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Gaussian process analysis of electron energy loss spectroscopy
data: multivariate reconstruction and kernel control
Sergei V. Kalinin 1✉, Andrew R. Lupini 1, Rama K. Vasudevan 1 and Maxim Ziatdinov 1✉

Advances in hyperspectral imaging including electron energy loss spectroscopy bring forth the challenges of exploratory and
physics-based analysis of multidimensional data sets. The multivariate linear unmixing methods generally explore similarities in the
energy dimension, but ignore correlations in the spatial domain. At the same time, Gaussian process (GP) explicitly incorporate
spatial correlations in the form of kernel functions but is computationally intensive. Here, we implement a GP method operating on
the full spatial domain and reduced representations in the energy domain. In this multivariate GP, the information between the
components is shared via a common spatial kernel structure, while allowing for variability in the relative noise magnitude or image
morphology. We explore the role of kernel constraints on the quality of the reconstruction, and suggest an approach for estimating
them from the experimental data. We further show that spatial information contained in higher-order components can be
reconstructed and spatially localized.
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INTRODUCTION
Over the last two decades, scanning transmission electron
microscopy (STEM) has become the keystone tool for atomic-
level studies of the structure and functionality of solids1,2.
Structural imaging by STEM now routinely allows locating atomic
columns with ~picometer precision3 and enables the mapping of
strain4, polarization5–10, and ferroelastic11–13 order parameter
fields. Multiple and often spectacular applications of these method
for ferroelectric surfaces, interfaces, domain walls, and topological
defects have been reported12–17.
In parallel, advances in electron energy loss spectroscopy (EELS)

opened new pathways for probing materials functionality through
energy losses in the electron beam due to inelastic scattering in
the material. Core level EEL spectra corresponding to electronic
transitions in the solid provide ample information on the presence
of specific chemical species, valence states, and orbital popula-
tions, although not always in a straightforward manner. This
approach has been extensively used to explore single atoms in
oxide lattices18, charge ordering19, oxide interfaces20–22, ferro-
electric domain walls, etc. A recent surge of interest in monolayer
2D materials has brought a corresponding focus toward EEL
spectroscopy of chemical and vibrational23–25 properties in these
systems. Low-loss EELS contains information on the plasmon and
exciton excitations and recent advances in monochromated EELS
have enabled sub-10meV resolution, even providing insight into
phonons23. Recent studies have demonstrated the detection of
not only energy loss, but also energy gain due to thermal
excitation and laser stimulation.
This remarkable progress in STEM imaging and spectroscopy

has necessitated the development of algorithmic tools to denoise/
reconstruct the data, extract materials-specific features, and to
generally convert the data to materials-specific descriptors that
can further feed into atomistic or mesoscopic models. In structural
STEM data, typical examples of such analysis are image
reconstruction from either high-noise imaging by techniques
such as compressed sensing26, or from low-noise data by deep
learning methods27, and identification of atomic positions with

associated uncertainty quantification. The former reconstructs
images from low-dose or sparse data, whereas the latter converts
the image into materials-specific descriptors.
Similarly, analysis of EELS data necessitates the development of

corresponding analysis methods. EELS imaging data, by nature, is
hyperspectral in that it typically represents the 3D data cube
defined by spectra A(E) at some spatial locations (x, y). It is
important to note that the EELS signal in STEM is acquired in
parallel, with few non-uniform distortions in energy space. In other
words, different points in energy are acquired from the same
spatial location.
However, analysis of the EELS data cube represents a

considerably more complex problem than most structural STEM
image data. Similar to many other spectroscopic imaging
techniques, analytical or numerical models for EELS signal
formation, allowing for all of the instrumental factors, are
generally absent or tend to be complicated, creating a need for
exploratory data analysis tools. In core-loss EELS, the energy
regions corresponding to different atomic species are often
localized in energy, allowing for the use of simple peak-fitting
tools or even integration across corresponding energy ranges to
generate elemental maps. However, this is not always the case. For
example, in low-loss EELS, overlap between the peaks correspond-
ing to dissimilar mechanisms are much stronger, again necessitat-
ing alternative exploratory data analysis tools.
In our opinion, one of the biggest recent breakthroughs in the

analysis of EELS data came with the introduction of unsupervised
linear unmixing tools, as envisioned by Bonnet28,29 and then
realized and widely introduced by Kotula and Keenan30,31 and
Watanabe32. In this approach, the 3D hyperspectral EELS image is
represented as a linear combination of spatially dependent
loading maps and energy dependent components, as

