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Decoding defect statistics from diffractograms via machine
learning
Cody Kunka 1, Apaar Shanker2, Elton Y. Chen1, Surya R. Kalidindi 2 and Rémi Dingreville 1✉

Diffraction techniques can powerfully and nondestructively probe materials while maintaining high resolution in both space and
time. Unfortunately, these characterizations have been limited and sometimes even erroneous due to the difficulty of decoding the
desired material information from features of the diffractograms. Currently, these features are identified non-comprehensively via
human intuition, so the resulting models can only predict a subset of the available structural information. In the present work we
show (i) how to compute machine-identified features that fully summarize a diffractogram and (ii) how to employ machine learning
to reliably connect these features to an expanded set of structural statistics. To exemplify this framework, we assessed virtual
electron diffractograms generated from atomistic simulations of irradiated copper. When based on machine-identified features
rather than human-identified features, our machine-learning model not only predicted one-point statistics (i.e. density) but also a
two-point statistic (i.e. spatial distribution) of the defect population. Hence, this work demonstrates that machine-learning models
that input machine-identified features significantly advance the state of the art for accurately and robustly decoding diffractograms.
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INTRODUCTION
Diffraction techniques can probe large volumes of material while
maintaining high resolution in both space and time1–4. Hence,
these techniques are widely used to provide structural character-
izations across a variety of scientific fields, including biology5–7,
materials science1,8,9, and polymer physics10,11. However, the
difficulty of decoding diffractograms has greatly limited their
utility12. Challenges concern both steps of the decoding process:
(i) identifying the key features in the diffractogram and then (ii)
modeling their relationships to the desired structural character-
izations. To identify key features, most studies employ a common
set of “human-identified features” (HIFs). Assessments of 2D
diffraction patterns, such as from selected area electron diffraction
(SAED), have focused on the positions, areas, and shapes of the
spots. Likewise, assessments of 1D diffraction line profiles, such as
from conventional X-ray diffraction (XRD), have focused on the
positions and widths of the peaks. Unfortunately, neither the 1D
nor the 2D HIFs was developed systematically, and they cannot
comprehensively summarize a diffractogram. Hence, models that
input HIFs can only predict a limited set of structural characteriza-
tions. As a result, models are numerous, highly empirical, and
often conflicting. For example, we recently demonstrated that
fitting two popular width models with the same XRD data yielded
opposite trends in characteristic size13.
Because of these difficulties, researchers have often supplemen-

ted their limited analysis of diffractograms with results from other
techniques, such as transmission electron microscopy14–16, thermal
measurements17–19, ultraviolet-visible absorption20,21, and atomis-
tic simulations22–26. However, if a reliable and complete decoding
strategy were available, these researchers could have efficiently
obtained the desired structural information from the diffracto-
grams alone. Machine-learning techniques could resolve this
problem, working on the assumption that the ability to input a
large number of features would more robustly link comprehensive
diffractogram features to an improved set of characterizations27–42.
For instance, several research groups recently employed

convolutional neural networks to reconstruct images from
coherent XRD37,42. Likewise, researchers recently analyzed
XRD27,36,39 and SAED31,38 via machine-learning techniques in
order to identify crystallography and phase transformation. In the
current study, we focus on the ability of machine-learning models
to interpret defect statistics from diffraction data.
To enable complete decoding, the current work systematically

demonstrates (i) how to compute machine-identified features
(MIFs) that fully summarize a 2D diffraction pattern and (ii) how to
employ machine learning to reliably connect these features to an
expanded set of structural characterizations. For instructional
purposes, we examined virtual SAED patterns produced from
atomistic simulations of irradiated copper. This simulation-based
approach bypassed experimental complications, such as dynamic
diffraction conditions, enabling a 1:1 comparison between diffrac-
togram features and defect statistics. We chose irradiation damage
as an exemplar because it provided a “defect laboratory” that
offered numerous defect statistics to be related to the diffractogram
features. We chose SAED specifically because it exemplified 2D
diffraction patterns, which contain more information than 1D
diffraction line profiles (as is common in conventional XRD).
However, 2D diffraction patterns could also be constructed for
XRD4, so our findings would apply to that as well.
As summarized in Fig. 1, we first characterized defect statistics

