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Simulating fluid flow in complex porous materials by
integrating the governing equations with deep-layered
machines
Serveh Kamrava 1, Muhammad Sahimi 1✉ and Pejman Tahmasebi 2

Fluid flow in heterogeneous porous media arises in many systems, from biological tissues to composite materials, soil, wood, and
paper. With advances in instrumentations, high-resolution images of porous media can be obtained and used directly in the
simulation of fluid flow. The computations are, however, highly intensive. Although machine learning (ML) algorithms have been
used for predicting flow properties of porous media, they lack a rigorous, physics-based foundation and rely on correlations. We
introduce an ML approach that incorporates mass conservation and the Navier–Stokes equations in its learning process. By training
the algorithm to relatively limited data obtained from the solutions of the equations over a time interval, we show that the
approach provides highly accurate predictions for the flow properties of porous media at all other times and spatial locations, while
reducing the computation time. We also show that when the network is used for a different porous medium, it again provides very
accurate predictions.

npj Computational Materials           (2021) 7:127 ; https://doi.org/10.1038/s41524-021-00598-2

INTRODUCTION
Fluid flow and transport in heterogeneous porous media are of
fundamental importance to the working of a wide variety
of systems of scientific interest, as well as applications1,2. Examples
of such porous media include catalysts, membranes, filters,
adsorbents, print paper, wood, nanostructured materials, and
biological tissues, as well as soil and pavement, and oil, gas, and
geothermal reservoirs. Such porous media are typically hetero-
geneous, with the heterogeneity manifesting itself in the shape,
size, connectivity, and surface structure of the pores at small
scales, and in the spatial variations of the porosity, permeability,
and the elastic moduli at large length scales. Thus, any attempt to
model flow and transport in porous media entails having the
ability to handle big data that is used3 in computing the spatial
distribution of the pressure, fluid velocity, etc., throughout the
pore space. The heterogeneity and the associated big data,
contained in high-resolution two- or three-dimensional (2D or 3D)
images of porous media used in their modeling imply that the
calculations are highly intensive. Thus, developing efficient
predictive algorithms has always been an active area of research.
Significant advancements have been made over the last decade

in the development of deep-learning approaches that have made
considerable contributions to progress in image analysis, which is
also important to studying fluid flow and transport in porous
media4–6, and other fields. The traditional neural networks,
developed to handle large data, have great potential as
approximators. Feed-forward neural networks (FFNNs), represent-
ing supervised learning methods, try to identify the relationship
between the input and output iteratively by minimizing a cost
function. To alleviate the computational burden associated with
the minimization, advanced optimization methods have been
developed7. There is, however, no systematic approach for
increasing the accuracy of fully connected FFNNs, as they rely
on correlations between data and the properties to be predicted,

hence requiring a large amount of training data for acceptable
accuracy. Thus, it is most desirable to develop alternatives.
Progress has been made very recently to develop such

alternatives, commonly referred to as physics-informed machine
learning (ML) in which the network is trained partly based on the
fundamental equations that govern the physics of the process under
study. Thus, by incorporating the equations in the cost function, one
speeds up the convergence and produces accurate predictions,
whereas the network requires training with much less data. The idea
of using the equations that govern the physics of fluid flow and
transport in porous media in the cost function and optimization was
first proposed by Sahimi and colleagues8,9. Development of such
techniques based on the ML methods was first reported for solving
differential10 and partial differential equations11–16, and has been
recently proposed for analyzing hydrodynamic systems17.
In this study, we aim to fill the gap between the ML methods

and direct numerical simulation of fluid flow in a porous medium
by combining the advantages of both approaches to obtain
accurate solutions of the pressure and fluid velocity fields
efficiently. The current ML methods are accurate estimator
techniques when they have been sufficiently trained with a large
number of datasets of enough variety. Multiple studies have used
physics-informed FFNNs for a variety of purposes. However, as our
goal is making predictions for fluid flow in images of porous
media, it is not practical to use fully connected neural networks,
due to the complexity of the images and low efficiency of such
networks in discovering complex patterns.
To address the issue, we propose an approach based on an ML