A0 x; y; Eð Þ ¼
XN
i¼1

Ai x; yð Þwi Eð Þ: (1)

The loading maps, Ai(x, y), represent the variability of the
spectral behaviors across the image, and wi(E) are the components
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(sometimes referred to as the endmembers) that determine these
characteristic behaviors. The number of components, N, can be
chosen based on the reconstruction error, anticipated physics of
the system, etc. Note that Eq. (1) explicitly assumes that the nature
of wi(E) is unknown but that the total response is linear in these
components. If the components are known, e.g., if they represent
“pure” spectra, then Eq. (1) will become a linear regression model.
The immediate feature of the decomposition is that a H ×W ×M
3D data set (W, H are the spatial dimensions and M is the energy
dimensions) is reduced to n « K spatial maps, each with size W × H
and n components of length K. For a typical 100 × 100 × 1000 EELS
data set and N = 10, this corresponds to a reduction from 107 data
points to 1.1 × 105 data points, an almost 100-fold compression.
The paradigmatic example of linear unmixing is principal

component analysis (PCA)33,34, in which the components are
orthogonal and are ordered by reducing variance. Another
example of linear unmixing is non-negative matrix factorization
(NMF), where the components are non-negative. Many other
unmixing methods are known, for example Bayesian linear
unmixing and related methods pioneered by Dobigeon35–41, in
which the components are both non-negative and sum to one; or
independent component analysis (ICA) that aims to maximize
non-Gaussianity of the signal. It is important to note that the
components of linear unmixing in general do not have direct
physical meaning, although in certain cases the constraints such
as non-negativity, summing to one, or sparsity allow the user to
draw semi-quantitative conclusions using the parallels with the
relevant physical mechanisms.
The fundamental limitation of all linear unmixing methods, as

well as many of the non-linear manifold-learning techniques, is
that they operate in energy space only, whereas spatial
correlations in the spatial plane remain unused. In other words,
the components in linear unmixing algorithms do not change if
the spatial locations (x, y) on which they are defined are
randomized; this randomization will be reflected in the loading
maps only. This deficiency limits the analysis of EELS data and can
be expected to affect the reconstruction process. It is important to
note that this limitation of the multivariate analysis methods is
well understood in the broad imaging community, and a number
of approaches have been suggested42–50, preponderantly in the
context of geospatial imaging. It is also important to highlight very
recent manuscript51 exploring the inpainting for EELS data.

Here, we explore the applicability of Gaussian process (GP)
regression for the analysis and reconstruction of EELS imaging
data, with a focus on denoising and “super-resolution”. Given the
large volume of a typical EELS data set, the direct use of a GP
method is impractical, requiring either the use of the inducing
point approach or similar alternative strategies. The inducing point
method often tends to produce reconstruction artefacts, espe-
cially for signals with strong gradients (sharp features) that are
extremely difficult to detect. To extend the GP methods to
hyperspectral data, we develop a kernel transfer approach for
dimension-reduced EELS data. We consider two limiting cases, one
in which the kernel function is determined by a certain PCA/NMF
component, and another in which the kernel is balanced by
several components. We further discuss the reconstruction of EELS
data sets using constrained kernels as a way to unify the physics of
the signal formation mechanisms. Although we do not discuss this
aspect extensively, it is important to bear in mind that the
resulting GP methods can also be applied to sparsely sampled
data and to cases, where some (or even a significant fraction) of
the data points are missing. Similarly, once the model is trained
the resulting output can be up-sampled or interpolated to predict
the expected signal at a higher spatial resolution. Importantly,
prior knowledge about the physics or expected mechanisms can
be encoded into the kernel. The codes developed here are
available as a GPim library on GitHub.

RESULTS AND DISCUSSION
Data overview
As a model system, we choose the lanthanum aluminate–strontium
titanate interface. Data were acquired on a Nion UltraSTEM operated
at 100 kV and equipped with a Gatan Enfina spectrometer, resulting
in a data size of 48 × 48 × 1340 pixels (fully described in the
“Methods” section).
For pre-processing, a small number of outliers (three pixels for

this data set) were removed using substitution by local averaging.
Note that this step is extremely important, since otherwise each
outlier can dominate a principal (or NMF) component and result in
strong information leakage from other maps. Figure 1a show the
explained variance of the data as a function of the number of
components, illustrating that most of the information is concen-
trated in the first 3–5 components.

