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Computational high-throughput screening of alloy
nanoclusters for electrocatalytic hydrogen evolution
Xinnan Mao1, Lu Wang 1✉, Yafeng Xu1, Pengju Wang2, Youyong Li 1,3✉ and Jijun Zhao 2✉

Here, we report a density functional theory (DFT)-based high-throughput screening method to successfully identify a type of alloy
nanoclusters as the electrocatalyst for hydrogen evolution reaction (HER). Totally 7924 candidates of Cu-based alloy clusters of Cu55-
nMn (M= Co, Ni, Ru, and Rh) are optimized and evaluated to screening for the promising catalysts. By comparing different structural
patterns, Cu-based alloy clusters prefer the core–shell structures with the dopant metal in the core and Cu as the shell atoms.
Generally speaking, the HER performance of the Cu-based nanoclusters can be significantly improved by doping transition metals,
and the active sites are the bridge sites and three-fold sites on the outer-shell Cu atoms. Considering the structural stability and the
electrochemical activity, core–shell CuNi alloy clusters are suggested to be the superior electrocatalyst for hydrogen evolution. A
descriptor composing of surface charge is proposed to efficiently evaluate the HER activity of the alloy clusters supported by the
DFT calculations and machine-learning techniques. Our screening strategy could accelerate the pace of discovery for promising HER
electrocatalysts using metal alloy nanoclusters.
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INTRODUCTION
Energy and environmental issues raise imperative demands on the
sustainable development of energy. At present, a promising
strategy is to produce renewable energy through electrochemi-
cally catalytic reactions, which convert some common materials,
such as water, carbon dioxide, and nitrogen, into energy carriers.
The electrocatalytic hydrogen evolution is one of the most
important ways to achieve this goal, which is a critical reaction for
a variety of electrochemical processes and has been applied in
diverse applications such as hydrogen fuel cells, electrodeposition,
corrosion of metals in acids, and energy storage using H2 medium.
For the hydrogen evolution reaction (HER), choosing an appro-
priate electrocatalyst is most crucial to achieve high efficiency.
Precious metals such as platinum are recognized as the best
catalysts for electrochemical HER with intrinsically good activity
but high cost1–4. Compared to conventional bulk electrocatalysts,
nanomaterials could exhibit even more superior performance as
benefited from the rapid development of nanoscience and
nanotechnology5–7.
Nanoclusters, consisting of a few tens to a few thousands of

atoms, exhibit the distinctive optical, electronic, magnetic, and
chemical properties definitely different from the bulk materials8,9.
Metal clusters have received long-lasting attention owing to their
potential applications in catalysis10–12. As known, the catalytic
reactions always occur on the surface of catalysts, thus a
significant proportion of atoms in the bulk materials cannot be
effectively utilized in the catalytic process. The nanoclusters
possess compelling advantages like high surface-to-volume ratio
and more surface-exposed atoms. In addition, it is possible to
increase the activity and selectivity in a catalytic process by
carefully controlling the size and structure of metal nanoclusters8.
As an alternative to the precious metals like Pt and Pd with high
expenses and low resources, the alloy nanoclusters prepared by

mixing two or more metal components have been successfully
synthesized and display better catalytic activity due to the
synergistic effects9,13–15, which could replace or reduce the
loading of the precious metals as the efficient electrocatalysts.
The formation of core–shell or intermixed nanostructures results
in superior catalytic properties with regard to one of the
components, such as NiPt, CoPt, CuPd nanoparticles.
For the equilibrium structures of bimetallic alloy nanoclusters,

there are four types of geometric patterns9,16. The first one is
core–shell structure, where a core of one type of metal atoms is
surrounded by a shell of the other kind of metal atoms. The
second one is a segregated structure, where two types of metal
atoms are separated by distinct boundary. The third one is
homogeneously mixed structure with the two metal atoms are
distributed in an atomically ordered or a statistically random
manner. The fourth one is “onion-like” structure with more than
one concentric shell covering the metal core. Among them, the
core–shell alloy clusters have received increasing attention since
their catalytic activities could be efficiently tuned by controlling
the compositions of core and shell atoms.
In order to develop low-cost and environmentally benign HER

