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Chiral logic computing with twisted antiferromagnetic magnon
modes
Chenglong Jia 1✉, Min Chen1, Alexander F. Schäffer2 and Jamal Berakdar 2✉

Antiferromagnetic (AFM) materials offer an exciting platform for ultrafast information handling with low cross-talks and
compatibility with existing technology. Particularly interesting for low-energy cost computing is the spin wave-based realization of
logic gates, which has been demonstrated experimentally for ferromagnetic waveguides. Here, we predict chiral magnonic
eigenmodes with a finite intrinsic, magnonic orbital angular momentum ℓ in AFM waveguides. ℓ is an unbounded integer
determined by the spatial topology of the mode. We show how these chiral modes can serve for multiplex AFM magnonic
computing by demonstrating the operation of several symmetry- and topology-protected logic gates. A Dzyaloshinskii–Moriya
interaction may arise at the waveguide boundaries, allowing coupling to external electric fields and resulting in a Faraday effect.
The uncovered aspects highlight the potential of AFM spintronics for swift data communication and handling with high fidelity and
at a low-energy cost.
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INTRODUCTION
Magnetic materials are essential elements in data storage,
information processing, and sensory devices. Their low-energy
excitations, the spin waves with magnons as quanta of excitations,
can be utilized to transmit and process information at low-energy
cost and without heat dissipation due to Ohmic losses1–3. Recent
research on AFM4–11 demonstrated their potential for the next
generation of spintronics and optoelectronic devices. Experiments
evidenced that the AFM ordering is switchable on THz time scale
by charge current or THz pulses. Material-wise, AFM structures are
well compatible with a variety of material classes and amenable to
nanopatterning. For instance, synthetic AFM samples (SyAF) were
fabricated out of two magnetic layers that are coupled
antiferromagnetically12–14. SyAFs allow thus creating AFM/FM
heterostructures. The field is further fuelled by the uncovered
properties of van der Waals coupled 2D materials15–19, which may
be viewed (depending on their synthesis) as a type of FM, AFM or
SyAF structure. Notably, ref. 20 demonstrated the excitation and
the long-distance AFM magnon transport in the quasi-2D van der
Waals AFM MnPS3.
Generally, magnons in AFM21,22 are qualitatively different from

their FM counterpart: (1) FM magnons are always right-handed. In
contrast, AFM have two degenerate spin wave eigenmodes of
opposite chirality, referred to as right- and left-handed magnons
depending on the precessional handedness of the AFM order
parameter (the Néel vector, cf. Fig. 1). Combining these two
polarizations, any polarization state can be produced, offering a
way to encode information based on polarization-states. (2) AFM
materials do not suffer from cross talks, as demagnetizing fields
are minor, and hence signals carried by AFM excitation are robust
to external magnetic perturbations. The small intrinsic magnetiza-
tion which emerges upon a spatiotemporal variation of the AFM
order parameter may be utilized to act on the dynamics of
magnetic textures and spin currents. (3) Being much fast than FM
magnons, AFM spin waves can be employed for swift data
transfer.

Another feature of AFM magnons is demonstrated in this work:
AFM waveguides support chiral magnonic eigenmodes that carry a
well-defined amount ℓ of magnonic orbital angular momentum
(OAM) (with respect to the propagation direction). ℓ is unbounded
and associated with the spatial topology or the “twist” of the
eigenmode extending over the whole waveguide. We demonstrate
how the twisted modes serve for realizing a class of symmetry-
protected logic gates and for multiplex data transfer23–26. The
operation of the gates is robust, for the twisted beams are found as
eigenmodes of the waveguide with a dispersion allowing for
forming signals as fast as AFM magnonics. Waveguide boundaries
can host a Dzyaloshinskii–Moriya27,28 interaction (DMI) due to the
break of inversion symmetry. We find DMI is useful for triggering
and steering twisted modes. The analytic predictions are
ubiquitous, meaning that twisted AFM magnons should appear
in conventional AFM, SyAF, or van-der-Waals-AF cylindrical
waveguides. We present a general theory and demonstrate with
full-numerical simulations the character and the functionalization
of twisted modes for a prototypical NiO AFM waveguide for a
demonstration.