Fig. 1 Exploratory data analysis. a PCA scree plot of EELS data set. b First four NMF components (red—1st, blue—2nd, green—3rd, and cyan
—4th) and c–f first four NMF loading maps. The color maps in c–f are normalized to (0, 1).
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To explore the spatial structure of the EELS signal, we adopt a
NMF decomposition with N =12 components. NMF is chosen here
since it allows us to maintain the non-negativity of individual
components; however, the GP analysis reported below is universal
and can be applied to any decomposition. The first four NMF
components are shown in Fig. 1b and the corresponding loading
maps are illustrated in Fig. 1c–f. Although physical interpretations
of NMF components are necessarily qualitative, the first compo-
nent represents essentially an average signal including the
background, the second component corresponds to the signal
from the titanium L-edge, the third to the lanthanum M-edge, and
the fourth to the oxygen K-edge and some background
(component 5 is affected by some afterglow on the spectrometer
scintillator and component 6 indicates a difference of the Ti-L
edge on and off atomic columns; not shown). Clearly, some
atomically resolved features are visible in certain regions for some
of the components. Above the 4th component, no atomic-scale
features are apparent. In general, atomic features might be
expected in all the loading maps (if the corresponding compo-
nents show peaks corresponding to the core-loss levels); in
practice the data is affected by noise and non-optimal sampling.
It is important to note that EELS dataset, similar to any

hyperspectral data set, will have non-uniform distribution of noise
and materials specific information along the energy direction.
Additionally, the nature of the EELS imaging is such that the
localization length (i.e., spatial resolution) can differ for different
energies. For example, each edge to have a potentially different
noise level because they have different cross-sections, as well as
other factors such as concentration or line shape. The spectro-
meter has several different contributions to the noise, ranging
from physical effects, such as Poisson statistics of the electron
signal to channel-to-channel gain or dark-current levels. The
material-specific information could be recovered if the physics-
based models were available; in this case the EELS information
would be used to reconstruct materials specific behavior and
noise would be one of the factors affecting uncertainties (e.g.,
error bars for classical fits or posterior distributions in Bayesian
inference based methods). However, such models are generally
absent for EELS levels or model uncertainty is the limiting factor in
analysis.
This consideration prompted the development of multivariate

methods for analysis of hyperspectral images, ranging from the
simple PCA/NMF to more complex methods with certain
constrains on components. These methods “redistribute” signal
between the energy bins as illustrated above. Note that spatial
content of the signal can have non-monotonic behavior across the
domains—some time higher order components will have more
pronounced spatial structure. Here, we explore the reconstruction
of the individual components in the image plane using Gaussian
process.

Gaussian process regression and kernel length analysis
We explore the reconstruction of the signal using GP regression.
This method exploits the presence of correlations within the data
set in the spatial domain. A classic GP aims to learn an unknown
function, f, over source-target pairs, {(x1, y1),…(xn, yn)} by
performing Bayesian inference in a function space. A standard
GP regression model is defined by f ~ GP mðxÞ; Kf x; x0ð Þð Þ and y = f
(x)+ ε, where Kf is a covariance function (usually referred to as a
kernel), m is a mean function (usually set to 0), and ε is Gaussian
observation noise. The covariance function determines the
strength and functional form of coupling between y values across
the parameter space, x, and therefore allows, in principle,
encoding our prior knowledge into the model. For example, the
knowledge of the physics of the system, such as whether or not to
expect atomic-scale detail or long-range composition changes,
can inform the choice of kernel function.

The GP reconstruction of the first three NMF components is
shown in Fig. 2. Here we used a Matern kernel defined as

kMatern x1; x2ð Þ ¼ σ2 exp �
ffiffiffi
5

p
´

x1 � x2j j
l

� �
1þ
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p
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x1 � x2j j2
l2

 !
;

