classical model results, whereas the line
color (black or blue) corresponds to the lattice compression (0% or
2%, respectively). In the middle plot, the green dashed horizontal
line represent the experimental equilibrium value (2.2μB per atom),
which is the constant value chosen in our model. In all three plots,
the red vertical dashed lines are delimiting the q-vectors on which
our spin Hamiltonian was parametrized.
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the effects of this magnetic phase-transition47. An empirical model
which is based on first-principles calculations and accounts for
electronic, phononic and magnetic degrees of freedom gave
excellent agreement with the experimental Cp curve of α-iron up
to the Curie temperature48. However, this model does not extend
above the Curie temperature, does not account for the pressure
generated by the corresponding spin configurations, and cannot
be easily extended to other thermomechanical properties. Thus,
for a range of temperature from about 250 to 1200 K, our model
provides with a set of very good predictions, obtained for the
computational cost of classical MD calculations only.
We conclude the discussion of our results by pointing out

limitations of the present method and future prospects. First, note
that the agreement to the experimental Curie transition (Tc ≈ 716 K
in a fixed volume calculation) could have been adjusted by
parameterizing the spin potential on a smaller range of the high-
symmetry lines (see Fig. 5), or by adding an objective function
aimed at matching the experimental value in the spin-potential
fitting procedure. However, this additional constraint would have
worsened the agreement of our model with the DFT energy and
pressure results (as displayed on Fig. 3) and would contradict the
overall objective of this work.
For temperatures below ~250 K, our classical framework cannot

access the quantized free energy, and is thus unable to accurately
reproduce the trends of all the quantities being its derivatives (Cp,
elastic constants, ...). This is reducing the agreement versus
experiments of the magneto-dynamic accuracy measurements
displayed on Fig. 4 at low temperature, and can be seen as a
limitation of our classical approach49.
Another limitation of our work lies in the simplicity of the spin

Hamiltonian model used. The Heinsenberg Hamiltonian (as well as
its extended forms) is a robust model that can be transposed to a
large number of magnetic systems and applications7,39,50,51.
However, finding a unique lattice dependence (herein the
Bethe-Slater function) and its’ associated accurate parametrization
is very challenging. Comparing Fig. 4a and Fig. 5 reveals some of
this difficulty: although the predicted spin-spiral energies are in
good agreement with the DFT calculations, the corresponding
pressure dependence and the Curie temperature predictions (in
the FVC and PCC) are departing from their expected values. Other
parametrizations of the spin Hamiltonian could have been
performed, either improving the Curie temperature predictions,
or the generated magnetic pressure, but worsening the compar-
ison versus DFT of the spin-spiral energies. In this study, we
decided to focus our fit on the spin-spiral energies for two main
reasons:

(i) Our approach aims at developing magneto-elastic ML-IAPs
trained on first-principles data without double counting of
the magnetic component of the PES. Thus, obtaining an
energetic dependence of spin configurations close to the
DFT results should remain the priority.

(ii) The approximations of the model could be better controlled
this way. Indeed, the spin model we used was developed to
reproduce magnon energetics, and does not account for
fluctuations of the spin norms (although this is not a
limitation of the presented framework). Thus, a stronger
emphasis was set on reproducing the spin-spiral energies
for which the spin norm fluctuations remain under 5%
fluctuations from the Γ point value (as displayed on Fig. 5 in
the “Methods” section). Different forms of spin Hamiltonians,
such as spin-cluster expansions, might be a promising route
to improving the accuracy of the magnetic component of
the PES by both accounting for the fluctuation of the
magnetic moment magnitudes and many-body spin inter-
actions52,53. A straightforward extension of this work could
combine recently developed extended spin Hamiltonians
with first-principles studies, and apply our formalism to

extend our α-iron magneto-elastic ML-IAP to account for
defect configurations54,55, Cr clustering56,57, and magneto-
structural phase-transitions11,58.