RESULTS AND DISCUSSION
Chiral antiferromagnetic magnons
As a magnonic waveguide we consider a cylindrical wire made of
a G-type AFM29 with an axis aligned along with the AFM easy (ez)
direction (cf. Fig. 1). In practice, the waveguide can be deposited
or imprinted on a substrate or be part of integrated magnonic
circuits. For capturing the low-energy AFM dynamics, it is
adequate to start from the Heisenberg Hamiltonian

H ¼ J
2

X
ij

Si � Sj �
Kz

2

X
i

ðSi � ezÞ2; (1)

where J > 0 stands for the strength of the (uniform) AFM exchange
coupling between neighboring spins Si localized at lattice sites i
with a lattice distance a. The uniaxial anisotropy energy
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contribution (with strength∝ Kz > 0) is large enough to
suppress quantum fluctuations enforcing so a collinear (Néel)
ground state aligned with the easy axis (cf. Fig. 1). The
spin dynamics follows Heisenberg’s equation of motion
dSi=dt ¼ �i=_½Si;H� ¼ Si ´ ðKzSzi �

P
j2iJSjÞ. Low-energy excita-

tions, meaning AFM spin waves are described21 by introducing the
classical dimensionless unit vector field si= Si/S, where ∣Si∣= S for
all sites. The spin waves are then transversal excitations
propagating according to

i_
ds�i
dt

¼ � KSs
z
i �

X
j2i

JSs
z
j

 !
s�i � szi

X
j2i

JSs
�
j ; (2)

with s±i :¼ sxi ± isyi . KS= KzS_, JS= JS_ are respectively the aniso-
tropy and exchange energies. Using a plane-wave ansatz
s�i ðtÞ � eiðk�ri�ωk tÞ , one infers the dispersion relation for spin waves
as E2k ¼ _2ω2

k ¼ ðKS þ ζJSÞ2 � ðζJSγkÞ2 where ζ is the coordination
number (ζ= 2, 4, 6 for respectively one-dimensional spin chain,
two-dimensional square lattice, and a three-dimensional cubic
lattice). γk ¼

P
j2ie

ik�rji=ζ . The same dispersion follows from a
Holstein–Primakoff approach30,31.

AFM magnonic Dirac dynamics
The physics of AFM low-energy excitations is most transparent
upon a mapping onto two sub-lattices32–36 denoted A and B with
antiparallel spins (cf. Fig. 1a). The ordering in each sublattice is FM
but a translation by a lattice vector transforms S(r+ a)→− S(r),
meaning that the translational invariance is broken. Thus, the AFM
Heisenberg system is mappable onto an antiferromagnetic (AFM)
CP1 model36. Note, the AFM Hamiltonian is still invariant under the
combined time-reversal (T ) and sub-lattice exchange (I ), a fact
underlying the degeneracy of the two chiral magnon modes.

Equation (1) is, in addition, invariant under global spin rotation
around the z-axis, and thus the z-component of the total spin is a
good quantum number. For a further insight, let us follow
Haldane32 (see also33,35,36) and consider small sublattice-
dependent fluctuations around the one-dimensional Néel ground
state32. To do so, one introduces sAi ¼ ðai þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2i

p
ezÞ and

sBi ¼ ðbi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

i

q
ezÞ, where ∣ai∣ ≪ 1 and ∣bi∣ ≪ 1. Linearizing Eq.

(2) and noting that aj ¼ ai þ ðrij � ∇Þai þ 1
2 r

2
ij∇

2ai þ ::: (and pro-
ceeding similarly for bi), we arrive at the continuum Hamiltonian
(valid up to the second-order derivatives)

i_
dψþ

i

dt
¼ HDψ

þ
i ; (3)

where ψþ
i ðz; tÞ ¼ ðaþi ; bþi Þ

T
is the two-component Dirac spinor,

and (~∂z :¼ 2a ∂=∂z)

HD ¼
KS þ 2JS 2JS � JS~∂z þ JS~∂

2
z=2

�2JS � JS~∂z � JS~∂
2
z=2 �KS � 2JS

" #
: (4)

The first-order derivative (� JS~∂z) in HD is a parity-breaking term
and as such is not invariant under sublattice exchange (A↔ B) in
the G-type AFMs. This term introduces a finite precessional phase
difference between the sublattice A and B. In the long-wavelength
limit of plane-wave ansatz, the eigenenergies of the Dirac