(2)

where l(x, y) and σ2 are kernel length scale and variance,
respectively. Note that in our setup the kernel length scale is
learned separately in x and y dimensions (i.e., the kernel is
anisotropic). It should also be noted that isotropy and limiting
length scales can be imposed as constraints. The convergence of
the fit can be explored via the history of the process, namely the
evolution of the noise level and the kernel length scale with
iterations. Note that in this process, the kernel length scale serves
the role of the filter that defines the spatial extent of the features
in the image on which the reconstruction converges.
During the analysis, we found that the evolution can proceed in

two regimes depending on the chosen kernel constraints. For the
constrained kernel, namely GP with an imposed upper limit on
kernel length, the GP yields reconstructed images showing both
atomically resolved details and large-scale compositional varia-
tions, as shown in Fig. 2 (middle row). However, for an
unconstrained kernel, the evolution generally proceeds to high-
light the large-scale variations in the signal, while the small atomic
features are interpreted as noise and smoothed over. This
behavior clearly allows an opportunity to separate the physical
phenomena via analysis at different length scales, but opens a
question as to how to perform this analysis systematically
avoiding operator-bias induced artefacts and associated (poten-
tially misleading) interpretations.
When exploring the a kernel “size” evolution as a function of the

imposed limit, we find that in some cases the evolution
approaches the superimposed limit, whereas in others it
converges stably to a value corresponding to the characteristic
length scale of features in the image. To explore this behavior
systematically, we explored the change of the kernel length after
GP regression as a function of the limiting kernel length, as shown
in Fig. 3. Figure 3a clearly shows that the kernel evolution for the
second NMF component has two clear basins of attraction,
corresponding to ~2 and ~20. The first of these values
corresponds to the size of the atomic features (about two pixels)
whereas the second represents large-scale variations of contrast

Fig. 2 Independent GP reconstruction of the first three NMF
component maps with constrained and unconstrained kernels.
For clarity, analysis is performed on a 30 × 30 subset of the image.
Shown are initial NMF components (top row), constrained GP
(higher kernel length limit = 3), and unconstrained reconstructions
(bottom row). The resampling is 4 times denser than the initial grid.
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due to larger scale effects, such as sample thickness and, of
course, the composition variation.
This behavior is further shown for the first four NMF

components in Fig. 3b. We note that for three of the components,
the kernel behavior clearly highlights the length scale of the
atomic features and allows us to pinpoint the initial constraint that
guides the convergence to this regime. In comparison, all other
components show a straight line, indicative of convergence only
on the length scales of image inhomogeneities. Overall, the
approach described here allows consistent choice of the limiting
kernel length scale for the constrained GP reconstruction.
However, the GP analysis illustrated in Fig. 2 reconstructs each

NMF map as an independent 2D image, optimizing parameters
such as kernel length, amplitude, and noise independently. At the
same time, the nature of the NMF components is such that while
they represent dissimilar behaviors in the energy dimension, they
are defined on the same spatial grid. Correspondingly, the spatial
correlations within the maps can be expected to be similar,
necessitating transfer of information between components during
the GP analysis.

Multivariate Gaussian process
We implement a version of GP for vector valued functions with a
common spatial structure (i.e., multiple outputs sharing the same
inputs), which we refer to as multivariate GP. In this case, the

covariance can be defined as k x; l½ �; x0; l0½ �ð Þ ¼ klðl; l0Þkxðx; x0Þ,
where kl and kx represent the correlation between outputs and a
standard covariance function operating on inputs, respectively52.
The former is expressed as k l; l0ð Þ ¼ BBT þ diagðwÞð Þl;l0 , where B is
a low-rank matrix and w is a non-negative vector. These
hyperparameters are trained together with the hyperparameters
of the input covariance function, using marginal log likelihood as a
“loss” function. Here, each output is associated with a different
effective noise, εl, which is the GP model’s hyperparameter and is
also learned during the training. The trained GP model can then
be used to calculate the predictive mean and variance on the new
data points in the same way as a standard scalar GP.
To illustrate this approach and to better see how to apply it to

our experimental data, we first explore a synthetic data set, as
shown in Fig. 4. We consider a signal comprised of three
components, shown in the top row of Fig. 4. For convenience
and compactness of illustration, these components can be
represented as a red-green-blue (RGB) image, efficiently encoding
the information and allowing for easy interpretation (last column).
For this example, the contrast varies from 0 to 1 and the vertical
scale of the images is correspondingly normalized. The second
row represents the data with the addition of uncorrelated
(spatially) Gaussian noise with magnitude σ = 0.3. The third and
fourth rows represent the GP reconstruction and the associated
uncertainties respectively.
The corresponding training histories are shown in Fig. 5 along

