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Automation of diffusion database development in
multicomponent alloys from large number of experimental
composition profiles
Jing Zhong1, Li Chen1 and Lijun Zhang 1,2✉

Nowadays, the urgency for the high-quality interdiffusion coefficients and atomic mobilities with quantified uncertainties in
multicomponent/multi-principal element alloys, which are indispensable for comprehensive understanding of the diffusion-
controlled processes during their preparation and service periods, is merging as a momentous trending in materials community.
However, the traditional exploration approach for database development relies heavily on expertize and labor-intensive
computation, and is thus intractable for complex systems. In this paper, we augmented the HitDIC (high-throughput determination
of interdiffusion coefficients, https://hitdic.com) software into a computation framework for automatic and efficient extraction of
interdiffusion coefficients and development of atomic mobility database directly from large number of experimental composition
profiles. Such an efficient framework proceeds in a workflow of automation concerning techniques of data-cleaning, feature
engineering, regularization, uncertainty quantification and parallelism, for sake of agilely establishing high-quality kinetic database
for target alloy. Demonstration of the developed infrastructures was finally conducted in fcc CoCrFeMnNi high-entropy alloys with a
dataset of 170 diffusion couples and 34,000 composition points for verifying their reliability and efficiency. Thorough investigation
over the obtained kinetic descriptions indicated that the sluggish diffusion is merely unilateral interpretation over specific
composition and temperature ranges affiliated to limited dataset. It is inferred that data-mining over large number of experimental
data with the combinatorial infrastructures are superior to reveal extremely complex composition- and temperature-dependent
thermal–physical properties.
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INTRODUCTION
Interdiffusion involves in a variety of materials processes in
metallic solids, for instance, solidification1, solid solution2, aging3,
corrosion4, mutual interaction between coatings and matrix5, and
so on. Diffusion represents the random motion of particles, i.e.,
atoms, molecules or ions, and is affected by the change of
chemical potential of the systems, namely the interdiffusion or
chemical diffusion. The movement of an individual particle is
stochastic; however, it is governed by the thermodynamic and
kinetic state of the system. In a complex system, the interactions
between different types of particles are not identical. Such non-
ideal situation becomes serious as the number of components
increases in systems with multiple components. For example,
HEAs (high-entropy alloys), where the multiple components are
presented as principal constituents, nowadays serve as the
alternatives for many traditional alloy systems, where only one
or two components are presented as principal constituents. An
interesting hotspot arises from the intriguing interactions, where
diffusion rates seem to be rather low among the composition
space around the equal atomic composition space. Such distinct
diffusion behavior is reported to show the significant effect on the
good mechanical properties and service performance of HEAs3.
Regarding the complex essence of diffusion, extensive efforts have
been contributed to the investigation of the diffusion behaviors of
HEAs for the very recent years6–13. Debates about such sluggish
diffusion effect still continue due to the incomplete overview of
the desired systems14–17. However, a comprehensive insight into

diffusion behavior cannot be overwhelmingly supported without
quantitative description of diffusion coefficients.
Determination of interdiffusion coefficients and later develop-

ment of kinetic database have long been impeded by the
incomplete techniques and toolsets. Matano-based methods are
the most popular solutions for the determination of interdiffusion
coefficient over the last several decades18. Such historical methods
and related tools are oriented for simple systems, i.e., binary19–21,
ternary22,23, and a portion of higher-order systems24–26; and thus,
are inadequate to meet up with the interest of industrial research,
where the systems are complex with multi-components, e.g.,
solders, nickel-based alloys, HEAs and so on. Moreover, the size of
the dataset is growing ever larger benefiting from advanced
techniques for the preparation of diffusion couples27,28 and
measurement of composition profiles29,30. Assessment of diffusion
description used to be based on 1–20 diffusion couples are shifting
to hundreds, i.e., for Ni-based alloys and HEAs. The amount of work
towards data-mining over such large dataset is challenging for the
existing labor-intensive procedures and workflow.
To date, the most promising approach for unveiling the

complex kinetic interactions among multicomponent alloy sys-
tems has recently been described as the numerical inverse
method18,31–36. The essence of the numerical inverse method rests
with revealing the inverse problem, that is reasoning the
interdiffusion coefficients from the experimental composition
profiles. The numerical inverse method dominates the Matano-
based ones for proceeding reasoning without considering the
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number of components, but requiring the initial/final states and
evolution rules18. Currently, several efforts have been contributed
to extract diffusion information from the specific diffusion dataset
by some researchers independently31–37. Unfortunately, the well-
defined toolsets for numerical inverse methods are not yet
enough to cope with dataset of large size for the complex
systems. The primary issue is due to the naive implementation of
numerical inverse method without revealing the deep essence of
the inverse problem, where the tendency of being ill-posed is
pressing. Situation gets worse as the size of dataset and the
dimension of parameter space grows, turning into the large-scale
inverse problem38–40. Curse of dimensionality haunts especially for
multicomponent systems, because the number of descriptors for
the related diffusion behaviors is large. Complying to CALPHAD
(CALculation of PHAse Diagram) approach, the interaction
parameters to be concerned for a quinary system can be up to
200 and even more. Assessments over such complex systems are
difficult because the parameter space to be explored become
myriad, while time expense for exploration become numerous.
Such large-scale inverse problem becomes intractable as it is
much worse conditioned and often not uniquely solvable. When
the parameter space and size of dataset reach a large scale, i.e.,
about 200 and more, pace would be extremely hard to proceed
with manual construction based on expertize41, which is neither
agile for integral database development nor meeting up with
features of high-throughput and automation42–45.
Consequently, to bridge between the challenges and anxious

anticipation, the infrastructures in automation fashion are thus in
urgent need for the establishment of diffusion database, serving
as the primary motivation of the present work. High-performance
computing (HPC) comes into the prior position to help with large
dataset and speedup the related algorithms. Dimensionality
reduction technique is required to simplify the overall complexity
of the concerned diffusion descriptions. Meanwhile, both the
uniqueness and generality should be emphasized towards
the calculation results. Uncertainty quantification should also be
served as an important portion, which indicates the useful
information about the reliability of the assessed results.

