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Deep learning for visualization and novelty detection in large
X-ray diffraction datasets
Lars Banko1, Phillip M. Maffettone 2, Dennis Naujoks3, Daniel Olds 2 and Alfred Ludwig 1,3✉

We apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data.
We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of
textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a
similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution
it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding
materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.
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INTRODUCTION
Innovations in high-throughput and autonomous experimenta-
tion1–4 are exceedingly increasing the acquisition rate of data,
particularly in the case of XRD. Manual analysis of combinatorial
datasets, i.e. for the identification of composition–structure-
relationships, is a challenging cognitive task that requires the
ability to recognize patterns under the awareness of several
constraints5. Recent progress has been made in using AI for
unsupervised XRD dataset decomposition6,7, crystal structure
classification8–20, and integrating the latter with autonomous
experimentation21. Classification models are particularly promis-
ing, having been developed for a broad scope (classifying crystal
system, space group, point group)10–12,15, and specific challenges
integrating experimental information13,17,18,22. Further refinement
of classification results could be achieved by model interpreta-
tion9. In broader approaches, experimentally relevant domain
knowledge can be integrated modularly, e.g. by adding chemical
composition15. Broader models operate without specific domain
knowledge, such as predicted phases of an investigated materials
or experimental measurement parameters, and can be directly
applied to a broad suite of classification challenges without fine
tuning17,18. In contrast, experiment specific models have a more
relevant, yet more narrow, distribution or training data, and thus
struggle when encountering data outside of this distribution.
Nonetheless, it is the domain knowledge and prior information
(e.g. simulated X-ray diffractograms of expected phases from
crystallographic database entries that encompass the breadth of
possible experimental non-idealities) that makes these AI agents
so successful18.
These priors stem from expert knowledge and expectation, and

as such, even accurate, feed-forward classifiers can come to false
conclusions when operating on new or novel data. Here, we
define novelty as XRD patterns that are unknown to the AI, e.g.
structures that were absent in the training data or XRD patterns of
phase mixtures which were not considered in the training data. In
the context of materials discovery, material novelty comprises
unreported materials of certain chemical composition and crystal
structure.

Hence, the recognition of novelty in large amounts of high-
throughput data is a key challenge for scientists, and subsequently
the tools that they use. An AI agent that is sensitive to novelty (i.e.
aware of ‘what it doesn’t know‘) could inform scientists about
experiments that mandate further investigation due to failure
modes or material novelty. In this way, scientists can invest
essential resources into the most promising areas and focus their
manual effort where human experience is valued most.
Here, we use a variational autoencoder (VAE) (Fig. 1a) trained

on a synthetic dataset as a prior18,23 to solve commonly
occurring visualization and novelty detection challenges in XRD
analysis. Notably, this same synthetic dataset can be used to
train a state-of-the-art classification model in tandem18,24. Firstly,
we identify regions of learned similarity and potentially
degenerate solutions in our prior. Next, we develop a dynamic
visualization tool for experimental XRD patterns and the VAE
latent space. While this offers a correlation with structural
classification, we show that visualizing the latent space with
respect to the reconstruction error of the VAE allows for novelty
detection during an experiment.

RESULTS AND DISCUSSION
Visualizing a synthetic dataset with a variational autoencoder
Autoencoders are a class of self-supervised artificial neural
networks that compress input data into a lower dimensional
feature-value space (latent space) and then decodes this latent
representation back into its original space. These have been
broadly applied for the purpose of dimensionality reduction,
denoising25, anomaly26 and novelty detection27 and specific
materials science applications such as detecting phase transi-
tions28, and translating between different dimensional representa-
tions, i.e., 2-d images and 1-d spectra29. VAEs are a special class of
autoencoders that approximate a posterior over latent random
variables30,31, jointly optimizing the reconstruction of the input
and the Kullback-Leibler (KL) divergence between the latent
representation and a smooth (often normal) distribution. This later
loss function acts as a regularization mechanism, resulting in an
efficient distribution over the latent space, and can be expanded
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to include physical constraints32,33. The resulting probabilistic
latent space has made these approaches popular for generating
new data based on the prior training data34, and inverse design in
materials science35,36.
We first study the behavior of a VAE on XRD data with regards