catalysts to substitute the precious metals, here we performed
high-throughput density functional theory (DFT) computations of
Cu-based alloy nanoclusters and screened for the promising HER
electrocatalysts. Among a total number of 7924 candidate
structures, the most stable structures for Cu55-nMn (M= Co, Ni,
Ru and Rh, and n ≤ 22) nanoclusters adopt the core–shell
configurations with Cu as the shell atoms. To avoid the heavy
computations, a descriptor has been established to evaluate the
HER activity on the nanoclusters, and by training a machine-
learning neutral network with a large DFT database, we have
achieved a quick and accurate prediction of the hydrogen
adsorption free energies on the nanoclusters surface.
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RESULTS AND DISCUSSION
As an earth-abundant and inexpensive metal, copper has been
widely used in some electrocatalytic reactions. Previously, Nørskov
and co-workers17 have calculated the free energies of hydrogen
adsorption on a variety of metal alloy surfaces and evaluated their
HER activities. Taking Cu as the host metal, four transition metal
dopants (i.e., Co, Ni, Ru, and Rh) in the Cu surface are shown to
exhibit superior hydrogen evolution activities. Thus, we choose a
medium-sized Cu55 nanocluster (with a diameter of about 1 nm) as
the initial structure, and randomly substitute the transition metals
for Cu atoms to form binary alloy nanoclusters and screening for
the high-efficient HER catalysts. The high-throughput computa-
tional workflow is shown in Fig. 1. First, given an initial cluster
structure and the doping concentration, the possible doped
cluster structures are generated and optimized by DFT calcula-
tions. After the stable cluster structures are obtained, the surface-
active sites are enumerated and then considered for the H
adsorption. Together with the contributions of zero-point energy
and entropy, the H adsorption free energies are calculated to
identify the optimal active sites and search for the promising HER
catalysts.

Geometric structures
For pure Cu55 cluster, the lowest-energy structure is found to be a
three-layer icosahedron with Ih symmetry18. To achieve the low-
cost catalysts, it is preferred to contain less precious metals in the
catalysts. As the host metal of Cu is remarkably less expensive, the
dopant noble metal is the less the better. Here we have
considered the dopant concentration is less than half. Firstly,
three ratios of the Cu-based alloy nanoclusters of Cu55-nMn are
considered to explore their structures and growth patterns, where
M represents Co, Ni, Ru, and Rh, and n= 7, 13, and 16. By
eliminating duplicate individuals using the nearest neighbor
matrix method19, we have obtained totally 6020 configurations
for these 12 alloy clusters for further geometric optimization.
As mentioned earlier, there are four kinds of structures for the

bimetallic alloy clusters. In order to describe the geometric
distributions of Cu and dopant metal atoms, we define the
average radial distance (Dradial, M) between the transition metal
atoms (M= Co, Ni, Ru, and Rh) and the center atom by the
following formula:

Dradial;M ¼ Pn
i¼1

ri�rcj j
n (1)

where |ri – rc| indicates the radial distance from the ith metal atom
to the center atom, and n is the number of transition metal dopant
atoms. In the case of the icosahedral Cu55-nMn clusters, as the
Dradial, M value becomes smaller, the dopant atoms distribute
closer to the core region, and vice versa. The excess energies (E�exc)
for Cu55-nMn alloy clusters as a function of the average radial
distance of the dopant metal atoms to the core atom are plotted
in Fig. 2. These four plots for different transition metal dopants
display nearly identical trends. By definition, the lower excess
energy indicates a more stable cluster structure. The structures in
the left lower quadrant possess relatively lower excess energies,
which are the core–shell structures with the core of dopant metal
atoms surrounded by the shell of Cu atoms, independent of the
doping concentration.
We take Cu42M13 as the representative to illustrate the detailed