Hamiltonian Eq. (3) are Ek ¼ ± J2Sk
2
z þ KSðKS þ 4JSÞ

� �1=2
with the

corresponding eigenmodes

ψþ
L ¼

cosh ϑ
2

�eiφ sinh ϑ
2

" #
and ψþ

R ¼
� sinh ϑ

2

eiφ cosh ϑ
2

" #
; (5)

where cosh ϑ ¼ ðKS þ 2JSÞ=jEk j and tanφ ¼ JSkz=ð2JS � JSk
2
z=2Þ

37.

Fig. 1 Schematic representation of twisted magnon beams in AFM waveguide. a Twisted magnon beams propagating along a cylindrical
AFM waveguide with two magnetic sublattices A (up arrows) and B (down arrows). b Degenerate right- and left-handed spin wave modes, Lj i
and Rj i dominated by the sublattice A and B, respectively. The small magnetization (green arrows) is defined as m ¼ ðSA þ SBÞ=2SÞ.
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ψþ
L (ψþ

R ) with eigenfrequency ωk > 0 (ωk < 0) describes the left-
circularly (right-circularly) polarized modes dominated by the
precession in A (B) sublattice, as illustrated in Fig. 1b. The opposite
holds true for the complex conjugate ψ�

i ¼ ða�i ; b�i Þ
T . In the

following, we take the positive eigenfrequency modes, Lj i � ψþ
L

and Rj i � ψ�
R as the chirally complete basis for AFM magnons.

Although HD is not Hermitian, the chiral basis can be easily
normalized by applying a momentum-dependent factor, such that
hLjLi=N k ¼ hRjRi=N k ¼ 1 with N k ¼ cosh ϑ and the averaged
hLjRik ¼ �hsinh ϑik � 0. Considering the spin precession around
the z-axis, we define a chirality (chiral charge) as CL= 〈L∣σz∣L〉= 1
and CR= 〈R∣σz∣R〉=− 1, clearly, Lj i and Rj i have particle-hole
symmetry. Note, the AFM magnon chirality is intrinsic and
independent of the propagation direction of magnons. Its origin
stem from the symmetry of the AFM system. Hence, it is useful to
employ the magnon chirality for a non-volatile encoding of
information, as explicitly demonstrated below.

Magnonic Klein–Gordon dynamics
When applying Haldane’s mapping procedure, no apparent parity-
breaking exchange term appears in the continuum energy
function. The parity-breaking term is important to correctly
capture the intrinsic magnetization, as evident in the continuum
limit of the free energy of AFM magnons. Let us employ the
staggered field35 n= (SA− SB)/(2S) and the intrinsic magnetiza-
tion m= (SA+ SB)/(2S). For large and isotropic AFM exchange J≫
Kz, the total Lagrangian density reads32,33,35,

L ¼ ρsm � ð∂tn ´nÞ � m2

2χm
� A

2 ð∂μn � ∂μnÞ

� ξs
P
μ
ðm � ∂μnÞ þ KS

2 n
2
z :

(6)

where ρs= 2S is the magnitude of the staggered spin angular
momentum per unit cell, χm is the magnetic susceptibility, A=
2ζa2JS2 is the exchange stiffness, and ξs= 2ζaJS2 signifies the
amplitude of the parity-breaking term. In the absence of a strong
external magnetic field, the spin density field m is a slave variable
(∣m∣ ≪ 1) that follows the temporal and spatial evolution of the
staggered AFM order as32,33,35

m=χm ¼ ρsð∂tn ´nÞ � ξs∂μn: (7)

Eliminating m we obtain the two-component Klein–Gordon
equation for ψnj i ¼ nx þ iny ; nx � iny

