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Mechanical behavior predictions of additively manufactured
microstructures using functional Gaussian process surrogates
Robert Saunders 1,2✉, Celia Butler3,4, John Michopoulos1, Dimitris Lagoudas2, Alaa Elwany 2 and Amit Bagchi1

Relational linkages connecting process, structure, and properties are some of the most sought after goals in additive manufacturing
(AM). This is desired especially because the microstructural grain morphologies of AM components can be vastly different than their
conventionally manufactured counterparts. Furthermore, data collection at the microscale is costly. Consequently, this work
describes and demonstrates a methodology to link microstructure morphology to mechanical properties using functional Gaussian
process surrogate models in a directed graphical network capable of achieving near real-time property predictions with single digit
error magnitudes when predicting full stress–strain histories of a given microstructure. This methodology is presented and
demonstrated using computationally generated microstructures and results from crystal plasticity simulations on those
microstructures. The surrogate model uses grain-level microstructural descriptors rather than whole microstructure descriptors so
that properties of new, arbitrary microstructures can be predicted. The developed network has the potential to scale to predict
mechanical properties of grain structures that would be infeasible to simulate using finite element methods.

npj Computational Materials            (2021) 7:81 ; https://doi.org/10.1038/s41524-021-00548-y

INTRODUCTION
The process used to manufacture a material governs its
morphological structure, which in turn drives the values and
spatial distributions of the properties of the processed material
and consequently its performance. Process–structure–property
(PSP) relational linkages are necessary for designing, developing,
and tailoring a material to exhibit desired properties, and
ultimately performance, for a targeted application. Establishing
PSP linkages typically involves building and testing materials from
a given process until the desired properties are achieved.
However, the process of generating and representing the data
needed to establish these PSP linkages is often very time
intensive as it requires extensive experimentation and/or com-
plex, multiscale simulations1–3. Furthermore, these processes
usually generate large amounts of data that present analysis
and management difficulties. Recent advances in the field of data
science and data analytics have made managing, interpreting,
and extracting information from “big data” a more tractable
activity4,5. The process of applying data science principles to
materials science and engineering is referred to as materials
informatics6,7 and typically involves the use of machine learning
(ML) and artificial intelligence (AI) techniques8–10. The advance-
ment and adoption of materials informatics has provided notable
potential to streamline and accelerate the determination of
process–structure11, structure–property12,13, and even full PSP14

linkages in conventionally manufactured materials.
One of the most prominent, emerging fields that call for PSP

linkages and materials informatics is additive manufacturing (AM).
The term AM represents a collection of advanced manufacturing
processes used to build three-dimensional (3D) objects by
progressively adding materials in a point by point, line by line,
and utimately a layerwise fashion15. AM has gained significant
popularity in both experimental15,16 and computational17 domains
recently as it has the potential to remove many of the design
constraints imposed by traditional manufacturing processes18.

However, the texture morphologies produced by AM, particularly
in metals at the microscale, can vastly differ from their
conventionally manufactured counterparts19. These differences
often lead to undesired (or unexpected to say the least) properties
in the finished part. With adequate understanding PSP linkages in
AM, these differences can be used to enhance the resulting
properties to previously unattainable levels19. As with conven-
tional materials, many works have attempted to understand PSP
relational linkages in AM using high fidelity, multiscale simula-
tions20,21, which can achieve high accuracy predictions. However,
these simulations are typically computationally expensive, making
them better suited for understanding the underlying physics
rather than being used for rapid production and/or qualification22.
This challenge can be addressed through proper use of materials
informatics and ML23,24.
The emphasis in the current work is on understanding and

generating ML-based structure–property linkages from simulated
AM microstructures coupled with crystal plasticity finite element
(CPFE) simulations. The CPFE method is a powerful tool for
modeling the elastoplastic mechanical response of anisotropic,
heterogeneous, polycrystalline aggregates by taking into account
the effects of various microstructural features25,26. There are a
number of ways in which an ML model can be trained to represent
a CPFE model and link structure to properties. One method is to
use deep learning (DL) to learn the constitutive model response27–29.
This method is applicable beyond CPFE and can incorporate true
physical constraints of the problem during learning. However, DL
requires a large training data set that can be infeasible to generate
using the computationally CPFE model. Additionally, it is not clear
whether this method will yield acceptable performance when
applied to polycrystalline microstructures, especially those with
the complexity of AM microstructures, as this has not been
addressed in existing literature studies. An alternative method to
learning the constitutive model is to use microstructural features
and directly relate them to certain quantities of interest (QoIs)30–33
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(e.g., elastic modulus, yield strength) or the full stress–strain
behavior34–36. In an ML framework, it is conceptually straightfor-
ward to relate microstructural features directly to QoIs and this is
very useful to characterize a given material or fit a given
constitutive model. However, in characterizing the material by
only a few QoIs a significant amount of information about the
stress–strain history is lost and the constitutive model must be
chosen a priori. It is anticipated that relating the microstructure
morphological features to the full stress–strain history will provide
benefits over just predicting certain QoIs, but it is conceptually
more difficult to predict the stress–strain response. Liu and Wu34

propose a DL-like approach termed deep material network (DMN)
where phases in a representative volume element (RVE) are
characterized and then propagated through homogenization and
rotation operations. The operations are done such that the
analytical characterization, homogenization, and rotation act
nearly identically to the operations involved in a conventional
artificial neural network (NN). Another approach by Frankel
et al.35,36 directly implements a hybrid convolution, long short-
term memory recurrent NN (ConvLSTM) to process a microstruc-
ture image and predict its full, spatially resolved stress–strain
history. While the approaches of both methods differ substantially,
both are able to show very high prediction accuracy on withheld
data. However, both are based on DL, which as previously
mentioned, has a large training data requirement. In the DMN and
ConvLSTM models, hundreds of RVEs were generated for training,
validation, and testing. In those works, generating hundreds of
cases was feasible due to the relative simplicity of the constitutive
models, dimensionality of the problem, and microstructures being
examined. As mentioned before, AM microstructures do not
exhibit such simplicity so the generation of hundreds of
simulations for training will be prohibitively time consuming,
even on the most advanced high-performance computing
systems. Additionally, DL-based models do not have an inherent
uncertainty quantification method.
The recognition of the fact that CPFE models are displacement