method that incorporates in its training (in the cost function) the
governing equations for fluid flow in porous media, i.e., the mass
conservation (MC) and the Navier–Stokes equations (NS). The
result is a highly efficient method for predicting the flow
properties. Our multiphysics approach integrates the MC and NS
equations, and digital images of heterogeneous pore space with
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the training of the ML algorithm. As the input data, such as the
images of pore space, are complex and large, one needs a network
that decreases the computations time. Despite increasing
applications of the ML methods, there has been only a limited
number of attempts for addressing problems associated with
porous materials4–6,19–28.

RESULTS AND DISCUSSION
We divide our results into two parts. In one part, we present and
discuss calculations for the polymeric membrane. In the next part,
we demonstrate that the same physics-informed recurrent
encoder–decoder (PIRED) network can provide accurate predic-
tions for a completely different porous medium.

Effect of incorporating the governing equations in the
learning of the algorithm
Using the proposed PIRED network, we reconstructed the velocity
and pressure field in new images using only a small number of
images without specifying any boundary conditions. Figure 1a, b
present, respectively, the change in the cost function σ2 for the
training and testing datasets of the network. σ2 decreases for both
variables during both the training and test data, indicating
convergence toward the true solutions for both the pressure and
fluid velocity fields.
To demonstrate the accuracy and efficiency of the PIRED, we also

computed σ2 using a data-driven ML (DDML) algorithm, one in which
the governing equations were not incorporated in the cost function.
The results for σ2 are presented in Fig. 1c, d for both the training and
testing. As can be seen, compared with Fig. 1a, b, DDML has a much
weaker performance.

To better illustrate the improvement produced by incorporating
the governing equations in the cost function, the PIRED and DDML
are compared in terms of the number of data points used for
training the network based on the correlation coefficient R2, as
well as σ2 in Fig. 2a, b. Clearly, there exists a significant difference
between the two methods and, in particular, when the number of
the samples is small. The discrepancy is, however, smaller when a
larger number of datasets are used.

PIRED-predicted pressure and velocity fields
Figure 3 compares the predicted spatial distribution of the pressure P̂
at four (dimensionless) times t1= 15 < t2 < t3 < t4= 185 with
the actual P in one of the randomly selected 2D images not used
in the training, with the results for all other slices being just as
accurate (see below). Figure 4 compares the corresponding results
for the magnitude ∣v∣ of the fluid velocity. As the spatial distributions
of the differences P � P̂ and jvj � jv̂j indicate, the predictions agree
very closely with the actual data. Therefore, not only are the
distributions of P and v reproduced accurately, the correlations
between their values with increasing time are also honored.
Another quantitative comparison is based on selecting at

random a vertical line (a plane in 3D) in one of the 300 testing
images and comparing the PIRED-predicted P and v along that
line with their actual values. One example is shown in Fig. 5a, b for
pressure and velocity, which indicates a very good agreement
between the predictions and the actual data. The same accuracy
was obtained for all other slices.
Next, we compared the calculated ensemble-averaged maps of

the PIRED-predicted ∣v∣ and ∣P∣ over the 300 testing images with
the actual averages. The results are presented in Fig. 6, where
Fig. 6a, c are the averages of actual (numerical) results and Fig. 6b,

Fig. 1 Computational efficiency of the PIRED. Comparison of cost function σ2 for the training and testing of the PIRED (a, b) and the DDML
networks (c, d).
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d are the averages of PIRED prediction results for velocity and
pressure. The results in Fig. 6 indicate an excellent agreement.

PIRED predictions for another porous material
We define an effective permeability K by, K= μLq/(SΔP), where q,
S, and ΔP are, respectively, the steady-state volume flow rate and
the surface area perpendicular to the macroscopic pressure drop
ΔP. K was computed for all the 300 testing slices and was
predicted by the PIRED network as well. The comparison is shown
in Fig. 7a.
However, a most stringent test of the PIRED network is if we

predict the properties of a completely different porous medium,
without using any data associated with it. Thus, we used the
image of a Fontainebleau sandstone18 with a porosity of 0.14.