structural patterns. For the icosahedral structure, the central atom
could be either Cu or M. We have systematically compared these
two types of core–shell structures together with the other possible
structural patterns (homogenous and segregated structures). The
excess energies as a function of the average radial distance of the
M atoms to the central atom are summarized in Fig. 3. A linear
relationship exists between excess energies and Dradial, M for
Cu42M13 clusters, and the difference of the central atom (Cu or M)
causes a slightly different slope. Among four types of Cu-based
alloy clusters, Cu43Ni13 clusters exhibit the smallest difference
between the Cu-center and Ni-center structural patterns, as the
two fitting lines almost coincide with each other. This indicates the
energy differences between Ni-center and Cu-center structures
are very small. In contrast, the two fitting lines for Cu-center and
Rh-center structures show relatively big difference. According to
previous discussions on alloy nanoclusters9, as the alloy bond
strength is greater, intimate mixing is favored. If the bond strength
is lower, segregation of the two metal components is favored; the
metal atoms with lower surface energy tend to move to the
surface of alloy cluster to form a shell, like Cu.
Before discussing the catalysts for HER, we examine the

structural stability of these 55-atom alloy clusters. To confirm
the stability of the core–shell structures, we have constructed
totally 7924 structures for the Cu55-nMn clusters with n from 1 to
22, corresponding to the dopant concentrations ranging from
1.8% to 40.0%, and the most stable cluster structures are shown in
Supplementary Figs 1–4. The excess energies of structures for
each dopant concentration are plotted in Fig. 4. As shown, the
CuNi alloy clusters are energetically favorable than the other alloy
clusters, that is to say, Ni doping into Cu clusters is most
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Fig. 1 Workflow of high-throughput screening. The workflow of computational high-throughput screening of HER electrocatalysts on metal
alloy nanoclusters.
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Fig. 3 Energies and structural patterns for Cu42M13 clusters. The excess energies (E�exc) for (a) Cu42Co13, (b) Cu42Ni13, (c) Cu42Ru13, and (d)
Cu42Rh13 alloy clusters as a function of the average radial distance (Dradial, M) between the dopant metal atoms and the central atom. The
core–shell structure and the segregated structure are illustrated.

Fig. 2 Energies and structural patterns for alloy clusters. The excess energies (E�exc) for (a) Cu55-nCon, (b) Cu55-nNin, (c) Cu55-nRun, and (d) Cu55-
nRhn alloy clusters with n= 7, 13, and 16 as a function of the average radial distance (Dradial, M) between the dopant metal atoms and the
center atom. The insets show the lowest-energy configurations.
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thermodynamically favorable compared to the other metal
doping. Doping Co into Cu clusters leads to the second low-
energy alloy clusters. The Ru and Rh doped Cu clusters are not as
stable as Co and Ni, which may be attributed to the relatively
larger volume expansion of the alloy clusters (the covalent radii of
Ru and Rh atoms are 1.46 Å and 1.42 Å, respectively, larger than
that of Cu atom with 1.32 Å). The diameter of the pure Cu55
clusters is 9.606 Å. Taking Cu33M22 cluster as an example, the
equilibrium diameters for Cu33Co22, Cu33Ni22, Cu33Ru22, and
Cu33Rh22 clusters are 9.489 Å, 9.548 Å, 9.939 Å, and 10.058 Å,
respectively. The Ru and Rh doping into the Cu clusters result in
the largest volume expansion to increase energy. Therefore,
doping Ni into Cu clusters is most feasible to form the CuNi alloy
clusters in experiments, compared to the other alloy clusters
considered here.
For the icosahedral core–shell structures of the Cu55-nMn

clusters, the outer shell consists of 42 atoms distributed in two
different sites, i.e., 30 atoms at the edge sites and 12 atoms at the
vertex sites. Meanwhile, there are 13 atoms in the core region.
When the number of dopant metal atoms is less than 13, the
dopants prefer to occupy the core positions, and the Cu atoms
tend to stay on the outer shell. As the dopant concentration
increases (n > 13), Co, Ni, and Rh atoms start to occupy the edge
sites on the shell, while Ru atoms seem to prefer both sites. For the
Cu55-nNin clusters with dopant concentration of 13 < nNi ≤ 19, Ni
atoms are distributed dispersedly and symmetrically on edge sites;
but when nNi > 19, Ni atoms prefer to form small island on the
cluster surface. Our results have demonstrated that, the most
stable structural pattern of the Cu55-nMn clusters (M = Co, Ni, Ru,
and Rh) is the core–shell structure, in which the dopant metal
atoms occupy the core and the Cu atoms are distributed as the
shell. It is really important to consider the structural evolution of
the 55-atom clusters with high concentration doping. To this
point, we have compared our icosahedron structures to another
typical cuboctahedron structures. Because the structural evolution