to latent space distribution using a synthetic dataset of 15000
one-dimensional XRD patterns covering three spacegroups (Fm3m
(ISCD: 108308), Im3m (ISCD: 108347), P63/mmc (ISCD: 622438),
5000 XRD patterns each). The dataset includes different aberra-
tions that are frequently encountered in thin-film XRD patterns
such as texture and preferred orientation, peak broadening, and
peak shifting18. Figure 1c shows the latent space distribution of
the validation dataset, color-coded by the spacegroup labels. The
latent space representation provides direct visual evidence of the
clustering properties of the encoder model and distribution of
main reflection axes in the XRD patterns (Fig. 1b). In the latent
feature space, proximity is a first indicator of structure type. P63/
mmc and Fm3m show an overlapping region which stems from
homometrics: similar patterns that arise from distinct structures
with preferred orientation in the training dataset. The XRD
patterns, marked by green, red and blue crosses in Fig. 1c, are
shown in Fig. 1d and highlight the similarity of Im3m and P63/
mmc for texturing along (020) and (102), respectively. By
examining the latent space distribution with respect to the
location of maximal intensity in the XRD patterns, we can see that

the latent space is organized according to the main reflection axes
of the crystal structures (Fig. 1b). This demonstrates how the
learned latent representation can directly point towards possible
structural ambiguities in the prior, and creates an explainable AI
tool for understanding what determines location in latent space.
Classification boundaries are mapped over this latent space to
validate that the model is learning a physically meaningful
representation, and to provide a visualization of the latent
distribution and structural similarity (Fig. 2).
By interfacing a VAE trained on synthetic data with an

experimental datastream37, this latent representation can visualize
a measurement in real time. To demonstrate how this visualization
behaves with new or unknown phases, a set of 1000 XRD patterns
of a novel phase, unknown to the model, with P42/mnm
spacegroup (ICSD: 601378) are generated using the same
parameter variation as in the training dataset. In Fig. 2, the
reconstruction error is mapped over the latent space for the test set
of all phases (known and unknown/ novel). The decision boundaries
of a KNN classifier, trained on the latent representation are outlined.
While it could be naively assumed from the visualized location in
latent space (Fig. 2b) that the P42/mnm phase was the Im3m or P63/
mmc phase, the reconstruction error increases by an order of
magnitude, which means that the naive assumption is most likely
wrong. This indicates a posterior distribution which does not
capture the information contained in the input XRD pattern: this is

Fig. 1 Visualization of the VAE latent space representation. a Schematic VAE architecture. XRD patterns are encoded into a low dimensional
representation (mean, variance). The red cross marker indicates the latent space position of the encoded XRD pattern with respect to the prior
(circles). The latent vector is decoded into a reconstructed XRD pattern. b Latent space embedding with color-coded diffraction angle 2Θ of
maximum XRD intensity. c Latent space embedding of an exemplary synthetic dataset. Im3m is clearly separated from Fm3m and P63/mmc.
The x-markers show the latent space position of the corresponding XRD patterns in (d). d XRD patterns of the x-marked latent space positions
in (c). The latent space embedding in b) clearly shows the main reflection axes of the different crystal structures, i.e. P63/mmc has six main
reflection axes in the angular range from 20 to 90°2Θ (for Cu Kα). It further elucidates possible ambiguities between different structures that
exhibit a preferred orientation: Fm3m (111) and P63/mmc (002) as well as Im3m (020) and P63/mmc (102) have peaks at a similar diffraction
angle. This is important during the pattern matching task, as an experimental XRD pattern could be a result of either structure.
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new to the model. The model encodes a latent representation for
the P42/mnm phase near the P63/mmc and Im3m phases which
suggests similarly important reflections (e.g.: P42/mnm(330)= 43.6°
2Θ, Im3m(011) = 43.13°2Θ or P42/mnm(411)= 47.03°2Θ, P63/mmc
(101)= 47.36°2Θ); however, the reconstruction error provides
evidence of an unknown structure.
The reconstruction loss between the input and the decoder can

also elicit knowledge of phase mixtures. Phase mixtures could be
considered during dataset synthesis by generating binary and
ternary mixtures; however, the combinatorial explosion in
multinary material systems would drive the dataset size to
numbers that cannot be handled efficiently16. To test the VAE
behavior with phase mixtures, we generate a dataset of binary
combinations of the three structures (Fm3m, Im3m, P63/mmc) for
50 different binary compositions between 0 and 100%, and
calculate the reconstruction error (Fig. 3a). An increase in average
reconstruction error of approximately one order of magnitude is
observed for mixtures of known phases and a pure unknown
phase. Additionally, the distributions show a larger spread. When
considering the reconstruction error as a function of phase
fraction, the error is maximized at approximately 50% for all binary
mixtures (Fig. 3b), indicating a maximum in reconstruction error
for XRD patterns that are furthest apart from the training data. The
large standard deviation results from cases where the mixture of
certain XRD patterns with preferred orientation shows similarity to

a pure phase. These properties show that unlike contemporary
classification models, a VAE has an indication of when it
encounters something unfamiliar. The reconstruction error can
be used for decision making by alerting a scientist to review the
classification results of a corollary classification model8,15,16,18,
guiding an acquisition function for curiosity or exploration driven
experiments, or to select an appropriate de-mixing model for
multi-phase classification22,24,38.