As the sandstone’s morphology is completely different from the
membrane’s, we used a slightly larger number of 2D slices from
the membrane (not the sandstone) to better train the PIRED
network. Figure 7b compares the effective permeabilities of 100
2D slices of the sandstone with the predictions of the PIRED
network. The images of the two types of porous media are also
shown in Fig. 7c, d.
Figure 8 compares the predicted spatial distribution of the

pressure P̂ at four (dimensionless) times t1 < t2 < t3 < t4 with
the actual P field in one of the randomly selected 2D images of
the sandstone, with the results for all other slices being just as
accurate. Figure 9 presents the corresponding results for the
velocity field in the sandstone. In both cases, the agreement
between the predictions and the actual fields is excellent. As
the spatial distributions of the differences P � P̂ and jvj � ^jvj in

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

200 400 600 800

R2

Number of samples

PIRED
DDML

0

0.02

0.04

0.06

0.08

0.1

0.12

200 400 600 800

2

Number of samples

PIRED

DDML

Fig. 2 Data size reduction of training of PIRED. Effect of data size on (a) the R2 score and (b) σ2 for PIRED and DDML networks.

Fig. 3 Prediction of the pressure field by the trained PIRED. Comparison of the predicted pressure P̂ with the numerically calculated P at
four (dimensionless) times.
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Figs. 8 and 9 indicate, both the pressure and velocity fields
agree very closely with the actual distributions.
Summarizing, we presented a physics-informed encoder–decoder

algorithm, the PIRED network, by incorporating the MC and the NS
equations in its learning process, in order to predict fluid flow in a
complex porous medium. The network provides highly accurate
predictions for the fluid velocity and pressure fields at every point of
the medium that was not used in the training, as well as its effective
permeability. Not only does the PIRED network require a significantly
smaller amount of data to make accurate predictions and, therefore,
much less computations, it also provides accurate predictions for
other types of porous media without using their data.

METHODS
We divide this section into four parts and explain the structure of PIRED
and the details of the computations.

Computational details
If the input and output are both in the form of images, as is the case in this
study, an autoencoder network produces more accurate predictions.
However, when the input or output is represented by spatial images or
time series, which is the case when one solves the MC and NS equations,
recurrent neural networks (RNNs) connect the data series. The RNNs output
is used as the input in the decoder section to generate output data.
Therefore, we couple an RNN to an encoder–decoder network, resulting in

Fig. 4 Prediction of the fluid velocity field by the trained PIRED. Comparison of the predicted fluid velocity jv̂j with the numerically
calculated values at four (dimensionless) times.

(a) (b)
Fig. 5 Quantitative comparison of the PIRED predictions with the direct numerical results. Comparison of predicted (a) pressures and (b)
fluid velocities with the numerical simulations in a randomly selected 2D image along a line perpendicular to the macroscopic direction
of flow.
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a PIRED network in which the cost function is defined partly based on the
solutions of the MC and the NS equations.
We use the reverse Kullback–Leibler (KL) divergence (relative entropy)29

for minimizing the cost function. We suppose that p(x) is the true
probability distribution of the input/output data, whereas q(x) is an
approximation to it. The reverse KL divergence from q to p is a measure of
the difference between p(x) and q(x), and the aim is to ensure that q(x)
represents p(x) accurately enough that it minimizes the reverse KL
divergence DKL(q∥p), given by