Integration of the proposed techniques are further in need of
enabling a workflow of automation in practical applications and
for accomplishing the thoughtful concerns above. Subsequently,
we are going to report a successful demonstration of an
automation computation framework for interdiffusivity evaluation
and atomic mobility database development. It especially paves
the way for settling the large-scale inverse diffusion property
problems with multicomponent and/or multi-principal element
alloys. Demonstration of the advanced infrastructure proposed in
the present work is thus performed by conquering fcc
CoCrFeMnNi HEAs from the point of view of its related diffusion
behaviors.

RESULTS AND DISCUSSION
Framework and infrastructure
To be clear, the methods, strategies and codes are developed and
bundled as HitDIC infrastructures, in the interest of realizing the
interdiffusivity computation and atomic mobility dataset devel-
opment in multicomponent/multi-principal element alloys in a
manner of automation. Originally, HitDIC is designed to extract
interdiffusion coefficients from composition profiles and it has
been successfully applied to multiple alloy systems10,12,46,47. Later,
HitDIC is featured with the capability of uncertainty quantification
cooperating with Bayesian inference. However, the toolkits are not
yet capable of dealing with dataset of large size and parameter
space of high dimension. The well-established data-mining
techniques are, therefore, employed to levitate HitDIC to large-
scale inverse diffusion property problem. Infrastructure is built so
as to drive the data/information flow in a manner of automation,
as illustrated in Fig. 1a.
To begin with, dataset of composition profiles is extensively

collected and preprocessed to produce denoised sample dataset.
Hand-out validation can be proceeded by splitting sample sets into
the training dataset and validation dataset with a ratio of 80–20.
Secondly, the training dataset is further utilized in an optimization
process, which offers the functionality for joint parameter selection
and estimation. The optimization processes can be executed several

Fig. 1 Development roadmap of the HitDIC software. a Strategic workflow for automation; b Schematic illustration of variable-selection
genetic algorithm and its encoding pattern of the variables and switches; c Illustration of the regularization algorithm for automatically tuning
the regularization term, typical settings of which are k= 1.5 and p= 10−3; d Illustration of the Metropolis–Hastings algorithm with multiple
chains.
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times, and it will be repeated until a staged model with subset of
effective parameters of interest is determined. Thirdly, the staged
model will then be further proceeded to a regularization process,
where the regularization term can be automatically tuned. General-
ity and stability of the estimations are intended to be improved in
this period. Finally, in case that uncertainty of parameters of interest
is concerned, the Bayesian inference will be employed to estimate
the posterior distributions of the concerned parameters. Once the
estimations of the concerned parameters and their uncertainties are
determined, the diffusion database for the concerned system is thus
developed. All the optimizers, i.e., the optimizer for joint parameter
selection and estimation, regularization optimizer and the samplers
for Markov chain Monte Carlo (MCMC), are supported by the cost
evaluator with parallelism (see the “Methods”). Workflow of the
concerned modules, i.e., joint parameter selection and parameter
estimation, regularization and uncertainty quantification, are
integrated. As the high-performance computing is in need, such
kernels are implemented with C++ for the consideration of
efficiency. The pre-processing and post-processing are implemen-
ted with Python due to the plentiful toolkits for visualization and
data manipulation, while the reports are generally presented in web
view pages.

Data collection and preparation
To exemplify the capability of HitDIC infrastructure, HEAs are
chosen as an example to demonstrate the capability of the
developed infrastructure. The fcc CoCrFeMnNi alloys or Cantor
alloys48 are employed in the present work. Being attracted by the
sluggish diffusion effect, extensive investigations over the Cantor
alloy, as well as other HEA systems, have been conducted by
various groups6–10. However, the diffusion database for the

CoCrFeMnNi system is still considered incomplete. Therefore, Tsai
et al.6 adopted the diffusion couple approach and a simplified
Matano-based calculation method for studying diffusion coeffi-
cients on this system. Subsequent studies were carried out by
Vaidya et al.9,49, Kulkarni et al.50, Verma et al.51, Chen and Zhang11,
Wang et al.52, Dąbrowa et al.8, and Kucza et al.7 However, it is
considered that those studies based on the limited dataset, i.e.,
<20 diffusion couples, are prone to be inconsistent with respect to
the temperature or composition ranges. To produce trustworthy
results, all reported data for the fcc CoCrFeMnNi system are
therefore gathered, constituting a dataset of composition
profiles with up to 170 groups of composition profiles over the
temperature range of 1073–1373 K.
The collected composition profiles are further smoothed using

the preset fitting functions, i.e., the logistic function or its
superposition53, the distribution functions and their superposi-
tions54 and so on. Noises are thus removed, and the smoothed
composition profiles are produced. By means of the fitting
process, as detailed in Supplementary Methods, the dataset is
renewed by applying the prior assumption that noise should be
suspended. The composition profiles are thus resampled with
the fitted functions, while the overall dataset possess up to
34,000 composition points, as illustrated in Fig. 2. It is indicated
the concerned system is stable among composition range from
0.05 at. to 0.35 at. and temperature range from 1175 to 1373 K. It
is important to note that the composition points remain sparse
over the composition space in Fig. 2. Considering the large
composition ranges, establishment of diffusion database for the
concerned system is more desirable for completing the view of
diffusion behaviors rather than outspreading the measured
composition space with many more expensive diffusion couple/
multiple experiments.

Fig. 2 Composition and temperature space of the dataset. Distributions of the composition points are viewed from composition
coordinates of different components, i.e., a Ni, Co and Fe, b Ni, Co and Cr, c Ni, Co and Mn, and d Fe, Cr and Mn, among concerned
temperature range for the dataset of fcc CoCrFeMnNi HEAs.

J. Zhong et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    35 



In this work, up to 34,000 composition points are employed,
and the evaluated diffusion database is, therefore, considered
generalizable among the mentioned composition ranges and
temperatures ranges. What’s more, before taking the successive
procedures, the overall dataset is then split into the training
dataset and the validation dataset, with a ratio of 80 to 20.