of the irradiated microstructures to serve as evaluation metrics (i.e.
outputs) for our models. We computed one-point statistics (i.e.
point-defect density and dislocation density) as is common in
diffraction studies. We also computed a two-point statistic (i.e. the
pair-correlation function (PCF) of the point-defect distribution) to
demonstrate that diffractogram decoding could be extended. A
two-point statistic effectively captures all of the information of the
corresponding one-point statistic while adding higher-order
information. Our particular two-point statistic captured both the
density and the spatial distribution of the point defects. To
produce the inputs for our models, we characterized the virtual
SAED patterns in two ways. For HIFs, we tracked the area,
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perimeter, eccentricity, and position for each family of diffracted
spots. For MIFs, we simply computed the principal components of
the SAED patterns. Finally, we used Gaussian Process Regression
to construct a “human model” from the HIFs and a “machine
model” from the MIFs. Both machine-learning models captured
the one-point statistics, but only the machine model (which used
MIFs to characterize the virtual SAED patterns) captured the two-
point statistic. Therefore, our results demonstrate how to decode
advanced structural information unavailable to conventional
diffractogram decoding.

RESULTS
This study comprised three major parts: (i) simulation of irradiated
microstructures to provide defect statistics, (ii) simulation of SAED
patterns to provide HIFs and MIFs, and (iii) construction of
machine-learning models to decode defect statistics from the HIFs
and MIFs. The Methods section provides further technical details
on each step.

Choosing defect statistics
To understand the defect statistics generated from our atomistic
simulations, we first examined the defect mechanisms as a
function of the number of irradiation events, which we iteratively
introduced over time. We observed two primary stages in the
evolution of point defects (e.g., Fig. 2a, b) and dislocations (e.g.,
Fig. 2c, d). In the first stage (S1), small clusters of point defects and
small dislocation loops rapidly accumulated in a mostly isolated
fashion. In the second stage (S2), the microstructures reached a
saturation point for both types of defects. Hence, isolated clusters
and small dislocation loops tended to coalesce into more complex
defect structures. In both stages, the predominant types of

dislocations were Shockley dislocations (i.e. 1/6〈112〉) and stair-
rod dislocations (i.e. 1/6〈100〉 and 1/3〈100〉). The former tended to
comprise complex networks of dislocation loops while the latter
mainly were present within stacking-fault tetrahedra.
Figure 3a, b quantify our one-point statistics: point-defect

density and dislocation density, respectively. In the accumulation
stage (S1), both densities sharply increased with the number of
irradiation events. Due to the sparse distribution of defects,
interactions between neighboring defect clusters and between
neighboring dislocation loops were infrequent. However, as the
system saturated with defects in the saturation stage (S2), the
likelihood of defect interaction increased significantly, and defects
tended to coalesce or annihilate rather than nucleate. Note that
the point-defect density and the dislocation density followed a
nearly identical trend, which suggests that these types of defects
were physically coupled, as previously observed43. Further, Fig. 3b
shows that the major constituent dislocations (i.e. Shockley and
stair-rod) followed a trend nearly identical to that of the total
dislocations.
Figure 3c plots our two-point statistic of the irradiation damage:

the PCF of the point-defect distribution. Because of the radial
averaging, each PCF curve represents the correlation between
point defects as a function of their separation distance. For
explanation purposes, imagine a random reference point defect.
The PCF then reveals the probability of finding another defect at a
specified distance away from that reference defect. As the number
of irradiation events increased, so did the point-defect density and
correspondingly the PCF between 0 (blue) and 38k (red) events.
Now consider the general trend in each PCF curve in Fig. 3c: a
rapid decrease within region R1, a transition within region R2, and
finally a flatline throughout region R3. In R1, the PCF sampled the
separation distances of defects within close proximity (i.e. within