DKL½qðxÞkpðxÞ� ¼
X
x2X

qðxÞlog qðxÞ
pðxÞ

� �
; (1)

where X is the space in which p(x) and q(x) are defined. DKL= 0, if q(x)

matches p(x) perfectly and, in general, it may be rewritten as

DKL½qkp� ¼ Ex�q½�log pðxÞ� � H½qðxÞ�; (2)

where H½qðxÞ� ¼ Ex�q½�log qðxÞ� is the entropy of q(x), with E denoting the
expected value operator and, thus, Ex�q½�log pðxÞ� is the cross-entropy
between q and p. Optimization of DKL with respect to q is defined by

argminDKL½qkp� ¼ argmin Ex�q½�log pðxÞ� � H½qðxÞ� ¼ argmin Ex�q½log pðxÞ� þ H½qðxÞ�:
(3)

Thus, according to Eq. (3), one samples points from q(x) and does so, such
that they have the maximum probability of belonging to p(x). The entropy
term of Eq. (3) “encourages” q(x) to be as broad as possible. Thus, the
autoencoder tries to identify a distribution q(x) that best approximates p(x).

Fig. 6 Overall prediction accuracy of the PIRED. Comparison of the actual ensemble-averaged of (a) fluid velocities v and (c) the fluid

pressure P with those predicted by the PIRED (b) and (d) for v̂ and P̂ in the polymeric network at four (dimensionless) times.
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Network architecture
As in the present problem the input and output images are distinct, the
PIRED network, a supervised one, consists of encoder and decoder, known
as the U-Net and residual U-Net (see Fig. 10). The encoder has four blocks
with the block containing the standard convolutional (CL) and activation

layers (AL), and the pooling and batch normalization layers (PL and BNL).
The PL compresses the input to its most important characteristics,
eliminating the unnecessary features, and stores them in the latent layer,
which itself consists of the AL, CL, and BNL. The BNL not only allows the
use of higher learning rates by reducing internal covariate shift but also

(c) (d)

(a) (b)

Fig. 7 PIRED efficiency in predicting permeability of another porous medium, a sandstone. Comparison of the actual and predicted
permeabilities K (K is normalized according to ðK � KminÞ=ðKmax � KminÞ) for (a) 300 2D images of the membrane, whose morphology is shown
in (c), and (b) for 100 images of a sandstone, the morphology of which is shown in (d). In (c) and (d), black and white represent the solid matrix
and the pores, respectively.

Fig. 8 PIRED predictions for the fluid pressure in the sandstone. Comparison of the predicted pressure P̂ with the numerically calculated P
at four (dimensionless) times in a randomly selected 2D cut of the sandstone.
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acts as a regularizer for reducing overfitting30. The mean 〈x〉 and variance
Var[x] of batches of data x are computed in the BNL and a new normalized
variable y is defined by

y ¼ γ
x � hxiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x� þ ϵ

p þ β: (4)

Here, γ and β are learnable parameter vectors that have the same size as
the input data, and ϵ is set at 10−5. During training, the layer keeps running
estimates of its computed mean and variance, and uses them for
normalization during evaluation. The variance is calculated by the biased
estimator.
The decoder also consists of four blocks, with each block containing the

CL, AL, and BNL, as well as a transposed CL (TCL), which is similar to a
deconvolutional layer in that if, e.g., the first encoder has a size 128 × 64 ×

64 (i.e., 128 features with a size 64 × 64), then, one has a similar size in the
decoder. The TCL uses the features extracted by the PL to reconstruct the
output, the pressure P and fluid velocity v fields at each specified time
epoch. The latent layer of the RNN that we use improves its performance
and speeds up significantly the overall network’s computations, because it
is in the form of residual blocks, i.e., layers that, instead of having only one
connection, are connected to further previous layers.

The input and output data
We used a high-resolution 3D image of a polymeric membrane of size
500 × 500 × 1000 voxels. Its porosity, thickness, permeability, and mean
pore size are, respectively, 0.77, 60 μm, 10−12 m2, and 8 μm, respectively.
An image of a 2D slice of the membrane is shown in Fig. 7c. We selected at
random 700 2D slices of the image with size 175 × 175 pixels for the fluid

Fig. 9 PIRED predictions for the fluid velocity in the sandstone. Comparison of the predicted fluid velocities v with the numerically
calculated values v̂ at four times.