driven and the outputs of stress and strain are derived, continuous
functions offers an opportunity for a new approach. Functional
data analysis (FDA) is an area of statistics, which handles data that
reside in an infinite dimensional space (i.e., functions such as
continuous time series data)37. As with traditional statistical
methods, FDA has two methodologies, parametric38 and non-
parametric modeling39,40. The latter set of methods deals with the
case of modeling infinite dimensional functional data using non-
parametric methods, which also follow a general infinite dimen-
sional assumption. These methods are thus applicable to Gaussian
processes (GPs) among other non-parametric methods. A number
of authors have studied GPs with functional data and shown
success in developing a functional predictive capability41–46. Li
et al.47 even recognized the applicability of the functional
Gaussian process (fGP) to AM thermal process simulations. As
already pointed out, in CPFE a function (i.e., displacement) can be
related to another function (i.e., stress/strain), but there is an
additional requirement for the existence of a set of scalar
parameters, such as grain morphology descriptors and constitu-
tive model parameters that do not change with the displacement.
The drawback of the fGP models developed in the previous works
is that they are restricted to function-on-scalar (i.e., functional
input, scalar output) or function-on-function GP regression, but
the current problem requires an approach to model function-on-
mixed scalar and functional data. Recent developments by Wang
and Xu48 have addressed this restriction and allow for mixed
scalar and functional input variables along with functional and/or
scalar output variables.
In this work, an fPG framework is developed based on the fGP

model of Wang and Xu48 for predicting the stress–strain behavior
of AM microstructures as they are related to microstructural
morphology features. The GP-based system provides a fast,

flexible, less data intensive alternative to existing DL methods
and as a natural outcome, provides a predictive mean and
variance for the stress–strain history. Additionally, GP-based
models, such as the one developed here, are easily generalizable
to multi-output49 and/or multi-fidelity50–52 variants. The frame-
work developed herein has the additional novelty of predicting
stress–strain history on a per grain basis, meaning that the
microstructures used for training can be much smaller (i.e., fewer
grains) than the microstructures to be approximated. The
development of this framework will be shown and then trained
using simulated data. The framework will then be applied to
previously unseen microstructures generated by the same method
as the training/testing data. Finally, the fGP network will be used
to demonstrate how grain size and shape influence mechanical
properties without the use of costly CPFE models.

RESULTS
fGP framework
The set of inputs needed for a CPFE model are the uniform
kinematic displacement boundary conditions (u, vector of
functional variables) applied to the faces of an RVE over the
duration of the simulation, constitutive model parameters (θ,
scalar variables) that define the material behavior, and the
microstructure morphology (non-functional variables, i.e., scalar,
vector, or tensor variables). Additionally, a loading parameter (λ,
scalar functional variable), such as amplitude over time, is used to
incorporate history dependence into the model for situations
where displacement or other quantities may be non-unique or
non-monotonic (e.g., loading–unloading experiments). During
each time increment of the CPFE simulation, a step in displace-
ment is taken based on the value specified by the loading
parameter, and along with the previous state of stress and strain
in an element, a new element strain is computed followed by a
stress update for the element in the current increment. The output
of this process at the end of the simulation is a stress–strain curve
for each of the six stress/strain components at each finite element
in the simulation. The stress and strain outputs at each element
can be taken as is or processed further to obtain values such as
equivalent strain and equivalent (von Mises) stress. These
equivalent values, or the individual components, can then be
homogenized over the whole RVE, over individual grains, or other
subsets of the RVE. The process as described is shown in the
directed graph of Fig. 1 and the same process can be emulated
using fGPs. The same inputs to the CPFE model can be used as
input to the fGP described in section. The loading parameter and
displacement are treated as functional inputs while the constitu-
tive model parameters and microstructural features are treated as
non-functional inputs. Note that the model as defined uses
displacement as the driving deformation mechanism, but this
could equivalently be replaced with a specified force or traction
on an RVE face. These inputs are then used to train an fGP model
that predicts the functional equivalent strain (ϵ, denoted strain
from hereon), and this in turn is used alongside the previous
inputs to train a second fGP, which predicts the functional
equivalent stress (σ, denoted stress from hereon). The choice here
to use equivalent stress and strain was made in order to obtain a
scalar valued function that considers all components of stress/
strain. However, this choice is inconsequential and any individual
component of stress/strain could have also been used. In fact, all
components of stress/strain could be considered by either training
one fGP network per component or by modifying the fGP
normality assumption to instead follow a multivariate normal.
Further discussion on this extension is omitted as the implemen-
tation of a multivariate fGP is beyond the scope of this work.
In the illustrated graphical network, any set of microstructural