is more possible to occur in the high doping concentration, here
we have investigated the Cu33M22 (M = Co, Ni, Ru, and Rh)
clusters, which is the largest doping concentration considered in
our work. Upon structural optimization (40 structures for each
dopant), most of the cuboctahedron structures are reconstructed
and transformed into icosahedron structures. The total energies of
the low-energy cuboctahedron structures with different mixing
patterns are summarized in Supplementary Table 1. The core–shell
structural pattern in cuboctahedron configuration also possesses
the lowest energy, but still higher by more than 2 eV in total
energy than the icosahedron configuration. Therefore, the Cu55
clusters with high doping concentration (less than half) will remain
the same structure as Cu55 cluster.

Hydrogen adsorption free energy
Based on the most stable structures of the Cu55-nMn clusters, we
further investigate the HER activities on the surface of these alloy
clusters. To evaluate the HER activity, the H adsorption free energy
is commonly used as a reasonable descriptor for a wide range of
metals and alloys20–22. The HER process includes two steps. The
first step involves bonding of H to the catalyst H++ e– + * → H*,
where * denotes a site on the surface able to bind to H. The
second step is the release of molecular H2 through one of the two
processes: 2H*→ H2+ * or H++ e– + H*→ H2+ *. If H binds too
weakly on the catalyst surface, it is difficult to activate in the first
step; but when the H binds too strongly on the catalyst, the active
sites will be occupied and suppress the second step of releasing
H2. Thus, the optimal H adsorption free energy should be close to
zero. The H adsorption free energy is calculated at a potential U=
0 relative to the standard hydrogen electrode at pH= 0. The free
energy of H++ e– is by definition the same as that of 1/2 H2 at
standard conditions. Therefore, herein we have evaluated the
adsorption free energy for hydrogen (ΔGH) on all the possible
adsorption sites for the stable structures of Cu55-nMn nanoclusters.

Fig. 4 Energetic stability for core–shell clusters. The excess energies (E�exc) for core–shell structures of (a) Cu55-nCon, (b) Cu55-nNin, (c) Cu55-
nRun, and (d) Cu55-nRhn alloy clusters as a function of dopant concentration, where nM is the number of dopant metal atoms in the 55-atom
cluster. The lowest excess energies for each dopant concentration are connected by a solid line.
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Totally, we have 242 H adsorption sites on each cluster structure
(more details can be found in Supplementary Fig. 5, and those
with H adsorption free energy (|ΔGH| ) less than 0.1 eV are defined
as the optimal active sites.
Here we utilize the number of the optimal active sites with |

ΔGH| < 0.1 eV as the descriptor to evaluate the HER performance of
nanoalloy catalysts. The total number of active sites counted in
different ranges of |ΔGH| for pure Cu55, M55, and Cu55-nMn alloy
clusters with various compositions are summarized and plotted in
Fig. 5 and Supplementary Fig. 6. Compared to pure metal clusters,
the amount of active sites with |ΔGH| < 0.1 eV on the Cu55-nMn alloy
clusters is greatly increased, indicating the superior electrocata-
lytic HER performance. Among the four kinds of alloy clusters, the
CuCo and CuNi alloy clusters are predicted to have more active
sites with |ΔGH| < 0.1 eV, in contrast to CuRu and CuRh clusters. It is
worthy to note that pure Ni clusters exhibit very poor HER activity,
but the CuNi alloy clusters display the best catalytic efficiency. As
we have discussed above, Ni-doped Cu55 clusters are the most
stable alloy clusters; thus the CuNi alloy clusters not only possess
the stable structures but also exhibit the best HER activity. By
increasing the dopant concentrations, the HER performance of the
Cu55-nMn alloy clusters varies. But it is interesting to note that, the
HER catalytic efficiency has a maximum value for each type of
Cu55-nMn alloy clusters, such as Cu46Co9 for CuCo alloy clusters and
Cu49Ni6 for CuNi alloy clusters, respectively. With further increas-
ing the dopant concentration, the amount of the active sites with |
ΔGH| < 0.1 eV decreases, indicating a remarkable drop in HER
performance.
We now check the optimal active site on the surface of these

alloy clusters. For the icosahedral clusters, we have totally 242
adsorption sites; among them, we have 42 on-top sites on V
(vertex) or E (edge), 120 bridge sites on VE or EE, 80 three-fold
sites on VEE or EEE. The H adsorption free energies between