Our study emphasizes the important influence of magnetization
dynamics on thermo-mechanical properties, even for a simple
ferromagnet such as iron where the magneto-elasticity is rather
weak. We showed that the well-known departures from the
experimental magnetization curve observed in classical spin
dynamics have a strong influence on the predictions of the
model. In this work, we chose to follow the approach proposed by
Evans et al.42 to correct this shortcoming of the approach. This
allowed us to accurately represent the temperature influence on
thermo-mechanical properties of iron through its α-phase and
across the Curie transition. Enhanced magnetic thermostats have
been proposed in order to better match the experimental
magnetic transition versus temperature59,60. Such thermostats
could be implemented in LAMMPS and used to replace the
magnetization-controlled conditions defined in the “Results”
section. This could extend the range validity of our framework
to areas of phase-diagrams where the magnetization distribution
is not well measured (for example in the ϵ phase of iron).
A recent study added a magnetic contribution to the set of

descriptors used in a moment-tensor ML-IAP61. Although this
approach does not explicitly simulate the magnetization dynamics
(and its effects on thermomechanical properties), the authors
demonstrated remarkable improvement in terms of error con-
vergence. At this stage of our work, we believe improving the
modeling of the magnetic component of the PES remains our first
priority (and thus implementing and fitting improved spin
Hamiltonians, as discussed above). However, depending on the
success of this first effort, this complementary approach could be
leveraged to improve the accuracy of our magneto-elastic ML-
IAPs.
In summary, we have presented a new computational frame-

work for simulations of magneto-elastic materials properties near
first-principles accuracy. By leveraging the flexibility of ML-IAPs,
our data-driven workflow enables to model the interplay between
magnetic and phononic dynamics for a large class of magnetic
materials. Furthermore, our straightforward connection to the
LAMMPS package makes it possible to perform large-scale
quantitative magneto-elastic predictions over controlled pressure
and temperature spaces, hitherto study unexplored magneto-
dynamics properties of materials.

METHODS
Density functional theory calculations
Parameterizing both the ML-IAP and the magnetic Heisenberg Hamiltonian
relies on data computed using spin-dependent DFT calculations. They
were performed using VASP62,63. In all calculations the PBE64 exchange-
correlation functional was employed. We used PAW pseudopotentials65

with 8 valence electrons and a core radius of rc= 2.3aB. The plane wave
cutoff was set to 320 eV and the convergence in each self-consistency
cycle was set to 10−8. The Fermi-Dirac smearing scheme with a width of
0.026 eV was used. The Brillouin zone was sampled on a 10 × 10 × 10 grid
of k-points. The number of bands used was 224 per atom.

Spin-spiral calculations
Spin-spirals define a subset of non-collinear magnetic states. In this work,
we leverage spin-spirals as a convenient tool to perform one-to-one
comparisons between first-principles and classical magneto-elastic calcula-
tions. They can be defined as follows:

sj ¼ sin θ cosðq � R0jÞx̂ þ sin θ sinðq � R0jÞŷ þ cos θẑ (2)

where q is the spin-spiral vector, R0j is the position of atom j relative to a
central atom 0, sj is the spin on atom j, and θ is a constant angle between
the spins and the spin-spiral vector (often referred to as cone angle)51. x̂, ŷ,
and ẑ are the unit vectors along [100], [010], and [001], respectively. Our
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calculations are restricted to θ= π/2, corresponding to flat spin-spirals in
the (001) plane.
First-principles calculations of the per-atom energy and the pressure

corresponding to spin-spiral states are performed using DFT by leveraging
the frozen-magnon approach66,67 and the generalized Bloch theorem68 as
implemented in VASP69. We consider a primitive cell of one atom. A 10 ×
10 × 10 k-point grid, an energy cutoff of 320 eV, and 224 bands proved
sufficient to reach the level of accuracy expected in our model (as can be
seen in Fig. 5).
Classical calculations are performed by using Eq. (2) to generate

supercells accommodating the spin-spirals corresponding to the q-vectors
used in the DFT calculations. Based on a given supercell and a spin
Hamiltonian, the per-atom energy and pressure are computed using the
SPIN package of LAMMPS21,38.