features, such as those found by Mangal and Holm53 and those
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discussed by Bostanabad et al.54, that describe the RVE can be
used. In AM, microstructures in many cases exhibit epitaxially
grown columnar grains with different grain sizes and aspect
ratios55. As such, in this work, a grain size- and shape-dependent
CPFE model56 is used to generate the needed crystal plasticity
data. It follows that the features needed to describe grain size and
shape, such as equivalent spherical diameter and grain volume, be
used to represent the microstructural RVE as a set of non-
functional scalar parameters. In general, this feature representa-
tion is done at the level of the whole RVE, but in this work, the
feature representation is done at the level of each grain in an RVE.
This, first, means that each time-consuming computationally
intensive CPFE simulation results in multiple stress–strain curves
for each grain, rather than a single stress–strain curve for the
whole RVE. This increases the amount of data available for training
and testing the fGP models, which will help improve the
predictive capabilities of the models. The drawback to this
method of data collection is that the effect of boundary conditions
and grain interactions is not considered. However, as will be
shown in the following sections, these effects do not appear to
significantly hinder the performance of the trained fGP model
when given a sufficient amount of training data. Second, working
at the level of the individual grain helps to directly relate grain size
and shape features to the output stress–strain curve, rather than
using distributions of grain size and shape for a whole RVE. By
ignoring microstructure grain distributions and working with the
individual grains, there are two means by which uncertainty is
reduced. First, uncertainty in the microstructure feature distribu-
tions is effectively uncoupled from the mechanical property
prediction, since there is typically not uncertainty associated with
individual grains in a microstructure from the process–structure
linkage. Second, by predicting individual grain behavior and then
homogenizing, the variance of the predictive distribution, in
general, is decreased since the variance of the mean decreases
with sample size. Additionally, using the homogenized RVE
response tends to mask the effect of small and elongated grains,
which in the chosen constitutive model generally have higher
stresses than large and equiaxial grains. This point is illustrated in
Fig. 2 where some individual grains within a given RVE can have a
stress of more than three times that of the homogenized RVE
value at the same equivalent strain.

Network training and evaluation
To train the network in Fig. 1, microstructural RVEs must be
generated to be processed by the CPFE model. In AM, a single
representative microstructure that is capable of representing the
whole microstructure is generally not possible to construct.
However, RVEs can be constructed that contain a range of
features (grain sizes, shapes, orientations, etc.) seen in the whole
AM microstructure and that can be considered representative of

the overall bulk material. As such, in this work, an RVE is defined as
a volume element that contains a set of features representative of
a larger AM build made with similar process parameters. For
network training, 50 microstructural RVEs containing approxi-
mately 100 grains each are generated using a continuum diffuse
interface model (CDIM)57 and then meshed using Simpleware
ScanIP (Synopsys, Mountain View, CA, USA). Complete details of
the data generation process are given in the Methods section Data
generation.
The generated RVEs contain features representative of those

seen in single track AM microstructures58 and a selection of the
considered RVEs is shown in Fig. 3a. While the RVEs may not
strictly resemble typically AM microstructures, they do provide a
range of features, such as grain shape and size variations, that are
seen in single track AM microstructures and that are needed to
train the fGP network. The generated RVEs are cubic and have
dimensions in the range of 0.1–0.8 mm3. Periodic boundary
conditions are specified for all faces along each axis and the
loading parameter here is linear with time and monotonically
increases from 0 to 10% of the RVE edge length. The displacement
is mapped such that it results in a linear, monotonically increasing
displacement along the Y-axis in the Y-direction. The model setup
represents the loading portion of a uniaxial tension test. If more
complex loading behavior was desired, a simple change in
definition of the loading parameter (amplitude) and u (direction)
could accomplish that. The loading parameter definition will be
valid as long it is a real, unique, continuous function and u simply
maps that amplitude to a specific direction on an RVE face (i.e.,
loading the Y-axis in the Y-direction is tension/compression and in
the X- or Z-directions is shear). For instance, to address

Fig. 1 fGP graphical network. A functional Gaussian process graphical network, which uses a loading parameter (λ), displacement (u),
constitutive model parameters (θ), and the microstructure morphology to predict stress (σ) and strain (ϵ) in each grain and a mean response
over a whole RVE.

Fig. 2 Homogenized RVE vs. individual grain stress–strain.
Comparison of homogenized RVE stress–strain behavior (black line)
compared to individual grain behaviors from the same RVE (red
lines) demonstrating how extreme gain behaviors can be masked
through homogenization.

R. Saunders et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    81 

1
2
3
4
5
6
7
8
9
0
()
:,;



loading–unloading, the loading parameter would be specified as
increasing (with no requirement on linearity) from some time t0
until a future time t1 then decreasing until another future time t2.
This type of specification could be extended to capture any non-
monotonic or non-proportional behavior including cyclic or
hysteretic behavior. Uniaxial tension is chosen here for simplicity
and demonstration of the fGP network concept. The properties of
316L stainless steel are used for the constitutive model.
Running the simulations, extracting the stress–strain curves for

each grain, and using 70% of the curves for training with the other
30% withheld for model evaluation, yield the data shown in Fig.
3b, c. The training and test sets are chosen at random. The mean
strain of all these grains is around 10%, as expected based on the
displacement magnitude and approximate size of the RVEs, with a
stress of approximately 450 MPa at that strain. The range of strain
for individual grains is between 8 and 15% with stress in the range
of 325 MPa on the low end and, on the high end, some grains
exceeding 1500 MPa. The importance of capturing grain stresses
and strains far from the mean is based on the expectation that
many grain with behaviors far from the mean will tend to have a
high stress or strain energy density and will have a high
probability of being a failure initiation site. Therefore it is crucial
to be able to predict their behavior. This also gives reason as to
why it is necessary to train the fGP framework on a per grain basis.
For the purpose of training the fGP models, only the properties

in the constitutive model that are directly dependent on grain size
and shape are considered. These are the grain yield strength, initial
strain hardening modulus, and grain boundary resistance. Note
that other constitutive model parameters, such as the stiffness
tensor components, could readily be used in the parameter set but
they are omitted here for simplicity. Additionally note that any
derived constitutive model quantities (e.g., slip system strength,
material axis rotation) are not explicitly considered, rather they are
implicitly captured in the fGP since they will manifest as changes in
the final stress–strain behavior. The microstructural features used to
represent each grain are the grain total volume, three radii of an
ellipsoid used to approximate the grain shape, and three angles
representing the grains orientation relative to a defined, global axis.
This set of morphological features is chosen as they all can be
directly and simply related to the size, shape, and orientation of the
grains in the AM microstructure. As with the constitutive model