–0.1 eV and 0.1 eV are defined as the optimal values for HER. After
examining carefully, it is found that the majority of the optimum
sites with the H free energies between –0.1 eV and 0.1 eV are
bridge sites of VE and three-fold sites of VEE on Cu atoms. The
adsorbed H atom prefers to form a ring structure around the shell
Cu atoms (see Fig. 6), which is remarkably different from the pure
Cu clusters. The binding of H atoms on top of V or E sites are too
weak with more positive ΔGH values. As an H atom is adsorbed on
the bridge sites of EE, it will spontaneously move to the EEE or VEE
sites. In addition, most of the optimal active sites are Cu sites
instead of the dopant metal sites, which may account for why the
HER activity starts to decrease as the dopants concentration
further increasing. As the dopants concentration increases, the
dopant metal atoms are gradually exposed on the cluster surface,
and the H adsorption free energy on these dopant metal sites are
mostly strong with the ΔGH values more negative. Among the
alloy clusters that we have considered here, the core–shell Cu49Ni6
alloy cluster is recognized as the promising electrocatalyst for HER
with high stability and the most abundant active sites. Some
related experiments on CuNi nanoparticle as the high-efficient
HER catalyst have been reported recently and proved our
theoretical prediction14,15.

Descriptor for the structure-activity relationship
To deeply understand the modulation mechanism of alloy metal
clusters, Bader charge distributions of the Cu55-nMn clusters have
been further calculated and discussed. Since the HER occurs on
the cluster surface, we focus on the charge distributions of the
shell metal atoms. The metal atoms in the pure Cu55 cluster with
icosahedral structure possess two inequivalent sites on the
surface, i.e., vertex site and edge site. For the pure Cu55 cluster,
the charge of Cu atoms on the vertex site (VCu) is –0.05 e, and that
of Cu atoms on the edge site (ECu) is +0.002 e; thus the outer shell

Fig. 5 HER activities of alloy catalysts. Total number of active sites counted in different ranges of |ΔGH| values as a function of various
compositions for (a) Cu55-nCon, (b) Cu55-nNin, (c) Cu55-nRun, and (d) Cu55-nRhn alloy clusters. The dark green, green, and light green colors
indicate the total number of active sites with the |ΔGH| values in the range of [0.0, 0.1), [0.1, 0.2), [0.2, 0.3), respectively.
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of Cu55 are negatively charged. By doping transition metal atoms
into Cu clusters, the charge distributions on the surface of alloy
clusters have been changed accordingly. In the alloy clusters, the
edge-Cu atoms become positively charged, and finally enlarging
the charge difference between the adjacent ECu and VCu. Taking
Cu49Ni6 cluster as an example, it is found that the charge values on
ECu reach +0.03 e, while the on-site charges of VCu are around
–0.07 e, inducing a substantial charge difference of 0.1 e between
the edge-Cu and the adjacent vertical-Cu atoms. As discussed
above, most of the optimal sites with high HER activity are the
bridge sites of VE on the shell Cu atoms, so the H adsorption free
energies should be associated with the charge values of two
adjacent Cu atoms locating on the vertex site and edge site.
Hence, we suggest the average charge difference between two
adjacent ECu and VCu as a descriptor to probe the structure-activity
relationship and screening for the HER electrocatalyst, which is
defined by:

ΔQCu�Cu ¼
Pn

i

Pm

j
qCuV;i�qCuE;j

�� ��� �

NVE

(2)

where qCuV;i is the charge of ith Cu atom on vertex site, and qCuE;j is
the charge of jth Cu atom located on shell next to the ith Cu atom.
n is the number of Cu atoms on vertex site, and m is the number
of the ith Cu atom’s neighboring Cu atoms on cluster shell. NVE is
chosen as 60, which is calculated from the total number of Cu-Cu
bonds between Cu atoms on vertex and edge sites (m·n) in Cu55.
The proposed descriptor is controlled by two factors: the first