Joint parameter selection and estimation
Joint parameter selection and parameter estimation are pro-
ceeded with the variable-selection genetic algorithm. The default
sets of atomic mobility parameters are assigned with the ones up
to the first order for the binary systems and all those of ternary
systems. For CoCrFeMnNi HEA, dimensionality of the concerned
parameter space is large, e.g., roughly up to 200, which is about
ten times more than that of binary or ternary systems. Redundant
descriptors are likely to be introduced and desired to be sweep off
due to convergency difficulty for optimizer towards problems of
very high dimension. The variable-selection genetic algorithm is
subsequently applied to identify the most appropriate subset of
parameters and their related estimations.
Convergence sequence of the proposed algorithm is illustrated

in Fig. 3, where both Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are tested. In Fig. 3a, the AIC,
residual summation square (RSS) and selection ratios are super-
imposed. The sequence of selection ratio converges nicely,
reaching about 35% out of 200 parameters. The AIC drops rapidly
at the early stage, however, results in a long tail as the algorithm
proceeds. Although AIC sequence evolves slowly at the latter
stage, the competition between parameters remains intensely, as
indicated in Supplementary Fig. 2. With respect to the training
dataset, the RSS and selection ratios evolve consistently with AIC
value, indicating the effectiveness of the proposed joint parameter
selection and estimation process. Furthermore, the sequence of
RSS for the training and testing sets behaves similarly, which
implies the validity of the variable-selection genetic algorithm.
When it comes to the result based on BIC, more stringent

selection efficiency is achieved, i.e., 18%, as shown in Fig. 3b. The
potential reason for such distinct difference in selection ratios for
the two criteria lies in that BIC imposes larger penalty on the
number of concerned parameters. Comparing the optimized RSS
for both criteria, the BIC succeeds to achieve by RSSBIC= 1.67,
which is slightly better than that of AIC, i.e., RSSAIC= 1.71. That is
when the BIC is employed, the result of variable-selection genetic
algorithm is able to achieve a better fitting goodness with less
descriptors. It is indicated that the BIC is more suitable when the
dimension is similar to the size of dataset. Currently, the result
based on BIC is accepted as the product of the joint parameter
selection and estimation and used in subsequent investigation.
For details about the selected effective parameters and the
obsoleted ones, the readers can refer to Supplementary Table 2. It
is worthy of mentioning that the AIC might be not effective for the

current size of the dataset; however, it might be effective for even
larger dataset. Moreover, no matter what criterion is applied, the
difficulty in proceeding the optimization remain intractable
without well-designed cost evaluator accommodated with high-
performance parallel computing resources.

Regularization
In the framework of inverse problem, the estimated model has a
fixed but unknown probabilistic relation to the data space. In
previous researches on numerical inverse method, the solution to
the inverse problem is found to be sensitive to the size of dataset,
when the overall size of the dataset is small53,55. Such phenomenon
accords well with the primary feature of inverse problem, i.e., being
ill-posed, resulting in severe problem about uniqueness. Plainly, the
optimization using merely the first term in Eqs. (11) or (12) is
insufficient to guarantee uniqueness of the solutions to inverse
problem. The feature of being ill-posed can be weaken by
increasing the sample sizes, i.e., considering as many as observa-
tions in the inverse process. As shown in Fig. 3, the solutions to the
inverse problem can be reduced to limited alternatives, as they
are constrained by means of expertize and statistic criteria as
mentioned. Unfortunately, the potential solutions to inverse
problem are still massive, inferred from the convergence sequences
with long tail as presented in Fig. 3.
Therefore, a technique to address the problem of non-

uniqueness is taken into consideration. Regularization is one of
the common techniques served for releasing the ill-posedness of
the inverse problem. The key of this technique is to introduce the
concept of conditional well-posedness and shifts from searching
for stable methods to reaching approximate solution with prior
assumption. In other words, the regularization is to apply prior
assumption on the solutions to the inverse problem, and therefore
the target solution can be reduced to a limited model and the
parameter space of less freedom.
The most frequently used prior assumption for regularization is

that the L1 norm or L2 norm of the solution to inverse problem is
considerably small enough. In practice, regularization is fulfilled by
solving an optimization problem penalized by the L1 norm or L2
norm of the concerned parameters, where a regularization term, i.e.,
λ, is introduced to rescale the penalty. Presently, a workflow is used
to tune the regularization term online while improving the solutions
to the inverse problem (see the “Methods”). With the proposed
algorithm, the selected estimators are further investigated, and the
convergence sequences are presented in Fig. 4. From the point of
view in regularization, the value of the prior assumptions, i.e., L1
norm or L2 norm, represents the complexity of the model or
parameters. The key to regularization algorithm is to figure out an
estimation of parameters with least complexity, while ensuring that
the fitting goodness does not significantly turn worse.
For the L2 norm regularization, a significant increase of RSS

value is observed when the regularization term grows larger than

Fig. 3 Convergence sequences of the joint parameter selection and estimation processes. Results for joint parameter selection and
estimation using variable-selection genetic algorithm based on a AIC and b BIC.
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5.40 × 10−7, where the model complexity also decreases signifi-
cantly comparing to the previous iterations, as indicated in Fig. 4b.
Convergence sequence of the L1 norm regularization behave
similarly as the L2 norm, and the turning point of the
regularization term is the same, i.e., around 5.40 × 10−7. Sequence
of the RSS value for the validation dataset behaves consistently
with that of training dataset, indicating the generality of
estimations are good. Moreover, it also implies that the data
distributions of the training set and validation set are similar,
which generally exists when both datasets are sufficiently large.
Such conclusion applies for both the L1 norm and L2 norm
regularizations, as shown in Fig. 4a, b. As the regularizations are
modeled based on the prior assumptions, both regularized results
are considered reasonable and applicable for generalization and
interpolation, as listed in the Supplementary Table 3.

Uncertainty quantification
Beyond the deterministic optimization procedures above,
Bayesian inference is a suitable alternative for measuring the
uncertainty of the solution to inverse problems. To further
quantify the uncertainty of the concerned parameters, MCMC
method, or more specifically Metropolis–Hastings algorithm, is
currently used to infer their posterior means and variances (as
demonstrated in methods). Considering acceptable computation
cost, the multiple short but independent chains are employed
currently. Twelve chains are proceeded with 50,000 iterations
individually. Convergence diagnosis (see Supplementary Methods)
is carried on the accepted sample points produced by the
Metropolis–Hastings (M-H) sampler. As shown in Fig. 5a, within
sequence variances change significantly at the early period, while
it achieves quite stable level as the sequences evolve. A better
illustration of the stability of the Markov chains is indicated in
Fig. 5b, where the between sequence variances are flat for
different parameters. Unfortunately, the potential scale reduction
factors for different parameters hardly reach 1, as illustrated in
Fig. 5c, indicating that the individual chains are not yet reaching
the stationary state. However, considering that the between
sequence converge satisfactorily as shown in Fig. 5b, the current
assessment is deemed as reasonable.
The proposed M-H sampler totally draws 240,000 sample points

with an accepted ratio of 40%. Posterior distributions of
parameters are subsequently described as shown in Fig. 5d,
where the mean and the related bounds of concerned parameters
are imposed. It should be noted that the bounds are determined
by a quantile of [0.2, 0.8], which covers about 60% sample points.
Though only histograms of the posterior distributions of individual
parameters are presented, they are actually subject to an integral
joint posterior distribution. As shown in Fig. 5d, the posterior
distributions of most parameters present in bell shapes, while the
mean estimations reasonably rest around the high-density region.