parameters, additional morphological parameters (e.g., texture,
crystallographic orientation, Schmid factor) could be considered
but are not implemented here for simplicity and interpretability.
The selection of the features chosen for this work are specific for
the AM process and the constitutive model used. In other
manufacturing processes, other features such as Schmid factor
may be more important or more relevant and these could be
considered in the fGP in those instances. Furthermore, in ML,
choosing a large number of features can be detrimental to model
performance as it results in more hyper-parameters that must be
tuned during training and more features can lead to lower model
accuracy if those features are not strongly correlated to the output.
The model, as described, results in 12 total hyper-parameters to be
trained and training is done via maximum likelihood estimation
(MLE). The number of functional principal components (Methods
section Functional Gaussian process, Eq. (7)) used is J= 3 and this
captures >99% of the variability in the strain and the stress.
The overall results of the trained model on the withheld data

can be seen in Fig. 4b, where the predicted mean nearly overlaps
the mean of the CPFE data, and corresponding error rates are
shown in Table 1. Overall, the fGP network is able to predict the
strain to around 8% error and the stress within 5.3% error. These
errors correspond to a prediction accuracy within 0.35% strain and
approximately 20 MPa stress. The prediction of the stress will in
general be better than the prediction of the strain for two reasons.
First, there is non-linearity in the constitutive model, which
inherently means that uncertainty will between stress and strain
will be different. Second, since the stress fGP will have additional
information via the mean predicted strain, which helps to further
differentiate data points that would otherwise be similar. Note,
however, that when considering the full predictive strain
distribution as the input to the stress fGP, uncertainty propagation
methods would need to be utilized and may result in a less
accurate predicted mean stress with a higher predicted variance.
A selection of four grain stress–strain behaviors and the

corresponding fGP mean prediction along with 95% prediction
interval for those grains is shown in Fig. 4a. These results show
mostly expected behavior in that if the grain stress–strain
behavior is close to the mean behavior, the fGP can provide a
good approximation, and as the grain behavior moves further
away from the mean, the prediction intervals gets larger. In some

Fig. 3 fGP training data. a Selection of four RVEs from the 50 generated and used for training. b Stress–strain curves of each grain (red lines)
in the training data set along with the mean response of all the training data (black line). c Training stress and strain data shown against the
commanded displacement.
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cases, such as the left two images of Fig. 4a, the predicted
behavior has very narrow prediction intervals and the CPFE data
does not lie within those intervals. However, the important
behaviors (e.g., modulus, yield, and hardening) of individual grains
tend to be captured very well by the fGP.
As mentioned above and as seen in Fig. 4a, the prediction of

strain is more difficult than the prediction of stress. This can be
attributed to a couple of training data deficiencies. First, in Fig. 3b,
it can be noted that there is a high density of data around the
mean, which will tend to bias the fGP toward that region. Next, it
can be noted that, in general, the strain-displacement behavior is
approximately linear for the majority of cases, but many grains can
have significant non-linearity in this behavior. These grains tend to
have the lowest prediction accuracy as they are outliers relative to
the rest of the data. The reason for the presence of these non-
linearities is likely due to boundary/traction conditions around the
grain. This could be the result of a grain being on the boundary of
the RVE or the result of a grain being constrained by its
neighboring grains. The latter problem could be addressed
potentially by accounting for physical grain boundary conditions
in the fGP. For instance, one could create a metric that defines the
surface area of the grain in contact with another grain. However,
this would be quite challenging and may not result in a significant
increase in model accuracy. To address the former problem, one
would need to expand the training data set to include more cases
that exhibit a nonlinear strain response, which could be
accomplished via different load paths, and would decrease
uncertainty in the model. However, this could prove challenging
as well since the fGP suffers from the need to perform an Oðn3Þ
matrix inversion during training. Therefore with more than a few
thousand data, a significant training time penalty will be incurred.

This is known in the standard GP regression problem and
exacerbated in the fGP problem where training must occur on
each of the J principal components. However, methods exist to
circumvent this issue and these will be discussed later.
Recall that each RVE used during training contained approximately

100 grains. The fGP network is now applied to three RVEs of a more
realistic size, containing upwards of 300 grains each, generated and
simulated via the same process as before (i.e., generation via CDIM,
meshing via ScanIP, and CPFE simulation). The generated RVEs in
these cases are 0.125mm3. RVEs of this size generally take 60–90 h of
computational time to generate the stress–strain response for a
whole RVE on a high-performance computing system using 48 CPUs.
This is in contrast to the 10–15 h that the 100 grain RVEs used for
training take on the same computing system. Additionally, a larger
RVE will result in the boundary conditions having less influence on
the overall RVE behavior and, in general, yield a more representative
behavior. As mentioned, the fGP does not explicitly take into account
the boundary conditions meaning that the learned behavior may be
significantly influenced by the boundary conditions. Before running
the CPFE simulations, fGP predictions were made using RVE features.
Once the CPFE model was run, the stress–strain results for the whole
RVE were extracted as shown in Fig. 5 alongside the fGP predictions.
The corresponding error metrics are shown in Table 2 and in

general show slightly higher error rates, as would be expected in
ML on previously unseen data. However, the error rates are still of
the same magnitude as those seen on the withheld training data
and are sub-18% in the worst case, being sub-10% in the majority
of cases, and in some cases are actually lower than the rates seen
on the withheld training data. RVE 1 (Fig. 5a) shows the highest
error rates of the three generated RVEs and can be attributed to a
lack of sensitivity in the trained model. RVE 1 is nearly equiaxial
and, as such, the distribution of grain sizes and shapes is relatively
small. In the CPFE model, these small variations between grains
are easily captured. However, in the fGP (as well as many other ML
models), small local variations in input parameters are treated as
similar to one another, even when they may not be, due to the
characteristic length scale of the covariance being larger than the
relative distance between some points.
Even considering the introduction of a small amount of error in

the results, the reduction in computational cost (by three orders of
magnitude) makes the fGP framework much more tractable than
running the CPFE model. As mentioned, RVEs of a sufficient size,
such as those in Fig. 5, can take between 60 and 80 h to simulate

Fig. 4 fGP performance on withheld data. a fGP prediction with 95% prediction interval for four select grain data withheld from training.
b fGP prediction with 95% prediction interval for the mean of all withheld data.