with the evolution of the kernel length scales and effective noise
during multivariate GP reconstruction. Note that here the kernel is
anisotropic 2D, describing the spatial correlations within the
image planes. The kernel is common between the three
components, while the noise levels are independent. In all cases,
in the initial stages of GP reconstruction, the effective kernel
length scale increases and the noise rapidly decreases as the
algorithm aims to establish the length scale of correlations in the
multimodal image. After this initial stage, the length scale starts to
decrease and eventually stabilize and the noise also stabilizes. It is
important to note that the kernel length scale is determined by
the correlations present in the image, but is not necessarily the
best measure of the feature size. For low noise levels, the kernel
lengths are similar, whereas for the high noise levels, the lengths
tend to split during reconstruction. For very high noise levels (not
shown) the kernel length can demonstrate even more complex
dynamics, with one length saturated and another oscillating with
time. These behaviors, which quite clearly indicate where the
model is unsuccessful, can be used to establish the stability of the
reconstruction process.
To obtain insight into the quality of the reconstructions, Fig. 6

shows the reconstruction with an unconstrained anisotropic
Matern kernel for the synthetic data as a function of the noise
level. Here, we use an RGB representation of the three component
ground truth images in the same manner as in Fig. 4. This
representation allows us to both conveniently visualize the data
set, and to determine the relative changes between the

Fig. 3 Evolution of kernel length in the GP process as a function of limit of kernel length. Shown is a behavior for 2nd NMF component
and b behavior for first four NMF components. For all other NMF components the response yields a straight line.

Fig. 4 Multivariate GP reconstruction of the 3-component data
set. Shown is the ground truth data (top row), noise corrupted data
for noise level σ = 0.3 (second row), reconstructed data resampled
at four times the original grid density (third row), and reconstruction
uncertainty (bottom row). The scale for all figures is [0, 1]. For
combined images, each RGB component is displayed in its own
scale [0, 1].
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components. For example, if all three components are maximum,
the pixel is white; for all three being zero, the pixel is black; and if
only one component is non-zero the pixel has one of the primary
red, green, or blue colors depending on which component it is
and if several components are non-zero a mixed color is seen.
Visual inspection of Fig. 6 shows that the features are
reconstructed with high veracity up to a noise level σ = 0.3,
whereas for σ = 1 the reconstruction is clearly degraded. That
said, it is important to note that the presence and positions of the
features can be established by the GP even for these high noise
levels, whereas visual inspection of the unreconstructed image
barely reveals any spatial features (right-most column of Fig. 6).
Hence, we conclude that while the human eye offers generally a
good guide to the presence of noisy features in the image, the GP
algorithm might be expected to perform at an even higher noise
level than human perception.
These analyses suggest that the GP algorithm can potentially

allow reconstruction at better than human detection levels, that
limiting the kernel lengths plays an important role in the
reconstruction process as a regularizing factor, and that the
multivariate GP method allows for information transfer between
components of multimodal images in the form of (isotropic or

anisotropic) kernel length. Below, we explore the salient features
of this multivariate GP process, seeking to answer the following
questions: (i) to what extent does the knowledge (i.e., low-noise
level) of one component allow us to improve the reconstruction of
other components, (ii) how is this process affected by kernel
constraints, and (iii) will the reconstruction of the low-noise (well
known) component be affected by the presence of the high-noise
components?
To explore these questions systematically, we introduce a

different ground truth data for the three components, as shown in
Fig. 7, using the product of sine functions. Here, components 1
and 3 are identical and periodic, whereas component 2 has similar
periodicity in one direction and double the periodicity in the
orthogonal direction. This choice of synthetic data set is driven by
the obvious parallel with the EELS problem, where atomically
resolved features are visible on some of the NMF maps but not on
others and there are potential pitfalls for the reconstructions, such
as period doubling, but in general the signal is expected to have
periodicity commensurate with the underpinning lattice. We note
that, as for any synthetic data set, optimization and assessment of
performance of the algorithm for each specific problem necessi-
tates a synthetic data set that captures the salient features of the
relevant physics.
To quantify the performance of the reconstruction process, we

introduce the similarity, simi, of the noiseless ground truth image
for the i-th component and the corresponding GP reconstructed
image as a simple cross-correlation between the two. If the
reconstructed image is identical to the ground truth image, simi =
1, the reconstruction is ideal and if simi « 1, the reconstruction fails.
The similarity function is defined for all three components and can
also be represented in an RGB format. The RGB representation
allows easy detection of components that start to degrade first
with increased noise level based on the hue. Obviously, this
analysis is possible only when the ground truth image is known
(as is here) or postulated in some manner.
We further create noisy data sets where each component 1–3 is

corrupted by uncorrelated Gaussian noise. To better explore the
properties of the reconstruction, we use several different levels of
noise across the components. In model 1, noise magnitudes are