Spin Hamiltonian
A spin Hamiltonian is used to model the energy, mechanical forces, and
pressure contributions of magnetic configurations. Rosengaard and
Johansson50 and Szilva et al.70 showed that adding a biquadratic term to
the classical Heisenberg Hamiltonian improves the accuracy of magnetic
excitations in 3-d transition ferromagnets. We adopted their Hamiltonian
form:

Hmag ¼ �PN
i≠j

J rij
� �

si � sj � 1
� �

�PN
i≠j

K rij
� �

si � sj
� �2 � 1
h i (3)

where si and sj are classical atomic spins of unit length located on atoms i
and j, J rij

� �
and K rij

� �
(in eV) are magnetic exchange functions, and rij is the

interatomic distance between magnetic atoms i and j. The two terms in Eq.
(3) are offset by subtracting the spin ground state (corresponding to a
purely ferromagnetic situation), as detailed in Ma et al.35. Although this
offset of the exchange energy does not affect the precession dynamics of
the spins, it allows to offset the corresponding mechanical forces. Without
this additional term, the magnetic contribution to the forces and the
pressure are not zero at the energy ground state. For the exchange
interaction terms J rij

� �
and K rij

� �
, the interatomic dependence is taken

into account through the following function based on an approximation of
the Bethe-Slater curve71,72:

f rð Þ ¼ 4α
r
δ

� �2
1� γ

r
δ

� �2
� 	

e�
r
δð Þ2Θ Rc � rð Þ (4)

where α denotes the interaction energy, δ the interaction decay length, γ a
dimensionless curvature parameter, r= rij is the radial distance between
atoms i and j, and Θ Rc � rð Þ a Heaviside step function for the radial cutoff
Rc. This assumes that the interaction decays rapidly with the interatomic
distance, consistent with former calculations70,73. We set Rc= 5Å to
include five neighbor shells, as Pajda et al.73 showed that the exchange
interaction decays slower along the [111] direction in α-iron.
Using Eq. (3) and leveraging the generalized spin-lattice Poisson bracket

as defined by Yang et al.74, the magnetic precession vectors (ωi),
mechanical forces (Fi), and their corresponding virial components (
W rNð Þ) are derived:

ωi ¼ γ

μi

XNi

j

J rij
� �

sj þ K rij
� �

si � sj
� �

sj (5)

Fi ¼
PNi

j

dJ rijð Þ
drij

si � sj � 1
� �

eij þ :::

dK rijð Þ
drij

si � sj
� �2 � 1
h i

eij

(6)

W rN
� � ¼ X0

ri � Fi (7)

where rN denotes a 3N size vector of all atomic positions and ri the position
vector of atom i. The primed sum in the above expression for the virial
indicates that force contributions on atoms that are periodic images must
be summed separately75. The total pressure is obtained by combining this
virial with thermal and mechanical contributions. The precession vectors
(ωi) are defined following the definitions of Evans76. In Eq. (5), γ is the
gyromagnetic ratio (γ ≈ 0.176 rad ⋅ THz ⋅ T−1), and μi is the atomic spin
norm, in Bohr magneton. This yields a precession frequency in rad ⋅ THz
(corresponding to the metal units of LAMMPS).

The spin Hamiltonian is used to reproduce spin-spiral energy and
pressure reference results obtained from DFT. They are sampled along two
high-symmetry lines, ΓH and ΓP, and for two different lattice constant
values (corresponding to the equilibrium bulk value and to a lattice
compression of 2%). This allows us to encapsulate in the model the
influence of lattice compression on the spin stiffness and the Curie
temperature, which was experimentally and theoretically predicted to be
small77–79. Figure 5 displays the excellent agreement obtained between
our first-principles spin-spiral energies and experimental measurements.
Our current spin Hamiltonian does not account for fluctuations of the

magnetic moment magnitudes, i.e., the norm of atomic spins remains
constant in our calculations. As can be seen in Fig. 5, this is not the case for
our DFT results, as those fluctuations can become important when
departing from the Γ point. We thus decided to parameterize our model
only on spin-spirals corresponding to q-vectors for which the spin norm
deviates from the ferromagnetic value (≈2.2μB/atom at the Γ point) by
<5%. The red dashed lines in Fig. 5 delimit this q-vector range.
Finally, we used the single objective genetic algorithm within the

DAKOTA software package43 to optimize the six coefficients of J rij
� �

and
K rij
� �

in order to obtain the best possible agreement between our
reference DFT spin-spiral energy and pressure results and our spin model.
Figure 5 displays the obtained result. As can be seen in Fig. 4, for a fixed-
volume calculation, our spin Hamiltonian predicts a Curie temperature of
716 K. Note that a better match of the DFT spin-spiral energies would yield
a larger spin-stiffness, and thus a better agreement for the Curie
temperature. However, this would worsen the pressure agreement.
Spin–orbit coupling effects were included by accounting for an iron-type

cubic anisotropy80:

Hcubic ¼ �PN
i¼1

K1
�ðsi � x̂Þ2ðsi � ŷÞ2 þ ðsi � ŷÞ2ðsi � ẑÞ2 þ :::

ðsi � x̂Þ2ðsi � ẑÞ2
�þ KðcÞ

2 ðsi � x̂Þ2ðsi � ŷÞ2ðsi � ẑÞ2
(8)

with K1= 0.001 eV and KðcÞ
2 ¼ 0:0005 eV the intensity coefficients corre-

sponding to α-iron. The cubic anisotropy was only included to run
calculations, but ignored in the fitting procedure as its intensity is below
the range of accuracy of our ML-IAP.
In all our classical spin-lattice dynamics calculations, our system size

remained small compared to the typical magnetic domain-wall width in
iron80. Thus, long-range dipole–dipole interactions could safely be
neglected.
The parameters if this optimized spin Hamiltonian are contained in the

Supplementary Table 1, along with LAMMPS input scripts used in the
following section. The Supplementary Figure 3 also reports a comparison
between our spin Hamiltonian and DFT data on the ΓN high-symmetry line,
on which it was not parametrized. This additional calculation aims at
probing the ability of our spin Hamiltonian to account for spin
configurations that are outside of its training set.

SNAP potential
For this work, an interatomic potential for iron was developed that is
specifically parameterized for use in coupled spin and molecular dynamics
simulations. Training data for a Spectral Neighborhood Analysis Potential
(SNAP)44,81,82 was collected to constrain the fit to the pressure and
temperature phase space of <20 GPa and <2000 K. The set of non-colinear,
spin-polarized VASP calculations includes α- (BCC), ϵ- (HCP) and liquid-iron,
Table 1 displays the quantity of each training type and target properties
that are captured therein. Optimization of a SNAP potential necessitates
that the generated training database be broken into these groups (rows in
Table 1) such that the weighted linear regression can (de-)emphasize
different parts in search of a global minima in objective function errors.
Each training group is assigned a unique weight for its’ associated energies
and atomic forces for each candidate potential, optimization of these
weights is controlled by DAKOTA. Regression is carried out using singular
value decomposition with a squared loss function (L2 norm). In order to
avoid double counting, and properly simulate the magnetic properties of
iron in classical MD, we have adapted the SNAP fitting protocol44 to isolate
the non-magnetic energy and forces from the generated training data. To
do so, the fitted biquadratic spin Hamiltonian is used to evaluate the
magnetic energy and forces for every atom in the training set, as well as
the generated stress tensor pressure on the corresponding cell. Those
quantities are then subtracted from the corresponding total DFT
quantities. This is similar to previous uses of an ion core repulsion83 or
electrostatic interaction term84 as a reference potential while fitting SNAP
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models. A key distinction, however, is that the inclusion of spin dynamics
increase the dimensionality of the PES, which is not the case for Coulombic
interactions. As a result, determination of magnetic energies and forces
necessitates running a concurrent simulation for the spins within a
standard MD run. The intricacies in evolving this 5N-dimensional system
forward in time far exceed those encountered in the evaluation of static
charge Coulombic interactions38.
The energy for a SNAP interatomic potential, EiSNAP for each atom i from

its’ neighboring atom positions, rN, is expressed as a sum of the bispectrum
components Bi

EiSNAPðrNÞ ¼ β � ðBi � B0Þ (9)

where the vector β are constant linear coefficients whose values are
trained to reproduce energies and forces obtained from DFT training
structures. Bispectrum components map the density correlations of
neighboring atoms in a rotational and translation invariant manner,
making them well posed descriptors of atomic energies and forces. By
construction, the bispectrum components of an isolated atom are non-zero
so the descriptors are shifted by the term B0 in order to force the potential
energy to zero for an atom with no neighbors within the radial cutoff
distance. Similarly, the forces on each atom k are expressed in terms of the
derivative of atomic energies with respect to the position of atom k, where
N is the total number of atoms in the structure

FkSNAP ¼ �∇k

XN
i¼1

EiSNAP ¼ �
XN
i¼1

β � ∂B
i

∂rk
(10)