Fig. 10 Schematic of the proposed PIRED network. Network architecture with Ei and Di, indicating the encoder and decoder blocks; σ2 is the
cost function, xi is the input, and the pressure Pj and fluid velocity ∣v∣j are the output.
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flow calculations and training the PIRED, and another 300 slices for testing
the accuracy. The 700 images were inserted in the PIRED network’s first
layer, whereas the last layer contained the output, the distributions of P
and v. The fluid density and viscosity were set at 0.997 g/cm3 and 1.89 ×
10−3 g/(cm ⋅ s), with the fluid injection velocity being 1 cm/s.
We computed the P and v fields at four times and represented them by

images. It is noteworthy that the amount of the data needed for
computing P and v is significantly smaller than what would be needed by
the standard ML methods.

Training PIRED
If L and v0 represent the characteristic length scale and fluid velocity in the
medium, we introduce dimensionless variables, x*= x/L, y*= y/L, v*= v/v0,
t*= tv0/L, and P*= PL/(μv0). Deleting superscript * for convenience, the MC
equation, ∇ ⋅ v= ∂vx/∂x+ ∂vy/∂y= 0 remains unchanged. The NS equation
becomes

Dv
Dt

¼ ∂v
∂t

þ v � ∇v ¼ Re�1 �∇P þ ∇2v
� �

; (5)

where Re ¼ ρv0L=μ is the Reynolds number. We define three functions,
ξ1=∇ ⋅ v, ξ2 ¼ Dvx=Dt � Re�1 �∂P=∂x þ∇2vx

� �
, and ξ3 ¼ Dvy=Dt�

Re�1 �∂P=∂y þ∇2vy
� �

, and incorporate them in the cost function σ2,
minimized by the PIRED network, instead of naively minimizing the
squared error between the data and predicted values of v and P. For exact
convergence to the actual (numerically calculated) values (by solving the
MC and NS equations), we must have ξi= 0 with i= 1− 3. Thus, the PIRED
network learns that the mapping between the input and output must
comply with ξi= 0, which not only enriches its training but also accelerates
convergence to the actual values. σ2 is defined by

σ2 ¼ 1
n

Xn
i¼1

ðPi � P̂iÞ2 þ ðjvi j � jv̂i jÞ2
h i( )

þ
X3
i¼1

Xn
j¼1

ξ iðxj ; yj ; tjÞ2; (6)

where n is the number of data points used in the training, and Pi and ∣vi∣
are the actual pressure and magnitude of the velocity at point (xi, yi) at time
ti, with superscript^denoting the predictions by the PIRED network.
The derivatives in ξi were estimated using the Sobel operator31, an

inexpensive and effective way for computing the gradients, used
commonly in image processing. It may be thought of as a smoothed
finite-difference operator consisting of two 3 × 3 convolution kernels for
the horizontal (H) and vertical (V) directions, which convolve with the
image I in order to estimate the H and V derivatives. The kernels are given
by, Gx=M * I and Gy=MT

* I, where T and * represent the transpose and
convolution operations, and

M ¼
1 0 �1

2 0 �2

1 0 �1

2
64

3
75: (7)

To further quantify the accuracy of the results, we also computed R2,
which is a measure indicating the closeness of the predictions and the
actual data; for a very accurate model, one should have, R2 ≈ 1.

R2 ¼ 1�
Pn

i¼1kψi � ψ̂ik22Pn
i¼1kψi � ð1=nÞPn

j¼1ψjk22
; (8)

where ψ̂i is the network’s prediction, ψi is the actual value, and n is the
number of the samples.
We solved the MC and the NS equations using the open-source

OpenFOAM. The fluid was injected at one side and a fixed pressure was
applied to the opposite side. The other two boundaries were assumed to
be impermeable.
Solving the MC and NS equations in each 2D image took about 6 central

processing unit (CPU) minutes. The computations for training the PIRED
network on an Nvidia Tesla V100 graphics processing unit (GPU) took
about 2 GPU hours. Then, the tests took less than a second.
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