Estimated parameters with quantified uncertainties are important
precursors to the quantification of uncertainties underpinning
prediction and decision-making. For instance, the bounds of the
predicted composition profiles can be retrieved as the uncertainty
propagates through the forward problem of diffusion. As an
example, Fig. 6a–d illustrates the fitted composition profiles of four
selected diffusion couples of fcc CoCrFeMnNi HEAs, as denoted with
dash lines and markers. The model-predicted composition profiles
are also imposed in Fig. 6, where the bounds of composition
profiles rather than the exact optimal ones are presented. It has
to be noted that the bounds are determined according to
the parameters with uncertainties, which firstly propagate into
the interdiffusion, and secondly to the composition profiles via the
forward simulation. The overall goodness of the prediction to the
experimental or fitted composition profiles are satisfactory, though
parts of fitted composition profiles rest out of the bands of the
predicted bounds, i.e., Fig. 6a. As the experimental procedures are
taken as random events, the deviations outside the bounds infer
the inconsistency with the assessed model. From the abroad
comparison between the fitted and the model-predicted composi-
tion profiles, the generality ability of the selected parameters and
evaluated uncertainties are reasonable. For complete view of fitting
goodness towards the whole dataset, the readers are referred to
Supplementary Figs 10–31.

Remarks on optimization techniques
In the present work, the joint parameter selection and estimation
have been succeeded to significantly reduce the dimensionality of
the proposed problem. What’s more, the regularization is used to
reduce the overall complexity of the selected model, while
reserving the fitting goodness of the diffusion description. The
two deterministic optimization strategies are feasible to come up
with estimations, i.e., θMLE, θReL1 and θReL2, with limited iterations.
Besides, both techniques are constructed based on the genetic
algorithm in the present work, which is famous for its robustness
and promising ability for global optimal56. The MCMC method is a
statistic inference method, which is also capable of offering
estimations, i.e., θMAP, that produce the promising fitting goodness
to the observations. However, it is generally more time-consuming
due to the considerable number of iterations. In most scenarios,
the joint parameter selection and estimation followed with
regularization are qualified, while the MCMC is superior to
understand uncertainties of related model and parameters.
Overall, the model-predicted composition profiles to observations
are similar for most samples or diffusion couples, as illustrated in
Fig. 6e–h. For intuitive comparison between the observations and
predictions, the readers are referred to the composition profiles
presented in Supplementary Figs 32–53 for more detail.
However, it should be clarified that different optimization

strategies actually perform differently according to their optimiza-
tion criteria. Evidence lies in the statistics over the deviations

Fig. 4 Convergence sequences of the regularization strategy. Automatically tuning of regularization term for regularization processes using
(a) L1 norm and (b) L2 norm.
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between the observations and the predictions, i.e., as illustrated in
Fig. 7. They are the distributions of the prediction biases due to
variable-selection genetic algorithm, L1/L2 norm regularization
and MCMC. The histograms of distributions are very similar to
each other, though the estimations of the algorithms are quite
different, as listed in Supplementary Table 3. Variable-selection
genetic algorithm with AIC and BIC, L1/L2 norm regularization
achieve similar mean square errors as denoted as star in Fig. 7.
Among the three strategies, the variable-selection genetic
algorithm performs slightly better, as the prediction biases tend
to concentrate more obvious around zero than the others. When it
comes to the estimations produced by MCMC, the related fitting
goodness is much better than the above three strategies as the
related RSS is smaller. In trade of better overall fitting goodness,
the prediction biases to the observations concentrate less
significantly around 0 regarding the maximum a-posterior.
Reason for difference in performance of different algorithms

also lies in optimization criteria of the algorithms. Joint parameter
selection and estimation is subjected to the information criteria,
where the fitting goodness or RSS is partly concerned in the cost
function. When most appropriate subset of parameters are
selected, the estimated parameters are closed to the maximum
likelihood estimation θMLE. Regularization is expected to reduce
the complexity of the concerned model by means of imposing
additional penalty in the cost function. With the proposed
regularization algorithm, results of regularization, i.e., θReL1 and

θReL2, that do not significantly make worse prediction are taken.
Therefore, the prediction performance of θReL1 and θReL2 is similar
to that of θMLE, however, the L1/L2 norm shrinks distinctly. The
goal of MCMC is to profile the joint posterior distribution of the
concerned model and parameters. When the posterior distribution
is reasonably drawn, the mean estimation is bound to the
maximum a-posterior θMAP. The maximum a-posterior tends to
achieve better fitting goodness towards the entire dataset, though
it behaves slightly worse towards the specific samples. The
difference between θMLE and θMAP is partly due to the great
convergence difficulty of the variable-selection genetic algorithm
in high dimension. Therefore, the maximum a-posterior or the
regularized estimations are more convincingly accountable
estimations.
Nevertheless, MCMC starting from random initial proposals

might take much longer iterations to reach the stationary state,
when the initial estimations are far from the high-density region.
Situation gets worse when the dimension is extremely high and
the dataset is especially large. Concerning the same problem, the
expense of exploring the high-density region for the deterministic
algorithms is significant lower, which is superior to providing
promising initial proposals for the MCMC algorithm. However,
despite of all the pros and cons above, results of MCMC are
indispensable as the information about the uncertainties can be
provided. Analysis over the potential influence on the model-
predicted properties is therefore feasible. In more abroad

Fig. 5 Statistics over the sequences of samples. Samples are drawn by means of the Metropolis–Hastings algorithm with 12 independent
chains. Statistics are aWithin sequence variance, b Between sequence variance and c Potential scale reduction factor of the MCMC sequences.
d Histogram of the posterior distribution of the effective parameters, while all estimations have been divided by 103 and specific notions of
the parameters are indexed in Supplementary Table 3.
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applications, the uncertainty is favorable to territories of material
design by offering decision-making insights57,58.