Optimization of the β terms in the SNAP potential was achieved using a
single objective genetic algorithm within the DAKOTA software package43.
Radial cutoff distance, training group weights and number of bispectrum
descriptors were varied to minimize a set of objective functions, as percent
error to available DFT or experimental85,86 data, that encapsulate the
desired mechanical properties of Fe. These objective functions specific to
α-iron are listed in Table 2, and the RMSE energy and force regression
errors are included in optimization as well. In all objectives, our linear SNAP
model with 30 bispectrum descriptors achieves accuracy in all mechanical
properties within a few percent of experiment/DFT. Additionally, lattice
constants and cohesive energies of γ- (FCC) and ϵ-iron (HCP) phases were
fit, but given far less priority with respect to the α-iron mechanical
properties resulting in ~6–7% errors with respect to DFT. Importantly, each
of the objective functions were evaluated including the magnetic spin
contributions to avoid unforeseen changes in property predictions. A full
breakdown of the optimal training group weights and mean absolute
energy/force errors are given in Table 1. Group weights listed have been
adjusted by the number of configurations or forces they are applied to,
therefore allowing for larger group weights to be (cautiously) interpreted
more valuable at meeting the set of targeted objective functions. This
optimized Fe-SNAP interatomic potential is detailed in the Supplementary
Tables 1, 2, and 3 along with LAMMPS input scripts used in the following
section.

Spin-lattice dynamics
Calculations are performed following the spin-lattice dynamics approach
as implemented in the SPIN package of LAMMPS21,38, and set by the spin-
lattice Hamiltonian below:

Hslðr; p; sÞ ¼ Hmagðr; sÞ þ
PN
i¼1

jpj2
2mi

þ PN
i;j¼1

VSNAPðrijÞ (11)

whereHmag is the spin Hamiltonian defined by the combination of Eqs. (3)
and (8). The term VSNAP(rij) is our SNAP ML-IAP. The second term on the
right in Eq. (11), represents the kinetic energy, where the particle
momentum is given as p and the mass of particle i is mi. Based on this
spin-lattice Hamiltonian and leveraging the generalized spin-lattice
Poisson bracket as defined by Yang et al.74, the equations of motion can

be defined as:

dri
dt

¼ pi
mi

(12)

dpi
dt ¼ PN

j;i≠j
� dVSNAPðrijÞ

drij
þ dJðrijÞ

drij
ðsi � sjÞ þ :::

h

dKðrijÞ
drij

ðsi � sjÞ2
i
eij � γL

mi
pi þ fðtÞ

(13)

dsi
dt ¼ 1

ð1þλ2Þ ðωi þ ηðtÞÞ´ si þ :::½
λsi ´ ðωi ´ siÞ�

(14)

Particle positions are advanced according to Eq. (12). The derivative of the
momentum, given in Eq. (13), is dependent not only on the mechanical
potential but the magnetic exchange functions as well. Here γL is the
Langevin damping constant for the lattice and f is a fluctuating force
following Gaussian statistics given below38.

hfðtÞi ¼ 0 (15)

hf αðtÞf βðt0Þi ¼ 2kBT lγLδαβδðt � t0Þ (16)

The fluctuating force f is coupled to γL via the fluctuation dissipation
theorem as shown in Eq. (16). Here kB is the Boltzmann constant, Tl is the
lattice temperature, and α and β are coordinates. Shown in Eq. (14) is the
stochastic Landau-Lifshitz-Gilbert equation which describes the preces-
sional motion of spins under the influence of thermal noise. In Eq. (14), λ is
the transverse damping constant and ωi is a spin force analog as shown in
Eq. (5). Note that the gyromagnetic ratio is included in the calculation of
the precession vectors (see Eq. (5)). The variable η(t) is a random vector
whose components are drawn from a Gaussian probability distribution
given below:

hηðtÞi ¼ 0 (17)

hηαðtÞηβðt0Þi ¼ DSδαβδðt � t0Þ (18)

where the amplitude of the noise DS can be related to the temperature of
the external spin bath Ts according to DS= 2πλkBTs/ℏ37.
SD-MD calculations are carried out using a 20 × 20 × 20 BCC cell. The