� �T
as

∂2z �
1
c2

∂2t

� �
ψnj i ¼ Kz ψnj i; (8)

where c= 2aJS/ℏ is the spin wave velocity, and Kz ¼ KSðKS þ
4JSÞ=ð4J2Sa2Þ determines the spin wave gap. Obviously, ψþ

n (i.e.,
nx+ iny) and ψ�

n (i.e., nx− iny) are associated with the degenerate
left- and right-handed chiral magnons, respectively. Conventional
magnons without a spatial phase structure (i.e., without OAM)
exhibit opposite intrinsic magnetization of the left- and right-
handed modes. Upon time averaging, we find

hmz
Li / =½ψþ

n ∂tðψþ
n Þ

?� ¼ þωkρ
þ
n ; (9)

hmz
Ri / =½ðψ�

n Þ
?∂tψ

�
n � ¼ �ωkρ

�
n ; (10)

which clarifies the chiral character of the modes.
Now we show the existence of eigenmodes characterized (in

addition to their chirality) by a definite amount of magnonic
(meaning akin to the quasiparticles, magnons) OAM. We term
these helical modes as twisted AFM magnons.

Twisted AFM magnons
In an extended cylindrical AFM tube and in cylindrical coordinates
r→ (r, ϕ, z), the above Klein–Gordon equation admits the

non-diffractive Bessel solutions

ψnðr; tÞ / J‘ðk?rÞ expði‘ϕþ ikzzÞ expð�iωtÞ; (11)

with ℓ= 0, ±1, ±2, . . . . Jℓ(x) is the Bessel function of the first kind
with order ℓ. For a cylindrical waveguide which is narrow
compared to the magnon wavelength one may apply the paraxial
approximation k2 � ðk2 � k2z Þ, i.e., the transverse wave number
k⊥ is small. One finds then that ∂2z ’ k2 þ 2ik∂z leading to the
Schrödinger-type equation for the spin waves

i
∂ψn

∂~z
¼ � 1

r
∂

∂r
r
∂

∂r

� �
þ 1
r2

∂2

∂ϕ2 þ k2
	 


ψn; (12)

where ~z ¼ z=2k can be interpreted as the independent “time-like”
variable. We conclude that in the AFM waveguides the modes are
transversely confined Laguerre-Gaussian (LG) beams

ψLG
‘;ς / r

wðzÞ

� �j‘j
Lj‘jς

2r2

wðzÞ2
� �

´ exp � r2

w zð Þ2 þ ik r2

2R zð Þ2
� �

ei‘ϕþikzeið2ςþj‘jþ1ÞηðzÞ;
(13)

where Lj‘jς are the generalized Laguerre polynomials, ℓ= 0, ± 1, ±

2,… ; ς= 0, 1, 2,… is the radial quantum number, wðzÞ ¼
w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

p
is the beam width depending on z due to

diffraction, RðzÞ ¼ zð1þ z2R=z
2Þ is the radius of curvature of the

wave fronts, and ηðzÞ ¼ arctanðz=zRÞ. The last exponential factor
(2ς+ ∣ℓ∣+ 1)η(z) is related to the Gouy phase yielding an
additional phase delay on the beam propagation. LG modes have
well-defined azimuthal and radial wavefront distributions (quanti-
fied by ℓ and ς, respectively) and they form an orthogonal and
complete basis in terms of which an arbitrary function can be
represented. The existence and utility of twisted modes for various
systems ranging from electrons and neutron to acoustic waves are
documented25,38–42. In AFM the underlying symmetries, free-
energy density and the generic equations of motions are different
from known cases, yet twisted AFM modes carrying OAM do exist
under appropriate setting. To inspect the properties of the
canonical OAM, we consider the continuity equation for spin
angular momentum transfer in AFMs35, ρs∂tmþ

P
μ∂μJ μ

m ¼ 0.
The spin current along the μ spatial direction reads

J μ
m ¼ � ρsξs

χm
∂tn�Aðn ´ ∂μnÞ: (14)

The first temporal term on the r. h. s. is determined by the
precession of the staggered field n and thus carries the magnon
chirality of any type of magnon beams. The second term is
intimately related to the spatial topology of the (helical) magnon
wave. In particular, the spatial phase modulations of the spin wave
whose twist is characterize by the integer ℓ is decisive. For
example, in terms of the left-handed Bessel/LG beams, one finds
the conserved z-component of the magnonic spin current