Table 1. Withheld data error metrics.

MSE MAE MAPE SMSE

Strain 3.282e−5 3.546e−3 7.834% 15.898

Stress 1326.6 MPa2 19.971MPa 5.3% 22.995

Error metrics for the trained fGP strain and stress models on the withheld
grain data set. MSE mean squared error, MAE mean absolute error, MAPE
mean absolute percent error, SMSE standardized mean squared error68.
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on an HPC system. In contrast, the fGP network data generation,
training, and prediction took between 500 and 700 h of time (50
RVEs at 10–15 h on the same HPC system, 8 h for training on a
desktop, and prediction time was negligible on a desktop). While
there is a significant time investment to construct the fGP
network, the fGP network was trained in the same time as roughly
ten CPFE simulations. However, the fGP network can provide a
much more expansive data set than 10 CPFE simulations.

To demonstrate this, the fGP will be used to examine how grain
size and shape influence mechanical properties.

Grain size and shape effects
To demonstrate the uses of the fGP network for future problems
that may require many mechanical property predictions for various
microstructures or microstructure distributions (e.g., optimization
or Bayesian sampling), a simple set of data with varied grain size
and shape distributions will be created and mechanical properties
predicted without the use of costly CPFE simulations. The data set
consists of “microstructures” with average aspect ratios (shapes) of
1, 3, or 5 and average grain volumes (sizes) of 1.891e−5, 2.029e−4,
2.178e−3, 2.338e−2mm3. Distributions of grain sizes and shapes
are generated via 200 random draws from a log-normal distribu-
tion with means as specified and standard deviations of 0.3 for the
grain shape and 1 for the grain size. A full factorial analysis is
performed to generate 12 representative microstructures with 200
grains each. Each of the 12 microstructure distributions is them
simulated and homogenized via the fGP network to generate
predicted mechanical behaviors as shown in Fig. 6. Note that 95%

Fig. 5 Stress–strain data for 300 grain RVEs. Stress–strain results
for three 300 grain RVEs not used for the training of the fGP
network. CPFE results took approximately 3 days of computation
time on average while fGP predictions with 95% prediction intervals
took seconds. a RVE 1. b RVE 2. c RVE 3.

Table 2. Three hundred grain RVE error metrics.

MSE MAE MAPE SMSE

Total

Strain 5.924e−5 4.954e−3 10.645% 7.422

Stress 6710.9 MPa2 39.965MPa 8.284% 19.094

RVE 1

Strain 1.24e−4 8.064e−3 17.626% 19.028

Stress 5415.9 MPa2 47.129MPa 10.486% 41.846

RVE 2

Strain 3.816e−5 4.124e−3 8.601% 2.548

Stress 3271.9 MPa2 27.626MPa 6.327% 8.982

RVE 3

Strain 2.193e−5 3.004e−3 6.429% 1.706

Stress 10847.2 MPa2 44.633MPa 8.107% 8.375

Error metrics for the trained fGP strain and stress models on the three new
300 grain RVEs as well as the total error rates for the combined data set
consisting of approximately 900 grains.

Fig. 6 Grain size and shape analysis. Stress–strain data from the
fGP graphical network for the 200 grain “microstructures” generated
via specifying a grain size and shape distribution. AR average aspect
ratio, log(Vol) logarithm of the average grain volume.
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prediction intervals are available for each curve but are omitted
for figure clarity.
The generation and mechanical property prediction of this data

(all 12 microstructures) took approximately 1 h on a standard
desktop computer. The majority of this time was spent converting
the input grain aspect ratio and volume into the necessary fGP
inputs, which requires a numerical double integration. In contrast,
if one were to attempt to simulate the same 12 RVEs with 200
grains using CPFE methods, each simulation would take upwards
of a full day on an HPC system. The benefit of using the fGP
network becomes even larger when considering that the time
required has neglected the additional time needed to generate
microstructural RVEs and mesh those RVEs before the CPFE model
can be run. The drawback of the fGP is that there is a small
amount of error introduced to be able to obtain these results so
rapidly. However, this error will be small (<10% as demonstrated
on the 300 grain RVEs) so long as the fGP is being used in an
interpolative manner i.e., the microstructural features being input
are in the range of those used to train the model. In this case, this
condition holds since the fGP was trained with data that had
higher and lower volumes and aspect ratios. If this condition is not
met, then the accuracy of the fGP network will quickly diminish.
This limitation of the fGP network is demonstrated on a
microstructure generated by a cellular automata finite element
(CAFE) model in Supplementary Fig. 2.
With regard to the results of the mechanical behavior, the

mechanical properties show trends that are consistent with the
theory. A brief overview of this consistency is given here but
the interested reader is referred to refs. 56,59 for full information on
the constitutive theory. First, it can be noted that at a very small
average volume (log(Vol)=−10) the aspect ratio has almost no
influence on the mechanical behavior, since the grain is already
“saturated”. As average grain volume increase (regardless of
aspect ratio), there is an initial increase in yield strength and a
decrease in the hardening modulus, but at a high enough volume
the yield strength decreases and the hardening modulus
increases. This is indicative of the grain boundary effect being
the dominant effect at intermediate volumes, but above a certain
volume threshold, the grain boundary effect starts to diminish
since the grain boundary volume is small relative to the overall
volume. The effect of aspect ratio is confounded by the size effect,
but generally shows that smaller grains with high aspect ratios
produce a higher stress and this trend inverts with large grain
sizes. The noted points are all consistent with the theory and the
CPFE results presented in ref. 56, which gives further credence to
the accuracy of the fGP model and its ability to emulate the CPFE
model well.
This has been a simple demonstration of the fGP network and