Fig. 1 Overview of the process for producing the inputs (i.e. SAED features) and the outputs (i.e. defect statistics) for the two machine-
learning models (i.e. the human model and the machine model). Atomistic representations visualized via OVITO63. SAED pattern visualized
via ParaView64.
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small defect clusters). Because the curves were nearly identical in
this region, most defect clusters must have contained similar core
structures. In R3, the PCF sampled defects that were separated by
large distances, usually between separate clusters or within very
large clusters. Therefore, the PCF successfully captured the
characteristic spacing both within defect clusters (largely in R1)
and among defect clusters (largely in R3). Overall, the evolution of
the one-point statistics (Fig. 3a, b) and the two-point statistic
(Fig. 3c) demonstrated that the accumulation of defects was not a
simple matter of density but rather a complex evolution resulting
from two competing processes.
To facilitate model construction, we performed principal

component analysis (PCA) on the PCF to reduce its dimensionality.
Figure 3d shows that the first two principal components (i.e. PCF1
and PCF2) accounted for 93.5% and 6.3% of the variation in the
PCF, respectively. Because these components effectively summar-
ized the point-defect distribution, we selected them as our final
evaluation metrics. By definition, these principal components are
orthogonal, so each one captures a unique aspect of the PCF.
Further, these components resulted from a linear transformation,
so we evaluated the linear correlation of each component to the
overall PCF to evaluate the utility of each component (Fig. 3e).
Because PCF1 and PCF2 had significant Pearson linear-correlation
coefficients in R1 and R2, both components must be modeled to
capture the short-range order within clusters. In contrast, only
PCF1 was significant in R3, so only PCF1 would be needed for
modeling the long-range order among isolated clusters and within
large clusters.
Figure 3f summarizes the four defect statistics that ultimately

served as outputs for our machine-learning models: point-defect
density, dislocation density, PCF1, and PCF2. To compare these
statistics, we transformed them into Z-scores by shifting each data

point by the corresponding mean and normalizing by the
corresponding standard deviation. Hence, each Z-score represents
the number of standard deviations that each point deviated from
the mean. Interestingly, the total defect density, total dislocation
density, and PCF1 exhibited strong linear correlations (with linear-
correlation coefficients above 0.97). These results confirm that the
point defects were physically coupled with the dislocations. As for
PCF1, recall that this principal component had a significant
correlation coefficient with the PCF for a broad range of
correlation lengths (Fig. 3e). If PCF1 can well capture the defect
distribution, then it should certainly well capture the defect
density. In contrast, PCF2 correlated with a much smaller range of
correlation length and exhibited a different trend in Fig. 3f.

Identifying key SAED features
Now consider the SAED patterns simulated from the irradiated
microstructures. Figure 4a–d presents the Z-scores for the HIFs of
the SAED patterns: area, perimeter, eccentricity, and position for
the first two families of diffracted spots. The spot areas (Fig. 4a)
followed a nearly identical trend as the point-defect (Fig. 3a) and
dislocation densities (Fig. 3b) because defects generally smear a
diffraction pattern by interrupting the interferences that would
otherwise yield small spots. The spot perimeters (Fig. 4b) followed
a similar trend as the spot areas because the spots almost
uniformly broadened, as evidenced by the lightly oscillating
values of the eccentricity (Fig. 4c). The spot positions (Fig. 4d) also
jumped in S1 (i.e. toward the center of the SAED pattern) but then
oscillated much more than the area or the perimeter in S2. The
position of a spot indicates the length of the diffraction vector in
reciprocal space and therefore the corresponding interplanar
separation in real space. As defects accumulated and wedged
themselves among the crystallographic planes, the planes