Remarks on efficiency of parallelism
Among all the optimizers, the cost evaluator is fundamental to
carry out predictions and evaluate the residual summation of
square between the predictions and observations. For dataset of
large size, evaluation of RSS is expensive, especially for optimizer
demanded on great number of iterations, i.e., MCMC samplers.
Parallelism is therefore mandatory while efficiency of parallelism is
considerable. The scalability of a parallelism scheme is a measure
of its ability to effectively exploit an increasing number of cores or
processors on HPC clusters. Scalability analysis is usually designed
for the most satisfactory algorithm-architecture combination for a
problem under different constraints on the growth of the problem
size and the number of processors from the performance on fewer
processors.
Efficiency test of the devised cost evaluator with parallelism is

shown in Fig. 8b, where the case with 2 nodes (48 cores/threads
on Intel Xeon CPU E5-2692) is set as the base. Comparison

between the Intel Xeon CPU E5-2692 and AMD EPYC 7452 are
considered, where the identical compilers, as well as the
corresponding compiler options, are adopted. The cost evaluator
scales nicely when a large dataset is considered for both
computing resources, where 576 or more cores can be utilized.
When the number of nodes is small, i.e., 4 nodes for E5-2692 and 1
node for EPYC 7452, the efficiency of the two types of computing
resources are similar. However, the speedup of EPYC 7452 hits
about 11 times with 9 nodes (576 processors) comparing to 8
times with 24 nodes (576 processors) with respect to E5-2692.
Such a result benefits from a fact that, the machine with higher
efficiency, i.e., high CPU clock cycle, works faster. Moreover, less
message passing interface (MPI) communications between nodes
would also benefit the efficiency for machines with more cores/
threads on a single node. Currently, the optimization processes are
carried on HPC clusters of AMD EPYC 7452.

Remarks on sluggish diffusion effect
For the HEAs, one of the most attracting topics is the existence of
sluggish diffusion effect, which remains as a mystery in the past
decade6,7,9–12,15,46,49. Yeh59 originally proposed that kinetics of
diffusion is hindered in comparison to pure metals and conven-
tional alloys, resulting in smaller values of diffusion coefficients. It
is inferred that the potential deduction of the diffusion rate of the
high-entropy alloy is due to the increase of entropy. To calibrate
the influence of entropy on the diffusion rates, correlation
between configurational entropy and different kinds of diffusion
rates are examined. For sake of clarity, the thermodynamic
description for the fcc CoCrFeMnNi system is considered identical
to that of ideal solution phase, where only the configurational
entropy rather than the excess interactions contributes to the
thermodynamic factors.
To begin with, the effective tracer diffusion coefficients of pure

metals or alloys of equal atomic compositions are compared. For
pure metals or alloys of equal atomic compositions, larger
configurational entropy is relatedly bound for higher-order
system. Lacking in physical thermodynamic factors, the tracer
diffusion coefficients are deemed as the effective ones, while the
evaluated values using the assessed estimations θMAP are
presented in Fig. 9a. The averages of the effective tracer diffusion
coefficients of the quinary system are evaluated at various
temperatures and taken as the base line for comparison, denoted
as the dash lines in Fig. 9a. Considering the quaternary systems,
the tracer diffusion coefficients fluctuate around the base line,
which indicates that the reduction of entropy does not imply a

Fig. 6 Examples of fitted and model-predicted composition profiles. Composition profiles for the fcc CoCrFeMnNi high-entropy alloys: a, b,
c, and d concern bounds of the composition profiles due to uncertainty of the diffusion database; e, f, g, and h concern model-predicted
composition profiles due to optimization results of different algorithms, i.e., variable-selection genetic algorithm (VarSelGA), L1 norm
regularization (L1 Re), L2 norm regularization (L2 Re), and Markov chain Monte Carlo (MCMC). The composition profiles of the fitted data
(noted as fit) are ported from Tsai et al.6 for (a) and (e), Kucza et al.7 for (b) and (f), Dąbrowa et al.8 for (c) and (g), and Chen and Zhang11 for
(d) and (h).

Fig. 7 Goodness-of-fit statistics for the proposed algorithms.
The histograms are counts of diffusion couples with different
intervals of mean square error concerning optimization algorithms,
i.e., a variable-selection genetic algorithm based on AIC, b variable-
selection genetic algorithm based on BIC, c L1 norm regularization,
d L2 norm regularization, and eMarkov chain Monte Carlo, while the
marker “star” denotes RSS due to the entire dataset.
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firm tendency towards the acceleration of diffusion. Regarding the
lower order systems, i.e., unary, binary, and ternary systems, the
base plane rests around the middle among related tracer diffusion
coefficients. It is thus concluded the entropy of configuration does
not play a significant role in either hindering or accelerating the
diffusion rates. In addition, the effect of averaging is rather
obvious, as the deviation of the tracer diffusion coefficients shrinks
as the number of components increases.
Owing to the absence of physical thermodynamic description, the

effective tracer diffusion coefficients are further examined by
comparing with the experimental results. The evaluated effective
tracer diffusion coefficients are qualitatively compared to the ones
measured by Tsai et al.6 and Vaidya et al.9,49, as illustrated in
Supplementary Figure 3. Among the tracer diffusion coefficients, D�

Mn
is dominant. The obtained effective tracer diffusion coefficient, i.e.,
D�
Mn, accords well with the results from Tsai et al.6 and Vaidya

et al.9,49 However, results measured by Tsai et al. tends to
underestimate D�

Mn especially among the range of lower tempera-
ture. D�

Cr measured by Tsai et al. and the present work are similar to
each other, both of which are larger than the experimental results by
Vaidya et al. As for D�

Fe, the results from Tsai et al. and Vaidya et al.
agree well with each other, while the one measured in this work
tends to be larger. Similar tendency applies to D�

Ni with respect to
D�
Fe. When it comes to D�

Co, Vaidya et al. come up with results that are
smaller than the other two.
For the numerical inverse method, D�

Fe and D�
Cr are very similar,

while D�
Co and D�

Ni are also similar. What’s more, difference among
D�
Fe, D

�
Co, D

�
Cr and D�

Ni measured by Vaidya et al. are trivial, especially
for the lower temperature range. The results measured by Tsai et al.
for D�

Fe, D
�
Cr, and D�

Ni are also trivial with respect to each other.
Overall, dependency of tracer diffusion coefficients on temperature
are rather similar for all the components, indicating the similarity of
their thermodynamic and kinetic behaviors. Unfortunately, the prior
assumption of being the ideal solution is not fully applicable to the
thermodynamic description of the fcc CoCrFeMnNi HEAs. From the
point view of numerical inverse method, more profound thermo-
dynamic description is, therefore, expected for the desired tracer
diffusion coefficients from the research community, for sake of
producing generalizable tracer diffusion coefficients of physical
reliability among large composition ranges. Focusing on the
correlation between diffusion rates and configuration entropy, the
effective tracer diffusion coefficients are qualitatively reasonable
notwithstanding its physical validity.
For more convincing evidence, the interdiffusion coefficients

are adopted for characterizing the diffusion behaviors of fcc
CoCrFeMnNi system and its related subsystems. Despite the
number of components, different constituents for systems with
the same components also contribute to the variation of the

configurational entropy. To demonstrate the contribution of
various constituents, the interdiffusion coefficients of fcc CoCr-
FeMnNi systems projected over various composition coordinates
are evaluated.
Taking Fig. 10a, f, k and p as an example, main terms of

interdiffusion coefficient matrices at 1073 K, i.e., ~DNi
CoCo, ~D

Ni
CrCr, ~D

Ni
FeFe,

and ~DNi
MnMn, are projected over the composition coordinate of Co

ranging from 0 to 0.2, according to the first column of subfigures
in Fig. 10. When xCo ¼ 0, the matrix denotes fcc CrFeMnNi alloy;
while xCo ¼ 0:2, the matrix denotes fcc CoCrFeMnNi alloy. The
related entropy of ideal mixing is also imposed on the x-axis on
the bottom, which can be evaluated according to

Scnf ¼ �R xElog xEð Þ þ 1� xEð Þlog 1� xE
4

� �� �
(1)

Among Fig. 10a, f, k and p, xE stands for the composition of
component Co. With the increase of xCo, the configurational
entropy also increases. As shown, against the increment of
entropy, ~DNi

CoCo, ~DNi
CrCr, ~DNi

FeFe, and ~DNi
MnMn decreases significantly,

implying a trend of being hindered by entropy.
When the projection falls to the composition coordinate of Cr,

the response of the tracer diffusion coefficients to the variation of
entropies are flat considering ~DNi

CrCr, shown in Fig. 10g. However,
~DNi
CoCo, ~DNi

FeFe, and ~DNi
MnMn drops as the related configurational

entropy increases. As for the projection over the composition
coordinate of Fe, ~DNi

CoCo, ~DNi
CrCr, ~DNi

FeFe, and ~DNi
MnMn shows limited

variety against the related configurational entropy, though
implying a tendency of reduction presented in Fig. 10c, h, m
and r. From the point view of Mn composition coordinate, all
interdiffusion coefficients are roused up as the configurational
entropy presents a tendency of rising, though the magnitude of
increment for ~DNi

MnMn is less significant, as illustrated in Fig. 10d, i, n
and s. When it comes to the composition coordinate of Ni, the
trending of ~DNi

CrCr and ~DNi
FeFe are rather flat with respect to the

variation of entropy, referring to Fig. 10j and o. Moreover,
controversial trends are observed for ~DNi

CoCo and ~DNi
MnMn, as the

former drops while the latter rises up.
The composition ranges of quaternary systems are covered by

current training dataset, and thus, the interpolated interdiffusion
coefficients for the quaternary systems are considered properly
generalized. Considering correlation for temperatures other than
1073 K, similar conclusions can be drawn according to Supple-
mentary Figs 4–6. As tendency of various interdiffusion coeffi-
cients against various projection coordinates remains similar to
that of 1073 K. Regarding temperatures other than the specific
ones, the related diffusion rates can be inferred from the
Arrhenius relation of different components and systems, as listed
in Supplementary Table 1. However, among the concerned

Fig. 8 Parallelism scheme of the cost evaluation kernel. a Schematic illustration of the parallelism mode for evaluating the cost of multiple
guesses over large dataset with the support of MPI and HPC; b Parallelism efficiency of the cost evaluator with parallelism for a single batch
compared between 2 × 12 Intel Xeon CPU E5-2692 v2 @ 2.20 GHz and 2 × 32 AMD EPYC 7452 @2.35 GHz, where 136 diffusion couples are
consumed in a single batch using1 MPI task per core.
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temperature range, the interdiffusion coefficients do not perceive
the tendency of sluggish diffusion. That is, the observations above
do not launch a firm correlation between the variation of entropy
and interdiffusion coefficients. Unfortunately, without a compre-
hensive overview of the diffusion rates, it is prone to unilaterally
attribute the deduction of diffusion rates to the increment of
entropy, i.e., ~DNi

CoCo and ~DNi
MnMn in Fig. 10e and t respectively.

A portion of the previous investigations over the diffusion
behavior of HEAs reported that under the normalized temperature
scale, the diffusion rates of the systems with higher entropy would
be smaller6. To further examine such a hypothesis, the effective
tracer diffusion coefficients for various systems with equal atomic
constituents at different normalized temperatures are evaluated
for direct comparison. Assuming that alloys serve under 0.4Tm of
the related systems, as shown in Fig. 9b, CoCrMnNi alloy is
dominantly smaller than the rest, i.e., CoCrFeNi, CoFeMnNi,
CrFeMnNi and CoCrFeMnNi alloys. Moreover, the effective tracer
diffusion coefficients over the CoCrFeMnNi alloy rank beyond
those of CoCrMnNi alloy, though the former is deemed as the one
with higher entropy. Similar tendencies are found among the
normalized temperatures, i.e., T=Tm ¼ 0:6 and T=Tm ¼ 0:8. Again,
from the point of view in normalized temperature with respect to
the melting point, the comparison result does not earn credit for
the existence of sluggish diffusion.