J μ
mz

¼ A=½ψþ
n ∂μ ψþ

n

� �?� ¼ �Aρþ‘ ðrÞ
‘

r
eϕ þ kzez

� �
; (15)

where ρþ‘ is the magnon density of twisted, left-hand chiral
magnons. ℓ characterizes the z-component of the intrinsic OAM of
the respective mode, Lz ~ ℏℓ that is independent on the choice of
the coordinate origin25 and different ℓ correspond to different
modes, implying that these modes may serve as multiplex
information channels. We note that ℓ is unbounded and akin to
the geometry and topology of the waveguide, presenting an
additional twist that is independent of the magnon chirality. Due
to (Gilbert) damping of magnetization procession, the magnon
density is a time-decaying function. OAM ℓ however, is robust to
damping, meaning when functionalized ℓ for information
transmission, the signal becomes weaker with time but the
information content is preserved. Further micromagentic
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simulations show that ℓ is a global property of the waveguide and
is less affected by reasonable variations of deformation in
the shape.

DMI coupling, Faraday effects, and electric field control
For controlling twisted AFM magnons with electric means, the
electric-field-tunable interfacial DMI can be used to realize twisted
spin wave computing. The break of the inversion symmetry at the
cylindrical surface along the radial direction er allows for a DMI of
the following form, HDM ¼ �Dij � ðSi ´ SjÞ. The DMI vector reads
Dij= D(er × rij). The DMI adds to the Lagrangian density as
LDM ¼ DS n � ð~∇ ´nÞ þ ~∇ � ðn ´mÞ �m � ð~∇ ´mÞ

� �
. where DS=

DS2 and ~∇ ¼ ðer ´∇rij Þ. The second term on the r. h. s. is a parity-
breaking term and has the structure of a total derivative. Hence, it
does not affect the local dynamics. Dropping the small last higher-
order term on the r. h. s. (m≪ 1), we arrive at the in-plane DMI
density (note, rij ∈ xy-plane)

Lxy
DM ¼ �DS=r nx∂ϕny � ny∂ϕnx

� �
: (16)

Otherwise, rij∥ez results in the longitudinal DMI density

Lz
DM ¼ �DSn � ∂z½nz cosϕ; nz sinϕ;�ðnx cosϕþ ny sinϕÞ�: (17)

Up to the second order in the transversal fluctuations around the
equilibrium of n, Lz

DM does not affect the magnon dynamics but
pins Walker-type domain walls to the right-Néel type.
The Euler–Lagrange dynamics for the staggered field, Eq. (6) is

augmented by an additional term in the presence of DMI. To a
leading order in the density Lz

DM, the magnon dynamics is
governed by

∂2μ �
1
c2

∂2t þ iσzD∂ϕ

	 

ψnj i ¼ Kz ψnj i; (18)

where D ¼ DS
AR with R being the radius of the AFM tube. Note, the

thickness scaling as r/R of the interface-induced DMI (i.e., DS ~ r/R)
has been used to derive Eq. (18). In the absence of DMI (D ¼ 0),
the topological charge ℓ is independent of the helicity of spin
waves and the left-handed (ψþ

‘;ς) and right-handed (ψ�
‘;ς) chiral

modes with arbitrary topological charges ℓ are degenerate. This
infinite degeneracy is however lifted by the introduction of Lxy

DM
which behaves as a fictitious electric field that couples to the
magnons via the Aharanov–Casher effect. For Bessel/LG modes as
solutions for Eq. (18) we infer the modified dispersion relation of
the chiral magnons

ω2
± ¼ c2 k2z þ k2? ±D‘þKz

� �
: (19)

The energy dispersion is now dependent on the topological
charge ℓ. The spin wave gap is softened by the DMI, meaning that
even below the AFM resonance point at ωR ¼ c

ffiffiffiffiffiffi
Kz

p
, twisted

magnons can be excited. Equation (19) indicates that the chiral
degeneracy of left- and right-handed magnons (ψ±