Fig. 2 Evolution of point defects and dislocations. Representative snapshots of a and b: point defects and c and d: dislocations in the 4-
million-atom simulation cell within the two different stages of damage. In stage 1 (S1), the microstructures experienced a rapid accumulation
of point defects and dislocations in a largely isolated fashion. In stage 2 (S2), the microstructures experienced a saturation point and mainly
exhibited the coalescence of pre-existing defects into complex defect structures.
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expanded, so the spots moved inward. However, as the system
saturated, defect annihilation and defect coalescence sometimes
reduced the strain to allow the planes to approach their original
positions. But then new defects would accumulate and induce
strain again, hence the oscillation of the position curves.
Given the similarities in the trends of the areas and perimeters,

we produced independent inputs for the human model by
performing PCA on the set of 8 HIFs. If we had not ensured
independent inputs, the human model would have been
susceptible to overfitting error. As shown by Fig. 4e, the first
principal component (HIF1) accounted for 98.6% of the variability
in the HIFs, and the second (HIF2) captured the remaining 1.4%.
Predictably, the trend in the dominant HIF1 resembled that of the
point defects, dislocations, and PCF1. In contrast, HIF2 exhibited a
fairly unique trend, which could be helpful in modeling the elusive
PCF2. Regardless, we replaced the 8 individual HIFs with HIF1 and
HIF2 as inputs for our human model because these principal
components captured the same structural information but in an
independent fashion.
To contrast the HIFs and produce the inputs for the machine

model, we directly computed the 76 principal components of the
76 pre-processed SAED images to serve as MIFs. Interestingly, the
distribution of these principal components was far more spread
out than in the HIF analyses. For example, the first two principal
components accounted for 99.8% of the PCF (Fig. 3d) and 99.95%
of the HIFs (Fig. 4e) but only 46% of the SAED patterns (Fig. 4g). In
fact, the first 15 components accounted for only ≈70% of the
variability of the SAED patterns. Fortunately, we only needed to
capture the SAED variability resulting from the salient defects.
Further, because MIF1 (Fig. 4h) alone highly correlated with the
point-defect density, total dislocation density, and PCF1, there

were many more MIFs available to capture the elusive PCF2. As
explained in the next subsection, we used correlation coefficients
to downselect which MIFs to include in the machine model
because selecting too many MIFs would risk error via overfitting.

Modeling defect statistics from SAED features
For the human model, we had two obvious inputs: HIF1 and HIF2.
These two principal components effectively summarized the
evolution in the area, perimeter, eccentricity, and position for
the first two families of SAED spots. As shown by Table 1, HIF1 had
a strong, linear correlation with the point-defect density,
dislocation density, and PCF1. Hence, the human model would
certainly capture these defect statistics. In contrast, neither HIF1
nor HIF2 had a strong linear correlation with PCF2, which related to
the close-range order of the point-defect distribution. Surprisingly,
several of the individual HIFs fared better. For example, the
eccentricity for {200} had a correlation coefficient of 0.28 for PCF2
in comparison to the 0.02 and 0.06 of HIF1 and HIF2, respectively.
Recall that the principal components of the HIFs captured 99% of
the variation of the individual HIFs, including the eccentricity for
{200}. Therefore, we deduced that the relationship between the
HIFs and the PCF2 was likely non-linear if present. In this case, a
non-linear human model (e.g., based on Gaussian Process
Regression) could potentially still predict PCF2.
In contrast to the two obvious selections for inputs in the

human model, we had numerous significant MIFs available for the
machine model (recall Fig. 4g). To increase the likelihood of
convergence and decrease the likelihood of overfitting error, we
downselected to MIFs that had high linear correlation coefficients
with the desired defect statistics. This feature-selection technique
can obscure non-linear relationships but is a common first

Fig. 3 Defect statistics to be used as outputs in the machine-learning models. Raw defect statistics for a point-defect density, b dislocation
density, and c pair-correlation function (PCF) of the point-defect distribution. d PCF variation captured by its principal components (PCFi).
e Linear-correlation coefficient for PCF1 and PCF2 with the overall PCF. f Total point defects, total dislocation density, PCF1, and PCF2.
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approach within the machine-learning community. For the current
work, we simply desired a proof of concept, around which a fully
optimized model could later be conceived. As with HIF1, MIF1 had
a strong linear correlation with point-defect density, total
dislocation density, and PCF1. Hence, we chose to model these
defect statistics by using only the first three MIFs. Overfitting was
unlikely with just three inputs, and the additional 2 MIFs might
have been useful in a non-linear fashion. As for PCF2, we noted
that several higher MIFs had significant linear correlation
coefficients, so we used the first 12 MIFs to model this defect
statistic.
Figure 5 provides parity plots that reveal how effectively both

machine-learning models decoded the four desired defect
statistics from the chosen SAED features. Predictably, both the
human model and the machine model captured the following
defect statistics that exhibited strong linear correlations with SAED
features: point-defect density, dislocation density, and PCF1
(Fig. 5a–f). However, only the machine model captured PCF2,
which must have been non-linearly correlated with MIFs (Fig. 5g, h).