Referring to averaging effect in Fig. 9a, the diffusion rates of
various systems remain the same level of the fcc CoCrMnNi alloy.
Among the concerned alloys, fcc CoCrMnNi alloy has the lowest
melting temperature, i.e., 1500.82 K8, while the melting tempera-
tures for the others alloys are CoCrFeNi (1711 K8), CoFeMnNi
(1543 K8), CrFeMnNi(1620 K60) and CoCrFeMnNi(1572 K8). It seems
that the fcc CoCrMnNi system achieves the lowest diffusion
rates at various normalized temperatures because of the
lower melting point. That is, the normalized temperature, i.e.,
0:4TCoCrMnNi

m ¼ 600 K, is significantly smaller than that of fcc
CoCrFeMnNi alloy, i.e., 0:4TCoCrFeMnNi

m ¼ 628 K. As diffusion rate is
subjected to the Arrhenius relation, it is not surprising that the
alloy with lower melting point achieves lower diffusion rate with
respect to the normalized temperature.
With the assessed diffusion descriptions of fcc CoCrFeMnNi

system and its related subsystems, the concerned diffusion
behaviors are able to be fully demonstrated by quantitative
mathematical relations. As a conclusion due to rigor comparison,
the sluggish diffusion of the fcc CoCrFeMnNi high-entropy alloy
remains no more than thermo-physical state functions instead of
mystery, which can be quantitatively evaluated with credible
diffusion database found on large amount of experimental
information.

METHODS
Numerical inverse method
Concerning the diffusion processes, with ad-hoc thermo-kinetic descrip-
tion, the predictions to diffusion behaviors of mass can be revealed by
solving diffusion equations. To fulfill such ambitions, the thermo-kinetic
description is indispensable. The idea of tuning the most suitable kinetic
description that accounting for observations, i.e., the experimental
composition profiles, lies with the inverse problem, namely the numerical
inverse method. The inverse problem of kinetic description can be
generally casted into the framework of the partial differential equation
constrained optimization problem,

θ ¼ argmin
θ

X
l

xl � ~xl θð Þk k22 (2)

where xl denotes the experimental composition profile, while ~xl the
prediction to the composition profiles using the extended Fick’s second
law. In Eq. (2), the prediction needs to be produced by means of solving
the diffusion equations, i.e.,

∂xk
∂t

¼ ∇
Xn�1

j¼1

~Dn
kjðθÞ∇xj

 !
(3)

for k ranging from 1 to n, where n is the number of concerned components
in the system. Foremost, modeling of the interdiffusion coefficients is
essential for construction of the forward problem and inverse problem.
Currently, modeling of the interdiffusion coefficients is subject to the
CALPHAD convention61, as detailed in Supplementary Methods.
With the numerical inverse method, the interdiffusion coefficients of the

concerned systems can be retrieved. Atomic mobility parameters are also

Fig. 9 Relation between diffusion rates and variation of configurational entropy. a View from absolute temperature: Deviation of the
effective tracer diffusion coefficients over various matrices against the quinary system at different temperatures; b View from normalized
temperature: Tracer diffusion coefficients of various components on the selected matrices at normalized temperatures.

Fig. 10 Projections of interdiffusion coefficients along different
composition coordinates. The dash lines refer to the bounds of the
related interdiffusion coefficients (~DNi

CoCo, ~DNi
CrCr, ~DNi

FeFe, ~DNi
MnMn) at

1073 K, while the solid lines are related to interdiffusion coefficients
due to the maximum a-posterior.
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available because the interdiffusion coefficients are parameterized
following the CALPHAD convention. In the previous applications of
numerical inverse method, both the interdiffusion coefficients and atomic
mobility parameters are accessible, although the number of the diffusion
couples involved in the calculation is less than 20. What’s more, when
interdiffusion coefficients serves as the target of calculation, HitDIC
performs nicely recovering the interdiffusion coefficients for the lower
systems. Regarding to the growing number of diffusion couples in
concerned dataset, advanced techniques and strategies are introduced in
the present work for pursing diffusion database of high-quality.

Variable-selection genetic algorithm
We assume K as the competing parameters in the total parameter space
M and a subset of them generates the observations, noted as x.
Associated with all the parameters, there is a vector of parameters θ, i.e.,
θ1; θ2; ¼ ; θK . We can introduce an additional vector of selection
parameters k, i.e., k1; k2; ¼ ; kK . The objective is to identify the true subset
as well as to estimate the parameters associated with the subset,

θMLEk
T ¼ argmaxp k;θjxð Þ (4)

where p k;θjxð Þ is the posterior probability distribution. Each parameter of
k is the indicator that takes the value 1 when the associated parameter
comes in to force and is 0 otherwise. According to the Bayes’ rule, Eq. (2) is
equivalent to Eq. (4), as

p xjk; θð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp � xl � ~xl θ; kð Þk k22

2σ2

 !
(5)

and

p k;θjxð Þ ¼ p k;θð Þp xjθ; kð Þ=pðxÞ (6)

where p xjk;θð Þ is the likelihood function. Here, σ is the variance of the
residual between the predictions and observations. Generally,
p xjθ; kð Þ=pðθ; kÞ is taken as constant, though p xjθ; kð Þ and pðθ; kÞ are
not explicitly accessible.
In most genetic algorithms, only two main components are of problem

dependence62, i.e., problem encoding and evaluation function. In order to
accommodate the problem of parameter selection and parameter
estimation for automatic evaluation of interdiffusion coefficients and
atomic mobilities, the binary encoding is adopted in the present work,

binary string ¼ H θ; kð Þ (7)

where H is the proposed encoding function. The proposed encoding
pattern is schematically illustrated in Fig. 1b, where the selection
parameters are laid out after the model parameters. Each selection
parameter takes only one allele, while the number of bits occupied by
individual model parameter may vary according to desired precision. The
laid-out of the encoding string has potential influence on the effects of
the operators of the genetic algorithm63, i.e., mutation and crossover. The
crossover operator includes different schemata, i.e., single-point, two-point,
uniform and arithmetic crossover, while the single-point/two-point cross-
over operator is adopted in the present work to retain the robustness of
the selection and optimization processes. To endow sufficient ability for
evolution, the mutation is uniformly considered for all bits via bit inversion
with a ratio of mutation about 1%.
The canonical genetic algorithm is responsible for parameter estimation

regarding to the evaluation and fitness of the problem. To fulfill the target
of parameter selection, the evaluation or the objective function must be
surrogated by introducing penalty on the number of effective model
parameters. As one of the fancy evolutionary algorithms, the genetic
algorithm possesses the features of being scalable and being flexible to
consider many criteria in the optimization processes. Referring to solution
with exhaustive selection and scoring scheme, the potential criteria, i.e., F-
test, information criteria and regularization, are the potential options. In
general, the fitness function is used for genetic algorithm for measuring
the driving force for evolution. Fitness is different from the objective
functions, noted as OBJðθÞ. The RSS, i.e., Eq. (2), is one of most popular
options for the objective function, where the least RSS is generally
pursued. Fitness function represents the probability of survival for the
population of the solutions, therefore, larger fitness values are more
desirable for the selection operators. Proper conversion is thus in need
between the objective functions and the fitness function. For a population

with P individuals, the fitness function, F, can be defined as

Fi ¼ 1� OBJi � OBJmin

OBJmax � OBJmin
(8)