‘;ς) with same
topological charge ℓ is lifted, however, the twofold topological ±ℓ
degeneracy survives in the presence of interfacial DMI. These
degenerate twisted beams with opposite topological charge are
decoupled from each other. The OAM-balanced superposition jχϕi
is thus robust to the surface-induced DMI. The Bloch circles and
the interference patterns are rotated during propagation along
the waveguide resulting in a Faraday effect (cf. Fig. 2)43–45. In the
paraxial approximation with relatively small transverse kinetic
energy, the allowed wave numbers are approximated as kz± ’
k þ δkz± with δkz± ¼ ±D‘=ð2kÞ þ Kz=ð2kÞ. The DMI modifies the
longitudinal wave vector resulting in an additional phase
difference δφðzÞ / ðD‘z=kÞ. Let l be the length of the AFM tube,
then δφ(l)= π can be realized since arbitrarily large values of ℓ are
possible allowing so for any desired phase shift even at very weak
DMI and the twisted magnon beams exhibit so a rich magneto-
electric interference pattern. It is worth noting that such electrical
control of the flow of OAM-carrying magnon beams can be

directly realized by applying an external electric field through the
Aharonov–Casher (AC) effect25.

OAM-based information coding and AFM logic gates
A conventional way to read/detect the magnonically encoded
data is to convert the signal back to electronic signals via the
combination of two physical effects: spin pumping and the
inverse spin Hall effect (ISHE). In terms of the staggered
AFM order parameter n, there are two types of pumping
effect generated by the spin current: the pumped spin
density (I s � n ´ ∂tn) and the staggered spin pumping
(I ss � ∂μ½n ´ ∂tn�) representing the imbalance between the spin
current carried by the two sublattices46. Averaging over time
only the I z

s and I z
ss contribute to the DC pumped spin density,

in contrast to the x-and y-components of I s (and I ss as well).
Integrating further over the cross section we find that hI z

si and
hI z

ssi do not depend on the internal phase (spatial) structure of
the modes (and hence no dependence on ℓ is present).
However, a ϕ-resolved analysis evidences a spatial distribution
of pumped spin density. For instance, the state cos ϑ‘ Rj i (with
ϑℓ= ℓϕ) gives rise to

I z
s / ωkcos

2ϑ‘ and I z
ss / � ‘

r
ωk sin 2ϑ‘: (20)

These inhomogeneous spin densities can be detected by the ϕ-
resolved ISHE, as demonstrated in Fig. 3.
With this we arrive at a key result: The helical or twisted chiral

magnons propagating along the same direction in an AFM
waveguide are exploitable for realizing parallel logic gates47. For a
demonstration we recall that cos ϑ‘ Rj i, sinϑ‘ Rj i, cos ϑ‘ Lj i, and

Fig. 2 Faraday effects. Propagation of the interference patterns of
the OAM-balanced (jψ�

1;0i þ jψ�
�1;0i) and OAM-unbalanced (

jψ�
1;0i þ jψ�

0;0i) superpositions along a AFM waveguide with the
interfacial-induced DMI.

Fig. 3 Angular resolved ISHE measurement. Detections of the
pumped spin density I z

s of the state cosϑ‘ Rj i by the ϕ-resolved
ISHE. At the waveguide end, the z-polarized spins (green arrows)
radially pumped into a narrow Pt layers result in an inverse spin Hall
voltage Vϕ � cos2ϑ‘ with ϑℓ ≈ ℓ(ϕ0+ ϕ1)/2.
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sinϑ‘ Lj i are four-fold degenerate states. Our logic gates are
realized then as follows:

(i) Phase shift (Rϕ) gates with OAM-unbalanced superposition
of two chiral magnon beams with topological charge 0
and ℓ,

jχϕi ¼ jRi þ eiϑ‘ jLi: (21)

Some special examples are: T-gate with ϑℓ= π/4, S-gate with
ϑℓ= π/2, and the phase-flip Pauli-Z gate with ϑℓ= π.

(ii) Hadamard (H) gate with OAM-balanced superposition of
two chiral magnon eigenmodes with opposite topological
charges ± ℓ, meaning

χϕ


 E

¼ eiϑ‘ Rj i þ e�iϑ‘ Lj i
¼ cos ϑ‘ð Rj i þ Lj iÞ þ i sinϑ‘ð Rj i � Lj iÞ:

(22)

We may rewrite the above superposition into two Bloch circles as,
jχϕi ¼ jχþϕ i þ jχ�ϕ i with
jχ�ϕ i ¼ cos ϑ‘jRi � i sin ϑ‘jLi; (23)

jχþϕ i ¼ cos ϑ‘jLi þ i sin ϑ‘kRi: (24)