Visualization and anomaly detection in an experimental
setting
We further tested the VAE in an experimental setting where a
multitude of candidate phases are possible. An exemplary
experimental dataset acquired from a materials library of the thin
film system Co-Ni-Cr-Re contains 225 XRD patterns. Nine quasi-
ternary composition spreads are distributed on a rectangular grid
over a 100mm substrate (Supplementary Figure 1). We selected 21
possible structures from the ICSD database and generated a
synthetic dataset following the procedures outlined by Maffettone
et al.18. The dataset contains several phases that show similar crystal
structures for different chemical compositions. The chemical
composition is a natural constraint in XRD analysis that bounds
phase stability. A sensible alternative condition, beyond the scope
of this work, is the phase transition temperature. The chemical
composition acts as a constraint using a conditional VAE (cVAE)39.

Fig. 2 Classification and novelty detection using the reconstruction error. The decision boundaries of a KNN classifier are outlined. a Latent
space representation of a known phase color-coded by the reconstruction error. b Latent space representation of an unknown phase color-coded
by the reconstruction error. The unknown phase shows a distinctly higher reconstruction error (average reconstruction error= 0.09) compared to
phases that are recognized by the model (average reconstruction error= 0.017). The classification test score in this idealized case was 99.16%.

Fig. 3 VAE reconstruction error of phases and phase mixtures. a Violin plot showing the statistics of the reconstruction error for pure
phases, two-phase mixtures and an unknown pure structure. The median of phase mixtures is significantly higher than for pure phases. The
median of the unknown phase shows a one order of magnitude increase in reconstruction error with respect to pure phases. Pure phases
show a multimodal distribution, phase mixtures a bimodal distribution and the unknown phase a normal distribution. A broader distribution
is observed for phase mixtures and the unknown phase. b Reconstruction error versus mixing ratio of binary mixtures. The reconstruction
error shows a maximum at appr. 50% mixture for which the VAE has the highest uncertainty. We suggest that the reconstruction error be used
as a metric for uncertainty that indicates XRD patterns that are either mixtures of phases or new phases that are not contained in the training
data. The reconstruction error could be used to guide a data-driven acquisition function in the search for single phase regions in large
chemical composition spaces and the discovery of new materials.
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In this case, the cVAE encodes the concatenation of chemical
composition and 1D XRD pattern (Supplementary Information).
Latent variables and chemical composition are concatenated and
passed to the decoder. The relation between chemical composition
and crystal structure is coded in the cVAEs parameters after training
on the selected 21 structures from database entries.
The VAE is now conditioned on the prior of both the XRD

pattern and the chemical composition, which implicates that a
mismatch between the conditional (chemical composition) and
the XRD pattern will respond with an increased reconstruction
error. We exemplify this behavior by recreating the above
approach with synthetic data, but using a cVAE (Supplementary
Figures 2 and 3). Following training on the synthetic data, the
reconstruction error of the experimental data is evaluated and
mapped over the physical coordinates (Fig. 4a). We inspect three
XRD patterns with different reconstruction errors in Fig. 4b. We
also demonstrate the veracity of the latent representation by
training a Gaussian Naïve Bayes (GNB) classifier on an ensemble of
cVAEs to predict space group from latent vector and chemical
composition (Supplementary Figure 4). As evident from the
spacegroup classification results (Supplementary Fig. 4) the
majority of the XRD patterns have a high probability of Fm3m
spacegroup while with increasing Co and Re concentration P63/
mmc and P42/mnm probabilities are enhanced.
The sample with the composition Co54Cr5Ni31Re10 (Fig. 4, red)

shows a highly textured Fm3m – Ni structure that was part of the
synthetic dataset. Hence, the reconstruction error is minimal and
the VAE-reconstructed XRD pattern closely matches the experi-
mental pattern. The classification probability of the GNB is 73%
(Supplementary Figure 4). The sample Co63Cr18Ni14Re5 (Fig. 4,
blue) shows a phase mixture of Fm3m – Ni (GNB probability: 45%)
and P63/mmc – Co (GNB probability: 40%). As phase mixtures are
unknown by the model, the reconstruction error is amplified,
which informed us that closer inspection of this XRD pattern is
required. The sample Co29Cr29Ni6Re36 (Fig. 4, yellow) shows a large
peak at 39°2Θ that matches to Fm3m – Ni (GNB probability: 43%)
and a broad side-peak that could be associated with P42/mnm
(GNB probability: 39%) according to the GNB prediction.
In summary, we have demonstrated that variational autoenco-