This difference in performance for predicting the two-point
statistic (particularly at short-range order) indicated that SAED
patterns contain non-trivial fingerprints beyond human
recognition.

DISCUSSION
By connecting features of virtual SAED patterns to a variety of
defect statistics from irradiated microstructures, this work
demonstrates the power of machine learning in decoding 2D
diffractograms. Specifically, we constructed a “human model” that
inputs HIFs and a “machine model” that inputs MIFs. Both models
were based on the same machine-learning algorithm, so
performance differences were solely due to the inputs. The
human model certainly had the advantage in the interpretability
of its inputs and captured the one-point statistics (i.e. point-defect
density and total dislocation density). However, the HIFs
incompletely assessed the SAED patterns, so the human model
failed to capture the two-point statistic (i.e. PCF of the point-defect

Fig. 4 SAED features to be used as inputs to the machine-learning models. Human-identified features (HIFs), comprise a area, b perimeter,
c eccentricity, and d position for the first two families of SAED spots. e Variation of the HIFs captured by the principal components of the HIFs
(i.e. HIFi). f The first two principal components of the HIFs (i.e. HIF1 and HIF2). g Variation of the SAED patterns captured by their principal
components, which were also called the “machine-identified features” (MIFs). h The first four MIFs. When plotted against irradiation events, the
principal components were negated in order to enhance the inspection of trends.
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distribution). In contrast, by incorporating features beyond human
recognition, the machine model captured all of the evaluated
defect statistics. The MIFs of the machine model resulted from the
comprehensive, direct analysis of the full SAED patterns, so
avoiding feature-selection bias was much easier than with the
HIFs. Further, our MIFs were independent by definition, so it was
easier to avoid overfitting errors with MIFs than with the often-
correlated HIFs.
Even as proofs of concept, both of our models more accurately

and more comprehensively decoded diffractograms than traditional
approaches would. However, our framework could be readily
enhanced even further in both steps of the decoding process.
Regarding the identification of diffractogram features, we could
have expanded the types of inputs. For example, we could have
incorporated SAED patterns with other zone axes and/or added
space-group information44. Instead of identifying MIFs via PCA, we
could have used texture/shape statistics45,46, training autoencoders,
generative neural networks, or transfer learning (from pre-trained
convolutional neural networks). Regarding the model building, we
could have optimized feature selection and/or evaluated other
machine-learning algorithms. For example, we could have con-
sidered other combinations of principal components for our
machine model. As for the machine-learning algorithm itself, we
successfully used Gaussian Process Regression to capture both
linear relationships and non-linear relationships within a relatively

small dataset. Alternatively, we could have evaluated the effective-
ness of a variety of other algorithms, including support vector
machines, random forests, and k-nearest neighbors.
Going forward, we note that our framework could be extended

to other structural statistics, other loading conditions, other
materials, and other diffraction techniques. In the current work,
we assessed point defects and dislocations in irradiated copper via
electron diffraction, but the same methods could also be applied
to, for example, disclinations of a fatigued ceramic probed with
hard X-rays. Further, the machine-learning models did not have to
be built exclusively on simulation-based data. We chose to
illustrate our concept via simulation in order to establish
comprehensive defect statistics to serve as ground truths for
model evaluation. However, experimental data could have been
used to explore nuanced effects, such as dynamic diffraction and
complex loading conditions within larger systems.