We have then the NOT (Pauli-X) connecting jχ ±
ϕ i, the Pauli-Y

gates with Rj i ! i Lj i and Lj i ! �i Rj i, and the square root
of NOT gates with Rj i ! ð1þ iÞ Rj i þ ð1� iÞ Lj i½ �=2 and
Lj i ! ½ð1� iÞ Rj i þ ð1þ iÞ Lj i�=2, as demonstrated in Fig. 4a, b.
Without breaking the time-reversal T and/or sublattice

exchange I symmetries, the parallel manipulations of magnon
chiralities are thus fully realized in the AFM waveguides with an
additional degree of freedom, the topological charge ℓ. Such

particular chiral magnon state χϕ


 E

can be electrically read out by

virtue of spin pumping46 (cf. Figs. 3 and 4 c/d).

Simulations for experimental realization
The preceding derivations are fully general. To confirm the
robustness of the predictions when accounting for material and
geometry specific effects that are important for an experimental

realization, it is instructive to perform full-fledged numerical
simulations for a specific waveguide. To this end, let us consider
the G-type AFM waveguide made of NiO with material parameters
determined by the previous experimental and theoretical studies.
For conducting micromagnetic simulations we discretized the
waveguide into boxes with a size of the atomic lattice constant of
0.418 nm348. Based on previous investigations and our own initial
calculations for a cylindrical model system, we estimate the
relevant frequency regime to be around f ~ 0.5 THz. In the
following we use a 0.5 THz frequency for the exciting field and
investigate different setups with a special focus on the impact of
different topological charges and helicities of the spin waves.
Details on the spin dynamics simulations including the spatial and
temporal profile of the applied field can be found in the
Supplementary Methods.

Twisted wave packet propagation
To demonstrate the twisted wave packets propagation, we
consider a waveguide with 100 × 100 × 300 unit cells (u. c.) excited
at one end by a twisted magnetic field. For the frequency of
0.5 THz, the wavelength of the plane-wave mode is λ ≈ 30.5 nm.
The boundaries are modeled such that they absorb most of the
incoming magnons by introducing an exponentially increasing
damping parameter in a tube shell with a 20 u. c. thickness. This
helps avoiding reflection effects in order to focus on the core
features of twisted magnon beams. Because of the discrete
rotational symmetry characterized by the OAM, twisted magnon
modes are protected against perturbations including defects and
finite size effects as discussed for the case of a FM wave guide in
ref. 49. An example of a few-cycle wave packet propagating along
the NiO wire is shown in Fig. 5a.
For further insight, let us continue with different wave packets

propagating along the wire, especially focusing on the group
velocity, broadening, and signal decay.
In Fig. 5b, few-cycle twisted AFM pulses are propagated along

the wire, and the position of maximum magnon density is tracked.
For this calculation, only one line of magnetic moments parallel to
the z-axis is analyzed. The offset to the center is 25 u. c. (≈10 nm).

Fig. 4 OAM-based AFM logic gates. a and b Logic gates realized by the OAM-balanced twisted AFM chiral magnon states with opposite
topological charge ℓ. c Corresponding elliptical precession orbit of the chiral magnon state jχ�ϕ i in the x–y plane. d Pumped spin accumulation
for which the DC component is given by the area of the ellipse: hI z

si ¼ h∂tn ´ni � cos 2ϑ‘ .
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The group velocities are different for different winding numbers ℓ.
The linear regressions give velocities of vℓ=1= 9.09 km s−1, vℓ=2=
8.36 km s−1 and vℓ=3= 7.35 km s−1. Also, the signal amplitude
decays more rapidly when increasing the topological number.

Spin dynamics induced by twisted AFM beams
In addition to the propagation of AFM twisted magnon beams, the
induced electronic spin density at the surface of the tube can be
calculated from the spin dynamics calculations. This we do by
calculating the staggered magnetization from the full G-type AFM
lattice and subsequently calculate the ISHE via I s � n ´ ∂tn for a
cross section of the NiO wire. The resulting patterns of the three
Cartesian components of pumped spin density I s for a beam with
ℓ= 2 are shown in Fig. 6. All signals are normalized with respect to
the maximum value for each component. As predicted, only the z-
component has a completely positive signal, delivering a finite
signal when integrating over time. In contrast to that, the x- and y-
components possess a twofold distribution with alternating
positive and negative areas eventually summing up to a total
induced spin density of zero.
The characteristic features of the z-component for different

chiralities and topological charges are presented in Fig. 7 for a
transversal profile through the center of the wire. Generally, the
maximum pumped spin density can be found in the region where
the highest magnon amplitudes are expected. This also means
that for higher topological charges ℓ, the maximum intensity
distance increases (cf. dark red and bright green markers). The
diminished intensity is explainable by the higher damping of the
magnon amplitudes, which is proportional to the magnon density.