its potential time-saving capabilities, but this is a relatively small
problem with only 12 microstructures that could be solved using
CPFE in a longer but doable time frame. However, even in this
simple context, one can begin to see how the fGP network can be
used in PSP linkages to determine a desired microstructural
feature distribution that results in a specific mechanical behavior.
For instance, if the goal was to maximize yield strength then from
Fig. 6, a target should be to achieve a microstructure with an
average volume of 2.178e−3 mm3 (log(Vol)=−6.2) and either an
equiaxial structure (AR= 1) or high aspect ratio structure (AR= 5).
The true benefits of the fGP network are realized when
considering an optimization problem or Bayesian sampling,
where hundreds or thousands of microstructure feature distribu-
tions may be needed to find an optimal solution or the desired
parameter distributions. With a CPFE model alone, this would be
intractable, if not entirely impossible. With the fGP, this is not the
case and the parameter space being explored can be thoroughly
searched.

DISCUSSION
This work has demonstrated the development and application of
an fGP-based graphical network. The fGP network emulates the
simulation process for a CPFE model, where displacement and
other input parameters are used to determine strain then stress in
a grain. The fGP was trained using data from 50 RVEs generated
using a CDIM and simulated using a grain size and shape-
dependent CPFE constitutive model. Additionally, the amount of
data was increased from the available RVEs by training the fGP
network on a per grain basis rather than a per RVE basis. The fGP
network was able to accurately predict new data from a test set
and performed well on new RVEs generated by the same means
as the training data, with differing numbers of grains and,
therefore, different boundary conditions. This result demonstrated
the possible capabilities of the fGP network to predict unseen
data and the performance suggests that large CPFE models, which
are computationally too expensive to simulate, could be
approximated well by the fGP network trained using very small,
more manageable RVEs with similar features. This is consistent
with the theory of using small statistical volume elements (SVEs,
volume elements which individually do not capture the average
response of the material) to approximate a much larger domain60.
However, the more traditional approaches require extracting SVEs
from the microstructure of interest, simulating those SVEs, and
then homogenizing to approximate the behavior of the domain of
interest. The approach taken here is much more general in that it
learns feature sets applicable to all microstructures exhibiting
similar feature sets and does not require the repeated simulation
of SVEs.
Having shown the fGP network is capable of predicting unseen

data, it was applied to a simple problem of simulating 12
“microstructures” and proved to be consistent with the crystal
plasticity constitutive theory. The fGP network was able to make
predictions on data three orders of magnitude faster than the
corresponding CPFE model (minutes on a single CPU compared to
hours/days on an HPC system). Additional time savings are
realized when considering that the effort required to mesh and
fully define a CPFE model is not required to run the fGP network.
Of course, the fGP network also has some drawbacks and
limitations, which primarily stem from training data and data
being predicted. Since the fGP is network is data driven ML model,
it can only accurately make predictions on features with
similarities to those it has seen during training (i.e., it is an
interpolative model, not extrapolative). The less similar the unseen
features are to the features seen during training, the worse the
prediction will be. However, this is the case with all ML models.
The graphical network developed here provides a simple yet

powerful data driven methodology to capture the
structure–performance relationship in AM PSP linkages. Due to
its relative simplicity, it is extraordinarily flexible in that it is not
limited to the CPFE constitutive model used in this work or even
limited to GP-based methods. While a specific CPFE constitutive
model was chosen for this work, the fGP network can be
implemented on any crystal plasticity data, such as that generated
by spectral methods61 or any other crystal plasticity constitutive
model62. Changes to constitutive model would require modifying
the input features so that they are specific to the given model,
which then necessitates retraining of the network, but the core
concept and framework is still applicable. Since the graphical
network directly emulates the crystal plasticity method and
predicts stress as well as strain, constitutive models containing
damage and failure as well as complex load histories can be used
to train the fGP network. Damage and defects can also be
incorporated into the fGP network via the RVE by the inclusion of
voids and/or cracks inside the microstructure63,64. The defects
would be captured in the fGP network during the feature selection
process. The drawback to this process is that the network training

R. Saunders et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    81 



can no longer be done on a per grain basis and must be done on a
whole RVE basis to capture defect distributions.
As mentioned, the framework developed here is not limited to

GP-based methods, but GP models have the benefit of being well
studied and easily modified. The extension of a standard GP to the
fGP shown in section was straightforward and other modifications
such as extensions to multiple outputs, incorporating multiple
fidelity data, and utilizing sparse methods for “big data”65,66 can
be incorporated into the fGP. The extension of the fGP to
incorporate multiple fidelity data could allow for both fast spectral
methods and traditional slower non-spectral methods to be used
simultaneously in the data generation and training processes.
Sparse methods are the most immediately relevant extension to
the problem at hand where training the fGP on thousands of
grains using full rank methods becomes intractable, especially
considering many of the grains from different microstructures
have similar input–output pairs and contribute no new informa-
tion to the fGPs.
Modifications to the input and outputs of the network could

enhance the fGP network further. This work has focused on a
simple loading procedure where a single component of displace-
ment was specified, a monotonic linear loading parameter was
used, and the equivalent stress and strain were output as scalar
functions. The specification of the input to include multiple
components of displacement would be trivial and the fGP network
does not need modification to account for this. Likewise, the
specification of a generalized loading parameter is possible, as
described above, as long as the loading parameter is a real valued,
unique, continuous function. However, by specifying a nonlinear,
non-smooth, or non-monotonic parameter, difficulty in data
generation (i.e., CPFE simulation convergence) could be encoun-
tered. Incorporation of multiple displacement components and a
complex loading parameter would allow the network to capture
behavior such as loading–unloading scenarios and non-
proportional loading. While this work has focused on the scalar
functional equivalent stress and strain outputs, the fGP network
can easily be extended to include multiple functional outputs
corresponding to the six components of stress/strain, either by
training multiple independent networks or by modifying the fGP
to utilize a multivariate normality assumption. With proper
specification of the training data using combined loads (e.g.,
tension–torsion), the trained fGP network could directly emulate
the anisotropic material stiffness tensor67. The implications of this
are that Bayesian methods could be used to interrogate the
trained fGP network to determine the approximate full stiffness
tensor values (i.e. material properties).
As has been mentioned throughout this work, the fGP graphical