Fig. 5 Evolution of the multivariate GP training for different noise levels with anisotropic unconstrained kernel. Shown are the results for
the 3-component synthetic data set in Fig. 4. The dim 1 and dim 2 are the kernel length scales associated with the x and y image dimensions.
Shown a, c, e, g is kernel length scale evolution and b, d, f, h noise evolution. The GP is performed for noise levels a, b σ = 0.03, c, d σ = 0.1, e, f
σ = 0.3, and g, h σ = 1. 1.

Fig. 6 Multivariate GP reconstruction of synthetic data. Data (top
row) and multivariate GP reconstruction (bottom row) for several
noise levels. The vertical scale is [0, 1] for all RGB components. The
reconstructed images are resampled on a four times denser grid.
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taken as σ1, σ2, σ3 = (0, ασ0, ασ0), where α is a scaling factor and σ0
is an absolute noise level. In model 2, noise magnitudes are taken
as σ1, σ2, σ3 = (σ0, ασ0, ασ0). Thus, model 1 allows us to explore to
which extent the presence of the noiseless image (component 1)
in multivariate GP affects the reconstruction of noisy images with
dissimilar (component 2) and identical (component 3) spatial
structures. Model 2 allows us to access the effect of noise in the
first component, a necessary comparison given that coupling
between kernels is based on the covariance matrix, which is

affected by noise in the system. The similarity is then plotted as a
function of α and σ0, simi(α, σ0). Note that while this representa-
tion is, strictly speaking, redundant, it allows for easier interpreta-
tion of the resulting dependencies and yields insight into the
reproducibility of the reconstruction.
The similarity analysis for the unconstrained kernel and model 1

(i.e., noiseless component 1) is shown in Fig. 7b. Here, the σ0
(horizontal axis) was varied from 0 to 1 and α (vertical axis) was
varied from 0 to 8. Thus, the left and bottom lines represent zero

Fig. 7 Multivariate GP analysis of the synthetic dataset with different behavior of components. a Synthetic 3-component data set in the
single component and RGB representation. b–d Similarity between the ground truth and reconstructed data for all three components in
absolute and RGB representation as a function of noise level (horizontal) and noise ratio (vertical). Shown is the analysis for b fully known
component 1 and free kernel, c partially known component 1 and free kernel, and d incorrectly constrained kernel. All individual components
of the similarity data are displayed in (0, 1) colormap range. The R, G, and B channels in the RGB image correspond to the similarity data from
the first, second, and third columns in b–d.
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noise reconstructions, and the top right corner represents the
reconstruction when the noise level is eight times the maximal
contrast.
The behavior of the sim1 component suggests that for low noise

levels the zero-noise image can be reconstructed very well.
However, for sufficiently large noise levels on the 2nd and 3rd
components the reconstruction fails, since the kernel attempts to
share the information between all three components equally. The
reconstruction failure in this case is very sharp, as evidenced by
abrupt transitions between red (sim1 = 1) and blue (sim1 = 0)
regions in Fig. 7b. For the 2nd (doubled) component the transition
between the good and bad reconstruction is more gradual.
Examination of the spatial maps (not shown) in this case suggests
that while some spatial features are reconstructed, the others can
be shifted, resulting in only a partial overlap between ground
truth and the reconstructed image. Finally, an interesting behavior
is observed for the third component where the ground truth
image is identical to component 1. In this case, the high-quality
reconstruction areas for sim1 and sim3 are almost identical,
despite the presence of non-unity pixels in sim1. This behavior is
further depicted as an RGB map, where the extent of the purple
(red for component 1 and blue for component 3) region depicts
the extent of improved reconstruction of the 1st and 3rd
components compared to the 2nd. These observations suggest
that multivariate GP improves the quality of the reconstruction,
when the spatial structure of the images is similar.
This result is useful because it illustrates how to apply

multivariate GP to EELS data: we would expect the multivariate
GP to provide a benefit when different components share a similar
localization or ordering (we might expect some core-losses to be
localized near to the corresponding atomic columns and so on).
The reconstruction for model 2 is illustrated in Fig. 7c. Here, it is