one is the amount of active metal atoms on the cluster surface
(i.e., the surface Cu atoms in CuM clusters), and the second one is
the charge difference between two adjacent Cu atoms on vertex
and edge sites. We have calculated the ΔQCu-Cu values for the
Cu55-nMn alloy clusters. The ΔQCu-Cu values on the Cu55-nMn alloy
clusters vary with the increasing dopant concentration, and there
is a maximum value for each type of Cu55-nMn alloy clusters, as
shown in Fig. 7a. After reaching the maximum value, the ΔQCu-Cu

values start decreasing, because more dopant metal atoms are

distributed on the shell and less Cu–Cu bonds are preserved on
the cluster surface. The variations of the charge difference ΔQCu-Cu

values exhibit almost identical trends to the total number of active
sites on the alloy clusters with |ΔGH| < 0.1 eV. For example, the
Cu46Co9 and Cu49Ni6 clusters exhibit superior HER activities with
relatively more active sites of |ΔGH| < 0.1 eV, and they also possess
the larger ΔQCu-Cu values. To make it clear, we have calculated the
relationship between the ΔQCu-Cu values and the number of active
sites on the Cu55-nMn alloy clusters and found a nearly linear
dependency between them, as displayed in Fig. 7b. As the charge
differences between two adjacent surface Cu atoms become
larger, the HER activity described by the number of optimal active
sites almost linearly increases. Therefore, ΔQCu-Cu value could be
identified as a descriptor to evaluate the HER activity. Compared
to the traditional descriptor (e.g., H adsorption free energy) for
evaluating the HER performance and confirming the optimal
active sites, our proposed descriptor of charge difference is
remarkably easier to compute, which greatly enhances the
computational screening efficiency and facilitates the HER
evaluations on the more complicated alloy nanoclusters.

Machine-learning prediction
Machine-learning technique combined with the DFT calculations
holds an immense potential for the acceleration of catalyst
discovery23. As we discussed above, the charge distribution
around the active site is closely related to the strength of the
hydrogen adsorption, so here we introduce the machine-learning
techniques based on our large data set of high-throughput DFT
calculations, The neural network utilizes the fingerprints of the H
adsorption site, and the features consist of the coordination
number and the mean Bader charge of the first-neighbor and the
second-neighbor atoms of the active site on the outer atomic
shell. The H adsorption free energies for different sites on the Cu-
based alloy nanoclusters are predicted with a subsequently
increasing training set. A learning curve in Fig. 8a shows that

Fig. 6 Active sites for HER. The optimal adsorption sites for H on the surface of (a) pure Cu55, (b) Cu49Ni6, (c) Cu34Ni21, (d) Cu34Co21, (e)
Cu34Ru21, and (f) Cu34Rh21 clusters with |ΔGH| < 0.1 eV.
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about 700 adsorption free energies from DFT calculations
(including 420 training data) is enough to achieve an ideal mean
absolute error (MAE) of 0.10 eV from our features. We obtain a
similar machine-learning precision to a recent machine-learning
work with an accuracy of 0.11 eV MAE by using the other
features24. Based on this, we use 3388 adsorption free energies to
predict the H adsorption free energy on nanoclusters with a MAE
error of 0.07 eV and a root-mean-square error (RMSE) of 0.11 eV on
the test set, respectively, as shown in Fig. 8b. Our input properties
for machine-learning models are ideally available without heavy
computation from the H adsorption relaxation. Therefore, the
charge of atoms around the adsorption site is closely correlated
with the H adsorption free energies, which could be a useful
descriptor to estimate the HER activity and screening for the high-
efficient HER electrocatalysts.
In summary, we have performed high-throughput DFT calcula-

tions to screening for the efficient HER electrocatalysts on the
alloy nanoclusters. The following important conclusions have been
addressed. First, considering different structural patterns, the
core–shell structures with M-core and Cu-shell are energetically
preferred for Cu-based alloy clusters of Cu55-nMn (M= Co, Ni, Ru,
and Rh), and CuNi is the most stable alloy clusters among these
four kinds of alloy clusters. Second, the total number of the active
sites with |ΔGH| < 0.1 eV is utilized as a descriptor to evaluate the
HER performance of the alloy catalysts, which could be efficiently
modulated by the dopant concentration. Among all the explored
alloy clusters, Cu49Ni6 exhibits the best HER activity, which is
significantly improved in comparison with the pure Cu55. Third, we
propose a descriptor to screen for the HER electrocatalysts by
combining DFT calculations and machine-learning techniques.