In addition, the sign of the pumped spin density is determined by
the chirality of the magnon polarization, meaning that a change
from left-handed to right-handed magnons exclusively changes
the sign of the signal and not its distribution. Thus, the pumped
spin current due to the ISHE delivers a fingerprint for different
twisted magnon modes determined by both the chirality and the
topological charge of the spin wave. Current efforts are focused
on utilizing the twisted beam for driving AFM structures50–52

where we expect the topology of these beams to add an
additional twist on existing AFM magnonics.

Superposed beams—proof of gate operations
In principle, the spin current density profiles shown in Figs. 6 and
7, generated by different types of magnon modes indicate the
possibility of an OAM specific detection of signals. In order to close
the gap between these results and the concept of parallel
information transport and logic gate operations, we now proceed
with numerical simulations of superpositions of different magnon
modes. We perform spin dynamics calculations as before, but the
cylindrical system is now excited with superimposed magnetic
fields, each exciting an individual twisted magnon mode.
As an example, the superposition of beams with ℓ= ±1 and

positive helicity are excited in the same NiO cylinder as before.
The time resolved pumped spin density is shown in Fig. 8 with the
reference signal for a single ℓ= 1 magnon in Fig. 8a. All results
have in common, that the excited beams need a finite time to
reach the measurement slice at 150 u.c. distance, therefore

Fig. 5 Propagation of a twisted magnon wave pulse in an AFM waveguide. a A snapshot of the twisted AFM magnonic pulse with ℓ= 1
taken 10 ps after being triggered with the magnetic field of a THz pulse focused on one end of the waveguide. nx component of the staggered
field is shown. b Speed comparison for few-cycle twisted magnonic wave packets carrying different OAM.

Fig. 6 Cross section of the ISHE signal. The spin accumulation due
to a twisted magnon wave packet with ℓ= 2 and left-handed
(clockwise) chirality is calculated according to the ISHE via
I s � n ´ ∂tn. The three panels display the different components of
the induced spin-current showing that only the z-component
delivers a non-zero value after integration over the whole cross
section. The staggered magnetization is obtained from full-
numerical spin dynamics simulations.

Fig. 7 Spatial profile of the time-integrated out-of-plane ISHE
signal. Twisted magnon waves for different topological charges and
chiralities are generated in the NiO waveguide. The resulting z-
component of the spin accumulation according to the ISHE is
calculated via I s � n ´ ∂tn.
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showing no spin accumulation at the first snapshot after 2.41ps.
Next, let’s consider two monochromatic beams (b, f1= f2= 0.5
THz) and slightly detuned beams (c, f1= f2/1.1= 0.5 THz). Because
of the fixed phase difference in case of the monochromatic beam
composition, a steady pattern in the ISHE signal is present in Fig.
8b, showing the areas of constructive and destructive interference
of the spin waves in contrast to the radially symmetric result in Fig.
8a. The 10% detuned beams exhibit a time dependent phase
relation, hence the whole interference pattern rotates over time
with a frequency significantly lower than the excitation frequency.
Ideally, the beating frequency is fB= 0.5∣f2− f1∣= 0.05f1= 25 GHz.
Therefore, it can be utilized to overcome limitations in the time
resolution of the ISHE measurement.

METHODS
Spin dynamics simulations
The predictions are generic. For a material-specific demonstration we used
NiO with a material parameters as determined experimentally. For the
numerical realizations to assess the analytical predictions and provide
experimental guidance, we used the open-source, GPU-accelerated
software package mumax353 for the micromagnetic simulations. Input
data and more detailes are provided in the Supplementary Methods.

DATA AVAILABILITY
All data needed to reach the conclusions in the paper are present in the paper and/or
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