network has a number of potential improvements, extensions, and
applications. In addition to the improvements discussed already,
one of the first improvements needed is to retrain the network
using data with a richer feature set. In doing so, the fGP network
will be able to predict the behavior of microstructures that are
more representative of those seen in multi-layer, multi-track AM
builds rather than simple single tracks. Next, using a Bayesian
approach, the uncertainty in the fGP strain prediction can be
propagated through the fGP stress model, potentially improving
the predictive capability of the network. In the same vein, a
Bayesian approach can be used to sample the fGP network and
determine which features have the most impact on mechanical
properties (as was shown in section) and which features are most
likely to result in high stresses or strain energy densities,
potentially leading to failure. The outcome of this process will
link the structures that result in certain properties and, when
combined with a data driven process–structure model, could
result in real-time PSP linkages.

METHODS
Functional Gaussian process
A brief overview of GPs is first given before showing the extensions to a
fGP. For a complete derivation of GPs, the interested reader is directed to
the landmark work of Rasmussen and Williams68. First, let the input
variables be denoted by X ¼ ðx1; ¼ ; xnÞT and let f(⋅) be an unknown
stochastic process. A GP is a non-parametric statistical model in which f(⋅) is
to follow an n-dimensional multivariate Gaussian distribution such that,

pðf ðx1Þ; ¼ ; f ðxnÞÞ � N nðμ; kÞ; (1)

where μ is the mean vector defined by the mean function μðx iÞ ¼ μi ¼
E f ðx iÞ½ � and k is the covariance defined by the covariance function
kðx i ; x jÞ ¼ kij ¼ cov f ðx iÞ; f ðx jÞ

� �
. Now, the GP can be denoted as

f ð�Þ � GPðμð�Þ; kð�; �ÞÞ. The standard problem of nonlinear regression takes
the form

yiðx iÞ ¼ f ðx iÞ þ ϵi ; (2)

where f is as above and follows a GP, and ϵi are independent and
identically distributed Gaussian random noise with 0 mean and σ2

variance. It then follows that

y ¼ ðy1; � � � ; ynÞ
T � Nðμ;KÞ; (3)

where μ ¼ ðμ1; � � � ;μnÞT and K= kij+ σ2I, where I is the n × n identity
matrix. The assumption of Normality is crucial to the GP framework as it
allows the specification of a mean and covariance function that defines the
presumed relationship between data points. As is common in many works,
this work will assume that the mean function is 0. Furthermore, the
covariance function will take the form of a Matérn 3/2 covariance as

kðx; x0Þ ¼ η 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Xp
k¼1

θ2kðxk � x0kÞ
2

vuut
0
@

1
A exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Xp
k¼1

θ2kðxk � x0kÞ
2

vuut
0
@

1
A:

(4)

The parameters η; θ1; ¼ ; θp; σ
2

� �
make up the set of so-called hyper-

parameters, which allow “tuning” of the correlation between data points.
The estimates of these parameters can be obtained through standard
frequentist or Bayesian estimation. This work will utilize MLE throughout
for simplicity. An additional outcome of the Normality assumption is that
for a new input x*, the corresponding response is also Normally distributed
and its mean and variance can be found as

y� ¼ kðx�; XÞTK�1y;

σ2� ¼ kðx�; x�Þ � kðx�;XÞK�1kðX; x�Þ:
(5)

In the derivation above, it has been assumed that xi takes the form of a
vector with scalar components. However, the data need not be of a scalar
form and can take the form of functional data. With some modification to
the above derivation, functional data can be incorporated into the GP. For
the purposes of this work, the functional GP (fGP) will be restricted to
functional outputs only. Extensions to scalar outputs are discussed
following the derivation of the fGP.
The functional response Y(t) can be defined as an L2-continuous

stochastic process on T such that the functional regression can be
written as

YiðtÞ ¼ f ðX ið�Þ; ziÞ þ ϵiðtÞ; t 2 T ; (6)

where Xi(⋅) are now the q-dimensional functional parameters, zi now
represent p-dimensional scalar parameters, and the Gaussian noise is now
functional as well with mean zero and variance σ2ϵ . Utilizing functional
principal component analysis (fPCA), Yi(t) can be decomposed as

YiðtÞ ¼ μðtÞ þ
XJ
j¼1

βijϕjðtÞ þ ϵiðtÞ; t 2 T ; (7)

where μ(t) is the functional mean of the stochastic process, the summation
term is the decomposition of the stochastic process covariance truncated to
the first J terms, ϕj(t) are the stochastic process covariance eigenfunctions,
and βij is the jth principal component of the ith sample. The functional mean
and eigenfunctions of the previous equation do not depend on the sample i
and as such can be determined using FDA methods without the use of a GP.
Therefore, the problem of determining Yi(t) can be restated as two problems.
First, determine the mean and eigenfunctions of the stochastic process as
well as the noise variance using FDA. Second, relate the stochastic process
principal components to the input parameters. The first process relies solely
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on the response data and acts as a linear shift and scaling of the data such
that it has a zero mean. The second process can be stated as

βij ¼ gjðX ið�Þ; ziÞ þ eij; (8)

where eij � Nð0; σ2j Þ with σ2j being the Gaussian random noise variance
of the jth principal component and gj is an fGP for the jth principal
component. Following the process above for a standard GP, it can now
be stated that

βj ¼ ðβ1j ; � � � ; βnjÞT � Nð0;K jÞ; (9)

where, with slight change in notation from above, K j ¼ klmj þ σ2j I. The
covariance klmj will again take the form of a Matérn 3/2 as

kjðX; X 0; z; z0Þ ¼ ηj 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Pp
k¼1

θ2kjðzk � z0kÞ
2

s !
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Pq
k¼1

ω2
kj jjXk � X 0

k jj
2
k

s !