METHODS
Accelerated irradiation simulations
We used the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)47 (which is an open-source, molecular-dynamics code) with the
reduced-order atomistic cascade method (ROAC)48 to simulate radiation
damage in copper. Instead of expensively simulating a series of consecutive
cascades initiated by primary-knock-on atoms (PKA), the ROAC method
simultaneously simulates multiple cascades at once by approximating
collision cascades as randomly-located, core–shell regions, provided that
the core regions do not overlap. The shells capture the long-range,
athermal, recombination-corrected displacements per atom, and the cores
capture the short-range, thermal-spike-induced replacements per atom49.
Depending on the number of atoms and the energy of the recoil spectrum,
the ROAC method can model irradiation events 10,000 times faster than
consecutive PKA simulations48. Hence, we were able to simulate a large
number of irradiation events to produce complex defect structures.
Specifically, we introduced a total of 38,000 irradiation events of 1 MeV
copper ions (500 recoil events were inserted every 20 ps, resulting in 76
unique defect structures) into a fully periodic, 4-million-atom copper
sample at room temperature (300 K). We modeled the interatomic
interactions with an embedded-atom-method potential that incorporated
both nuclear stopping50 and electronic stopping51,52. We calibrated the
core–shell structures for a broad range of recoil energies by performing
consecutive PKA simulations in bulk copper48 and then incorporating these
results into an extension of the Norgett-Robinson-Torrens DPA model49.

Defect characterizations
For each irradiated structure, we identified the point defects via polyhedral
template matching53. Using this technique, we compared the local
neighborhood of each atom with that of a pristine face-centered-cubic
crystal. Atoms that deviated by at least 0.1Å were considered defects. We
also identified the dislocations (i.e. line defects) via the dislocation analysis
algorithm in OVITO54. We considered Shockley partials (i.e. 1/6〈112〉), stair-
rods (i.e. 1/6〈100〉 and 1/3〈100〉), and others. To characterize the
morphology of the irradiation damage, we computed the PCF55,56 from
a voxelized representation of the point-defect distribution. This approach
had a similar effect as computing a radial distribution function on the
discrete data and then performing a smoothing57. For the voxelization,
each atom not in its lattice position was assigned a spherical volume with a
3-Å radius (which was slightly larger than the first nearest-neighbor
distance), and then overlapping volumes were combined. The autocorrela-
tion function was computed on this continuous domain and radially
averaged to produce the PCF. Because of the high dimensionality of this
two-point statistic, we performed PCA on the PCF via sci-kit learn58.

Electron diffraction simulations
For each irradiated structure, we produced a virtual SAED pattern by
employing the LAMMPS user-diffraction package59,60. This package
computes kinematic electron diffractograms directly from atomistic
simulations without prior knowledge of the underlying crystal structure.
This package had already been successfully used to detail displacement-
cascade formation in a prior study51. We simulated SAED patterns along
the 100½ � zone axis with an incident electron wavelength of 0.0251Å,

Table 1. Pearson linear-correlation coefficients of the (top 10 rows)
human-identified features (HIFs) and (bottom 15 rows) machine-
identified features (MIFs) with the desired defect statistics (i.e., point-
defect density, dislocation density, and the first two principal
components of the pair-correlation function (PCF) of the point-defect
distribution).