clearly seen that the presence of noise in component 1 affects the
reconstructions of the three components differently. For compo-
nent 1, we observe the effect of noise leakage from components 2
and 3 as a gradual decay of the reconstruction quality in vertical
direction (remember that the noise for three components is σ1, σ2,
σ3 = (σ0, ασ0, ασ0)). However, the transition between red and blue
regions is still sharp. For the second component, the

reconstruction quality changes weakly and similarity maps
sim2(α,σ0) look almost similar for models 1 and 2. Finally, for the
third component the behavior is almost similar to the first. This
behavior suggests that the reconstruction of two components
with identical spatial structure and different noise level balances
through the kernel, i.e., they behave like a single image. This effect
does not extend to an image with different spatial features.
Finally, we explore the effect of kernel constraints on the

reconstruction, as shown in Fig. 8. The behavior in the left column
represents the free kernel for models 1 and 2 and are identical to
those in Fig. 7. In comparison, the second column illustrates the
behavior of the kernel constrained as shown in Fig. 7d and is the
reconstruction, where the kernel is constrained to the [2, 5]
interval close to the value of ~4.5 for the reconstruction of zero
noise data (i.e., intrinsic kernel length for this data set). The effect
of the optimal kernel on the reconstruction is immediately
obvious as the reduction of the dark region in the top right
corner of the diagrams. Hence, reconstruction become possible at
much higher noise levels if the kernel interval is known correctly.
However, if the wrong kernel length is chosen corresponding to
an incorrect assumption on the physics of the system, the
reconstruction fails completely, as shown in right column for a
kernel confined to the range [10, 11] pixels.
This behavior for individual components is shown in Fig. 7d.

Note that the reconstruction converged only for the 2nd
component (since the features are twice as large), but failed for
the 1st and 3rd component even for low noise levels. Interestingly,
the reconstruction is partially successful for intermediate noise
levels, where the GP algorithm has sufficient flexibility to discover
the extant features despite the deliberate attempt to impose a
faulty model.
These analyses suggest that the multivariate GP method

proposed here can be a powerful paradigm for the reconstruction
of multimodal imaging data with a common spatial support and
varying noise levels. The quality of the reconstruction can be
improved significantly if the kernel length scale is known;
however, the incorrect choice of kernel usually leads to the failure
of the reconstruction.

Fig. 8 Effect of kernel constraints on reconstruction. Shown are results for a model 1 and b model 2 for free kernel (left column), kernel
constrained around the characteristic length scale (central column), and kernel constrained around the value twice larger than characteristic
length scale.
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We note that the a priori length scale for kernel reconstruction
is unknown. However, we propose to use the analysis shown in
Fig. 3 to derive the relevant kernel length scale. In other words, we
use the kernel convergence intervals determined for low-noise
components to impose a joint constraint on all components in the
analysis. This approach for the NMF loading maps is illustrated in
Fig. 9, where the kernel interval is chosen to be [0, 2.5] pixels.
The reconstruction of the NMF data set on the full spatial grid is

shown in Fig. 9. It is clearly seen that the GP reconstruction of the
individual components (even with kernel constraints) yields
atomic-scale contrast for the first four components and fails for
component 5 and 6. On the other hand, multivariate GP clearly
allows us to reconstruct the atomic-scale features in these
components. However, analysis of a larger number of components
does not lead to further improvement. Using seven components
leads to partial degradation of contrast and then a full loss of
atomic periodicities for eight components (not shown). This
reveals that the model is effectively using knowledge from the
lower noise components in the reconstruction of the weaker
signals.
To summarize, we explored the applicability of Gaussian

process (GP) methods for the analysis and reconstruction of EELS
data sets in STEM. The typical data volumes in this method make
direct high-dimensional GP impractical, while the use of the
inducing point method53 tends to corrupt the fine features in the
energy and spatial dimensions. We therefore suggest and
implement the multivariate GP method operating on the full
spatial domain, and a reduced representation in energy domains
obtained via linear unmixing. In this multivariate GP, the
information between the components is shared via a common
kernel structure while allowing for variability in relative noise
magnitude or image morphology. Note that unlike methods such
as transfer learning in convolutional neural nets, the kernel for
multiple images here is learned jointly rather than relying on the
previous parameters.
Using synthetic data that emulates some characteristic aspects

of atomic-resolution EELS data sets, we demonstrate that this
approach significantly improves the quality of the reconstruction.
We further show that kernel constraints also allow us to increase
the quality of the reconstruction, and we suggest an approach for
estimating these from the experimental data based on kernel
length scale convergence analysis for individual components.
Application of this method to EELS data sets demonstrate that

spatial information contained in higher-order components can be

reconstructed and spatially localized. We believe that this method
can be further applied to other hyperspectral and multimodal
imaging modes, where the data volumes preclude direct
application of multidimensional GP reconstructions. The note-
books developed in this manuscript are freely available as a part of
the GPim package (https://github.com/ziatdinovmax/GPim).