BCC lattice is oriented along each of the coordinate directions. The MD
timestep in all cases is set to 0.1 fs. The damping constants are set to 0.1
(Gilbert damping, no units) for the spin thermostat, and to 0.1 ps for the
lattice thermostat. Initially all spins start out aligned in the z-direction. To
measure the magnetic properties for the canonical ensemble we initially
thermalize the system under NVT dynamics at the target spin/lattice
temperatures for 40 ps and then sample the target properties for 10 ps
using a sample interval of 0.001 ps. For pressure-controlled simulations
(see PCC and MCPCC in the “Results” section), after the initial 40 ps of
temperature equilibration we freeze the spin configuration and run
isobaric-isothermal NPT dynamics in order to allow the system to thermally
expand (still accounting for the effect of the magnetic pressure, generated
by the spin Hamiltonian). The pressure damping parameter is set to 10 ps.
The pressure equilibration run is terminated once the system pressure
drops below 0.05 GPa. After this, the spin configuration is unfrozen and
another equilibration run is carried out under NVT dynamics for 20 ps.
Unfreezing the spin configurations causes a small jump in the pressure,
typically within the range of +/−2 GPa. To reduce this pressure fluctuation,
a series of uniform isotropic box deformations are performed under the
NVE ensemble. During this procedure the box is deformed in 0.02%
increments every 2 ps until the magnitude of the pressure is reduced to
negligible values (<10 MPa). Figure 6 displays the pressure profiles
obtained within the FVC and PCMCC (similar to the PCC).
For the magnetization-controlled conditions (PCMCC in the “Results”

section), the spin temperature is adjusted to match the experimental
magnetization values. Spin temperature adjustments are made based on
the magnetization curve obtained in the pressure-controlled conditions
(PCC in the “Results” section). The corresponding spin-lattice temperature
relationship is shown in Eqs. ((19)–(22)). Here the fitting coefficients are
given as a1= 471.6, a2= 0.1, and α= 2.73, respectively. The functions Ts,pre
and Ts,post prescribe how the spin temperature varies before and after the
critical point. The form of Ts,pre is adopted from the spin temperature
rescaling done by Evans et al.42. In our case we account for the shift in the
Curie temperature when Ts= Tl by including the Tc,PCC= 576 K term in Eq.
(20). The value of α found here agrees reasonably well with the work of
Evans et al. where for iron α was found to be 2.876. At the critical point we
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use a switching function fsw to smoothly transition from Ts,pre to Ts,post.
Above the experimental Curie temperature Tc,exp we do not assume Tl= Ts
like Evans et al. The reason for this is that Tc,PCC ≠ Tc,exp hence if we assume
Tl= Ts there will be a discontinuity in the effective temperature near the
critical point which would also lead to unphysical discontinuities in the
lattice constant and mechanical properties.

Ts;postðT lÞ ¼ T l � a1 (19)

Ts;preðT lÞ ¼ Tc;PCC T l=Tc;exp
� �α (20)

f swðT lÞ ¼ 1
2

1þ tanh
T l � Tc;exp

a2

� 	
 �
(21)

TsðT lÞ ¼ f swTs;post þ ð1� f swÞTs;pre (22)

Figure 6 displays the spin temperature profiles for the FVC (and, similarly,
the PCC), and the PCMCC. After the magnetic measurements we compute
elastic constants by performing both uniaxial and shear deformations
along each of the coordinate directions and planes. The magnitude of
these deformations in all cases is 2% of the box length. Following each
deformation the box is relaxed for 3 ps. After this relaxation the stresses are
sampled for 2 ps using a sampling interval of 0.001 ps. For statistical
averaging every spin-lattice dynamics simulation is ran six times using
different random seeds. The final elastic and magnetic properties are
averaged across these six simulations. The maximum uncertainty in all
cases (FVC, PCC, and PCMCC) occurs near the critical points. For the elastic
measurements and magnetization the maximum standard deviation is
~2% of the reported mean value. For the specific heat measurements the
maximum standard of deviation occurs at the critical point and is ~25% of
the reported mean value. Away from the critical point the standard of
deviation for Cp is in the range of 5–10%.
In the Supplemental Note, we probe the ability of our magneto-elastic

ML-IAP to be transferred to other material phases of iron. Supplementary
Figures 1 and 2 display results obtained for liquid phase calculations as
well as free energy measurements in the epsilon hcp phase of iron. Our
result are in good agreement with DFT data and experimental observa-
tions. Those calculations constitute extrapolation of our potential
(performed out of his training range), and are therefore not reported as
main results of this manuscript.
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