SAED feature Point defects Dislocations PCF1 PCF2

HIF1 0.96 0.96 0.97 0.02

HIF2 0.14 0.18 0.13 0.06

AREA200 0.97 0.97 0.97 0.03

AREA220 0.95 0.94 0.95 0.01

PERIMETER200 0.88 0.88 0.88 0.13

PERIMETER220 0.81 0.81 0.82 0.09

ECCENTRICITY200 0.76 0.76 0.77 0.28

ECCENTRICITY220 0.34 0.34 0.34 0.07

POSITION200 0.70 0.71 0.72 0.18

POSITION220 0.52 0.50 0.53 0.10

MIF1 0.98 0.98 0.99 0.03

MIF2 0.02 0.02 0.04 0.19

MIF3 0.02 0.00 0.00 0.36

MIF4 0.07 0.01 0.04 0.57

MIF5 0.01 0.05 0.01 0.05

MIF6 0.05 0.07 0.05 0.09

MIF7 0.09 0.01 0.07 0.12

MIF8 0.03 0.01 0.02 0.27

MIF9 0.05 0.05 0.05 0.09

MIF10 0.01 0.05 0.02 0.31

MIF11 0.03 0.01 0.03 0.21

MIF12 0.03 0.06 0.03 0.31

MIF13 0.03 0.02 0.03 0.03

MIF14 0.05 0.04 0.04 0.02

MIF15 0.01 0.03 0.01 0.09

Note that a low coefficient merely indicates the lack of a linear relationship
not the lack of any relationship.
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which corresponded to a 200-keV electron beam. To ensure that the
reciprocal space in the SAED patterns was sufficiently sampled and to
increase the likelihood that the Bragg condition was satisfied, we used a
reciprocal lattice spacing of 0.001Å−1 with an Ewald sphere thickness of
0.005Å−1. The maximum region of reciprocal space explored was limited
to 1.25Å−1 in order to capture the diffracted spots corresponding to the
two most dominant families of planes.

Diffractogram characterizations
To prepare each SAED pattern for characterization, we performed a series
of preprocessing steps. First, we applied both a base-10 logarithmic
transformation and a square crop to emphasize the intensities of the spots
from the two most dominant families of planes (i.e. {200} and {220}). Then
we smoothed the intensity map with a Gaussian blur to ease feature
identification. Finally, we removed the direct central spot (which cannot be
measured experimentally) and lessened the impact of relrods (which are
more prominent in simulation than in experiment) by applying a fixed
mask. We constructed this mask by fitting circular regions to the centroids
of the diffracted spots in the SAED pattern of the non-irradiated copper.
After preprocessing, we characterized the diffractograms. For the HIFs,

we identified the diffraction spots (by constructing a binary map via

thresholding at 5% of the maximum intensity) to compute the area,
perimeter, position (via its centroid), and eccentricity (via sci-kit image61)
for each spot. Averaging these values across each of the two families of
spots yielded a total of eight HIFs per SAED pattern. Incorporating
correlated inputs into a model would have complicated its convergence
and risked its accuracy, so we performed PCA on the full set of HIFs. The
resulting principal components would ultimately serve as the inputs to the
human model. For the MIFs, we simply performed PCA directly on the pre-
processed SAED patterns. As compared to the human-based approach, this
machine-based approach was more straightforward and therefore more
robust. For example, there is no need to determine which features to
characterize, which threshold to use, or how to ensure feature
independence. However, we did need to downselect MIFs to avoid
overfitting. As detailed in the Results section, we used the Pearson linear
correlation coefficient to inform our feature selection.

Model construction
We used Gaussian Process Regression as implemented in sci-kit learn58,62

to link the SAED features to the desired defect statistics. This nonpara-
metric, Bayesian approach was chosen for its ability to capture non-linear
relationships in relatively low amounts of data. The dataset comprised

Fig. 5 Parity plots for the human model (left column) and machine model (right column). Evaluated metrics are the Z-scores for the
following: total point-defect density (a and b), total dislocation density (c and d), and the first two principal components of the pair-correlation
function (PCF) of the point-defect distribution (e–h). The black line is the y= x reference. The Pearson correlation coefficient (CORR), root-
mean-squared error (ERROR), and standard deviation (STDEV) as compared to that reference line are provided.

C. Kunka et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    67 



SAED features (HIFs and MIFs) and their corresponding defect-statistic
labels. To construct both the human model and the machine model and to
compute their error distributions, we used a radial basis function kernel,
which encodes for smoothness of functions (such that the similarity of
inputs corresponds to similarity of outputs). This kernel has two hyper-
parameters: a signal variance and a density scale. We tuned these hyper-
parameters by maximizing the log marginal likelihood of the training data
while using a gradient-based optimizer for efficiency. Because the log
marginal likelihood was not necessarily convex, multiple restarts of the
optimizer with different initializations were used. We used k-fold cross
validation across 50 data splits (80% training and 20% testing).
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