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Pp
k¼1

θ2kjðzk � z0kÞ
2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
Pq
k¼1

ω2
kj jjXk � X 0

k jj
2
k

s !
:

(10)

As before, the scalar term containing zk is a standard Euclidean distance
measure between data points that satisfies the properties of a metric
space. However, the functional data term containing Xk does not satisfy the
requirements for a metric space so traditional distance measures are not
sufficient. A semi-metric space is a relaxed version of a metric space and
measures of distance can be developed in that space as discussed by
Ferraty and Vieu39. This work will utilize the fPCA based semi-metric which
defines the distance between functional data as

jjX � X 0jj2r ¼
Xr
k¼1

Z
XðtÞ � X 0ðtÞ½ �νkðtÞdt

� �2

; (11)

where νk are the orthonormal eigenfunctions of the largest r eigenvalue
covariances, E XðsÞXðtÞ½ �. Further discussion and practical implementation
details are omitted here but can be found in ref. 39. Having specified the
covariance, the hyper-parameter set can be identified as fηj ; θ1j ; ¼ ;

θpj ;ω1j ; ¼ ;ωqj ; σ
2
j g for every one of the J truncated principal components.

In order to determine the predictive functional response, Y*(t), given a set
of inputs (X*(t), z*), the predictive mean, β�j , and variance, σ2�j , must be
found as

β�j ¼ kjðX�ðtÞ;XðtÞ; z�; zÞTK�1
j βj ;

σ2�j ¼ kjðX�ðtÞ;X�ðtÞ; z�; z�Þ
�kjðX�ðtÞ; XðtÞ; z�; zÞK�1

j kjðXðtÞ; X�ðtÞ; z; z�Þ:
(12)

Now, the predictive mean and variance of the functional response can
be found as

Y�ðtÞ ¼ μ̂ðtÞ þ
PJ
j¼1

β�j ϕjðtÞ;

σ2�ðtÞ ¼ σ̂2μðtÞ þ
PJ
j¼1

σ2�j ϕ2
j ðtÞ þ σ̂2ϵ ;

(13)

where σ2μðtÞ is the variance of the functional mean μ(t) and the �̂ð Þ notation
has been introduced to denote values estimated using FDA methods. As
an aside, the fGP utilized here has the capability to model any combination
of functions/scalars to functions/scalars. The derivation above has shown
function-on-function/scalar regression but one could reduce this to a case
of function-on-scalar or function by simply eliminating, respectively, the
first or second summation term in Eq. (10). Additionally, for scalar-on-
function/scalar regression, the kernel of the standard GP (Eq. (4)) can
simply be replaced by the functional kernel (Eq. (10)). The fGP is
implemented in a Python class, while the FDA methods used to determine
the functional mean and variance as well as the functional Gaussian noise
variance are implemented in Matlab.

Data generation
The crystal plasticity data in this work are based on a microstructural-
informed CPFE model developed by Saunders et al.56. The microstructure-
informed CPFE model is a phenomenological model, which has been
modified to account for grain size and aspect ratio effects. This
modification was directed specifically at capturing the non-conventional
grain morphologies seen in AM parts. A brief description of the process
used to generate, mesh, and simulate microstructures is given here but, for

brevity, theoretical aspects of the constitutive model and full implementa-
tion details are omitted and the interested reader is referred to ref. 56.
For the purpose of computational efficiency, this work utilizes a

synthetic microstructure generation method known as the CDIM57. The
CDIM is capable of generating, in a matter of minutes, RVEs with features
mimicking those seen in actual AM microstructures that can be used for
crystal plasticity simulations. In contrast, alternative methods for generat-
ing AM-like microstructures, such as cellular automata (CA) or phase field
method, can take on the order of hours or days even on high-performance
computing systems. Once generated, the RVEs are automatically imported
into Simpleware ScanIP (Synopsys, Mountain View, CA, USA) using a
Python script, run through the Simpleware Scripting interface. The script
then creates a single multi-label mask based on the greyscale information
contained in the image data. Finally an unstructured volume mesh is
generated and exported. The mesh comprises curved quadratic tetrahedral
elements generated Simpleware’s +FE Free algorithm. The density of
elements is dependent on the geometry of the structure, with more
smaller tetrahedra added where the surface requires greater representa-
tion. In regions of small or no geometric change, decimation is used to
generate larger tetrahedral elements to reduce the size of the mesh files
and so speed up simulation. The mesh settings chosen were optimized for
the simulation hardware resources available. The simulation-ready meshes
were exported in a *.inp format. Once meshed and exported, the RVE is
processed again to incorporate periodic boundary conditions, assign
constitutive model parameters, and apply the desired loading scenario.
The RVE is simulated using Abaqus/Standard (Dassault Systems, Provi-
dence, RI, USA) and the constitutive model is implemented in a user
material subroutine (UMAT).
In this work, the microstructure morphology variations are the only input

parameters being varied. Thus to generate the necessary data to train an
fGP model, the process described above must be run iteratively to
generate microstructures exhibiting a variety of different size and aspect
ratio grains. The primary inputs to the CDIM are three parameters which
describe the aspect ratio of the grains being generated. Note that RVE size
is not specified in the CDIM model and is introduced later by linearly
scaling the RVE edge lengths from 0.1 to 0.8 mm. Since the RVE is a cube,
this results in four parameters being varied. A simple Latin hypercube
sampling strategy is implemented to generate a grain size-and-aspect
ratio-space filling design.
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