METHODS
STEM imaging
Data were acquired on a Nion UltraSTEM US100 operating at 100 kV
equipped with a Gatan Enfina spectrometer with nominal convergence
and collection angles of 30 and 48 mrad, and a high-angle annular dark
field (HAADF) detector inner angle of 86 mrad with an exposure time of
0.1 s/pixel and a dispersion of 0.5 eV/channel. Energy spread from the field
emission tip is about 0.35 eV full width at half maximum. The final energy
resolution is dominated by the 2–3 channel point spread function of the
CCD to approximately 1 eV. Sample thickness was typically 0.4–0.6 mean
free path lengths for the datasets used here. The probe current was set to a
nominal 60 pA. The size of the resulting data set is 48 × 48 × 1340, with
approximately 0.1 nm/pixel spacing between probe positions, and a 16 ×
16 sub-scan used at each point. The samples were rather challenging as
they tended to exhibit either charging or contamination at the relevant
interfaces. A small amount of drift and some sample charging caused
distortion across the scan, giving a resulting field of view of about 4.4 ×
4.4 nm. The survey image is shown in the Supplementary Fig. 1.

Multivariate GP
Let x ¼ x1; ¼ ; xNð Þ and y ¼ ðy11; ¼ ; yN1; ¼ ; y1M; ¼ ; yNMÞT be the input
coordinates (measurement grid) and functional responses (EELS observa-
tions), respectively. The input points are shared among all channels, i.e., for
every xi there is an observation yil, where l= 1,…,M. To induce correlation
between different response channels we place a zero-mean Gaussian
process prior over the latent functions {fl}:52

hflðxÞfl0 ðx0Þi ¼ K f
ll0k

xðx; x0Þ (3)

where Kf is a positive semi-definite matrix specifying the inter-channel
similarities (channel covariance module) and kx is a covariance function
over inputs (data covariance module). The observation model is
yil � N fl xið Þ; σ2l

� �
, where σ2l is a noise variance in channel l.

We learn the hyperparameters of the covariance modules by maximizing
the log marginal likelihood of the training data:

log p yjXð Þ ¼ � 1
2
log KMVGPj j � yTK�1

MVGPy�
N
2
logð2πÞ; (4)

with KMVGP ¼ K f � Kx þ D� I, where Kx is the covariance between all pairs of
training points, ⊗ is the Kronecker product, and D is a diagonal matrix where

Fig. 9 Comparison of individual and multivariate GP reconstruction of NMF loading maps. Shown are (top row) original NMF components
(similar to Fig. 1) and (middle row) individual GP reconstructions. Shown in the bottom row are multivariate GP reconstruction on all six
components simultaneously. Kernel constraints used were the same for the individual and multivariate GP. Note that the full 48 × 48 spatial
pixel images are analyzed but due to memory constraints, resampling for multivariate GP reconstruction is by a factor of 2. Corresponding
spectral components remain unchanged.
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the (l, l)-th element is σ2l . The maximization is performed through type II
marginal likelihood by taking the derivative of the expression and maximizing
it via gradient ascent. Implementation-wise, the interchannel covariance
module is conveniently defined via Gpytorch’s54 IndexKernel class as a lookup
table, k l; l0ð Þ ¼ BBT þ diag wð Þð Þl;l0 , where B is a low-rank matrix and w is a
non-negative vector. These parameters are optimized alongside of the
hyperparameters of the data covariance module and noise variances.
The mean prediction on the new (test) data points x* (which can be the

same as training data points if we are interested in denoising) for channel l
is given by:

fl x�ð Þ ¼ klf � kx�
� �T

K�1
MVGPy; (5)

where klf is the l-th column of inter-channel similarity matrix and kx� is
the vector of covariances between the test input x* and the training
inputs.

DATA AVAILABILITY
The experimental data is available from the authors upon reasonable request.

CODE AVAILABILITY
The source code is available at https://github.com/ziatdinovmax/GPim.
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