ders provide a powerful toolset to assist in the analysis of XRD
datasets that is complementary to other analysis methods. The
crystal structure representation provided by the VAE latent vectors
highlights intrinsic features of the dataset. This representation can
be used for on-the-fly analysis of a dataset distribution across
different structures, in which latent space proximity is a structural
estimator. The reconstruction error informs the experimenter or
adaptive AI driving an autonomous experiment of suspicious data,
and assists in detecting unknown phases or phase mixtures. These
models can be improved in the future by incorporating domain

specific physics into the latent space as well as the dataset32,33. We
envision the VAE working cooperatively together in a federation of
specialized AI agents. Combining the power of modern classifica-
tion agents16,18,38, data reduction agents40, and the wisdom of
ignorance offered by the VAE with adaptive experimental
agents21,41 will significantly increase the veracity and efficacy of
high-throughput diffraction measurements.

METHODS
XRD pattern simulation
The computed X-ray diffraction datasets used in this study were synthesized
using a custom python package based on CCTBX42. Three crystallography
information files (CIF) from three different spacegroups (ICSD-ids: 108347,
108308, 622438) were chosen. 5000 XRD patterns were simulated for Cu Kα
radiation in an angular range from 20–90°2Θ. For each structure the same
parameters that are optimized in a Rietveld refinement are varied. The
angular range is propagated on 2048 datapoints. The 21-structure dataset for
the Co–Ni–Cr–Re system was generated using the same parameters. Binary
phase mixtures are calculated according to the formula x ? XRDA þ 1� xð Þ ?
XRDB and subsequent normalization of the intensity to 0 and 1.

Variational autoencoder models
The variational autoencoders were written with Python 3.7, using Tensorflow
2.1 and the Keras module. The encoder network consists of an input layer
(2048) followed by two dense layers for the encoder (sizes 256 and 128) and
a latent space with 2 dimensions (µ and σ). A sampling layer z randomly
samples datapoints from a normal distribution (µ= 0 and σ= 1). The output
of z is connected to two dense layers of the decoder (sizes 128 and 256) that
is connected to an output layer (2048). The loss function is the weighted
sum of the binary cross entropy between input XRD and decoded output
and the KL-divergence calculated from the latent space distribution and a
2D Gaussian function. The reconstruction loss is weighted by a factor of 2048
to obtain a clear separation of structural features in the latent space. The
conditional VAE used on the experimental dataset comprises the
concatenation of the 1D XRD and the normalized chemical compositions
as inputs. The latent variable output and the chemical composition are
concatenated and provide the input to the decoder.

Synthesis of composition spread materials library
The Co–Ni–Cr–Re thin film composition spread materials library was
deposited in a high vacuum magnetron sputter system (DCA Finland).
Deposition was conducted from four 100mm diameter magnetron sputter
cathodes with pure elemental targets in Ar at a pressure of 0.66 Pa and no
intentional heating of the substrate. The Ar flow was 60 sccm. Composition
gradients were created by using a computer-controlled substrate shutter.
The quaternary composition spread type thin film materials library was
fabricated by a wedge-type multilayer technique by successive deposition of
200 nanoscale wedge-type elemental layers. A similar approach is described
in detail by Salomon et al.43. The wedge-type layers were made using a
moving shutter, which was set to shield the substrate and was then slowly
retracted during deposition. In case of Co and Ni single wedges with length

Fig. 4 XRD pattern reconstruction by VAE and reconstruction error as a measure of novelty. aMaterials library map of reconstruction error.
Each position marks the measurement area where an XRD pattern was acquired for a unique chemical composition within the library.
b Experimental XRD patterns (color-coded) and VAE reconstructed-XRD patterns (black) of highlighted data points on materials library.
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of 67.5mm were deposited with a rotation of 90° in between. In case of the
Cr and Re wedge triplets consisting of three wedges with a length of
22.5mm were deposited again with a rotation of 90° in between. This the
nominal thickness of the wedges varies from 0 to ~13 nm in case of Co, Cr
and Ni and from 0 to ~3 nm in case of Re. After deposition, the materials
library was annealed at 600 °C for 24 hours in vacuum at 2.6 × 10−4 Pa.

XRD measurements
XRD measurements were done in a Bruker D8 Discover with a 2D detector
(Vantec 500) with Cu Kα radiation. Four 2D-frames were measured to cover
a 2θ range from 20° to 100°. The frames were merged and integrated into
1D-intensity diffractograms. The background was subtracted by fitting a 4-
degree polynomial function.

DATA AVAILABILITY
The exact datasets used in this study are available from the authors on reasonable
request, with the available code used to generate the training data below.

CODE AVAILABILITY
The XCA package was used to generate training datasets and is available at github.
com/maffettone/xca. This package is actively being extended to support VAE models.
Additional code used in this study is available from the corresponding author on
reasonable request.
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