Finally, our high-throughput screening strategy could be widely
applicable to the other alloy nanoclusters, and also extend to the
other electrocatalytic reactions.

METHODS
DFT calculations
The high-throughput computations were performed using DFT as
implemented in the Vienna Ab-initio Simulation Package (VASP)25,26. The
projector augmented wave (PAW) method was used to describe the ion-
electron interactions27,28. The valence states of the transition metals are
considered as 3d104p1 for Cu atom, 3d84s1 for Co atom, 3d94s1 for Ni,
4d75s1 for Ru, and 4d85s1 for Rh, respectively. The Perdew–Burke–Ernzerh
(PBE) functional within the generalized gradient approximation (GGA) was
used to describe the exchange-correlation interactions29,30, and the D3
Grimme’s scheme was adopted to account for London dispersion
interactions31. Each cluster was placed in a cubic box of 20 Å × 20 Å ×
20 Å to minimize the interaction from periodical images. The Γ-point was
adopted for sampling the Brillouin zone of simulation supercell throughout
the calculations. The kinetic energy cutoff for plane wave was set to 350 eV.
All the geometries were fully optimized until the maximal components of
force on each atom converged to less than 5 × 10−2 eV Å−1.
To compare the relative energies among different compositions of

clusters, the excess energy is defined by9:

E�exc ¼ ECu55�nMn� 55�nð ÞECu�nEM
55

(3)

where ECu55�nMn is the total energy of Cu55-nMn cluster, ECu and EM are the
total energies of the Cu55 cluster and M55 cluster (M= Co, Ni, Ru, and Rh),
respectively.
The adsorption free energy for hydrogen is defined as:

ΔGH ¼ ΔEH þ ΔEZPE � TΔS (4)

Fig. 8 Machine-learning prediction. a Learning curve of the neural network. The errors are averaged over 25 randomized runs and the error
bars indicate the 95% confidence interval; b parity plots between predicted and DFT-calculated ΔGH values.

Fig. 7 Descriptor to evaluate HER performance. a The average charge difference ΔQCu-Cu between two adjacent Cu atoms on the edge site
and vertical site for Cu55-nMn (M= Co, Ni, Ru, and Rh) alloy clusters, b linear relationship between the number of active sites (|ΔGH| < 0.15 eV)
and the average charge difference ΔQCu-Cu.
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where the ΔEH is the adsorption energy of H species on the cluster surface
from DFT calculations. The ΔEZPE and ΔS are the difference for the zero-
point energy and entropy between the adsorbed H and half of H2

molecule in the gas phase, respectively. The zero-point energy and entropy
are calculated at the standard conditions corresponding to the pressure of
101325 Pa (~1 bar) of H2 at the temperature of 298.15 K. The coverage of H
adsorbate is difficult to consider for the cluster structures due to more
expensive calculations; but for the similar systems (the Cu-based alloy
clusters in our work possess the same structure), the H adsorption free
energy could provide a reasonable trend under the assumption of same
coverage.

The machine-learning protocol
The neural network consists of one input layer, three hidden layers and
one output layer. The number of hidden layer neurons are 32, 32, and 64.
The Rectified Linear Unit activation function32 was chosen for each hidden
layer. The overfitting issue was prevented using the L2 regularization

33. The
neural network is subjected to a supervised training scheme by using a
backpropagation algorithm34 implemented in the TensorFlow frame-
work35. All the input features are normalized to avoid the use of raw
variables with different range of values. The data is transformed with
x0 ¼ xi�μ

σ , where x′, xi, μ, and σ represent the normalized data, input data,
mean and sample standard deviation values of the input data, respectively.
The Adam optimizer36 is selected with the learning rate of 0.001. Prediction
errors are evaluated by mean absolute errors, and the cross-validation
technique37 is applied to estimate the accuracy and robustness of the
neural network training. The DFT results of hydrogen adsorption are
divided into 60%, 20%, and 20% for training, validation, and test sets,
respectively.

DATA AVAILABILITY
The data obtained in this study are available from the authors upon reasonable
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