With the fitness function, the selection operator for genetic algorithm can
therefore be conducted using the roulette over the fitness sequence.
One of the simplest and most convenient objective functions regarding

the parameter selection is the information criterion, which concerns the
model complexity and fitting goodness simultaneous, i.e., the AIC or BIC,

OBJAIC ¼ 2K � 2lnðL̂Þ (9)

or

OBJBIC ¼ K lnðNÞ � 2lnðL̂Þ (10)

where K is the number of the effective parameters, N is the number of
observations and L̂ is maximum value of the likelihood function. Generally,
L̂ cannot be directly accessible, though it can be related to RSS as detailed
in Supplementary Methods. Meanwhile, a study case for benchmarking is
available in Supplementary Discussion.

Regularization optimizer with automatic hyper-parameter
tuning
The regularization is generally served as a powerful tool for preventing the
overfitting while improving the generality of the assessed model and also
estimated parameters64,65. It is an important concept in the inverse
problem, machine learning and so on. The most common strategy for
regularization is to construct a surrogated objective function by
introducing penalty on L1/ L2 norm to the original objective function,
i.e., Eq. (2). With a regularization term λ, the objective function can be
reformulated as

OBJL1 ¼ RSSþ λ θk k (11)

for L1 regularization, and as

OBJL2 ¼ RSSþ λ θk k22 (12)

for L2 regularization. By determining an appropriate scale for the
regularization term, the results that balance the extrapolation and
explanatory capability of the proposed parameters/models are to be
acquired, when the arguments of the minimum of the surrogated
objective functions are resolved.
However, the regularization term is a tricky hyper-parameter, which

deserves meticulous tuning64,66,67. An algorithm for automatically tuning
the regularization term is proposed, as shown in Fig. 1c. Firstly, the
estimated effective parameters and their estimations are imported from
the variable-selection genetic algorithm. The least RSS ported from
variable-selection GA is then used to estimate initial regularization term.
The workflow then proceeds into a subroutine where the most appropriate
estimations, i.e., θReL1 or θReL2, are pursued until no significant change
takes place between subsequent iterations. The RSS value will be double-
checked to verify whether there is a significant increase in RSS of the
training dataset. The workflow will be terminated once the current RSS
value surpasses the least RSS at a certain degree. Or the regularization term
will be increased, and the subroutine to determine new alternative
estimations would be repeated. During the iterations, the least RSS will be
updated as if a new alternative with smaller RSS occurs.

Metropolis–Hastings sampler with multiple independent
chains
For the nonlinear inverse problem, the Bayesian inference might be the
only tool available for quantifying the uncertainty of the concerned model
and parameters. MCMC is one of the important interference tools based on
the Bayes’ rule68,

p θjxð Þ ¼ p θð Þp xjθð Þ=pðxÞ (13)

The posterior distribution, i.e., p θjxð Þ, is generally not able to produce
estimations, i.e., θ̂, directly, however, it can be employed in a reversible
Markov process during the Monte Carlo simulation. The samples are then
drawn from the target distribution, while the posterior estimations can,
therefore, be obtained. However, the Bayesian inference with the MCMC
method is generally challenging for model with large parameter space and
dataset of large sample size, considering the cost of time and computing
expenses69. This is partly due to the computational cost of such methods,
since the evaluation of the objective function, i.e., Eq. (5) or Eq. (13), is
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generally computing expensive. Sufficient random walks are expected
such that the obtained posterior distribution reaches a stationary state,
which might require tens or hundreds of times of iterations more than the
optimization or regularization processes.
In the naive Metropolis–Hastings algorithm, the posterior distribution is

evaluated with respect to all the samples in the dataset, assuming that all
samples, i.e., x, are independently measured. In addition, the multiple
independent chains, i.e., M, are employed in the present work to draw
samples from the posterior distribution of m parameters. One very long
chain for MCMC is not applicable for a tall dataset due to time efficiency,
and thus increasing the number of chains and running the chains in
parallelism would be a promising alternative. The overall workflow of the
developed sampling kernel is illustrated in Fig. 1d. It is worthy of
mentioning that the initial estimations for the MCMC sequences are ported
from those produced by regularization processes in order to let the MCMC
chains locate around the high probability regions.

Implicit solver for multicomponent diffusion equations
In the inverse problem, the solver to the forward problem is extremely
essential for the inverse process. To ensure the stability of the forward
simulation process, a fully implicit finite difference scheme is applied to
relax the stable condition constrained by step sizes of space and time. Prior
to the demonstration of the proposed scheme, benchmarks are available
in Supplementary Methods.
On a one-dimension domain representing a diffusion couple, taking the

i-th grid node as an example, the conjugated grids are li�1 and liþ1, and h�i
and hþi are the spacings before and behind the current grid node.
Imposing finite difference scheme on Eq. (3), the recursive formula for the
p-th component of a system with M components can be formulated

� ctþ1
p;i�1

2Dtþ1
pp;i�1=2

h�i h�i þhþið Þ
� �

þ ctþ1
p;i

1
Δt þ

2Dtþ1
pp;iþ1=2

hþi h�i þhþið Þ þ
2Dtþ1

pp;i�1=2

h�i h�i þhþið Þ
� �

� ctþ1
p;iþ1

2Dtþ1
pp;iþ1=2

hþi h�i þhþið Þ
� �

¼ 1
Δt c

t
p;i þ

PM�1

q≠p

2Dtþ1
pq;i�1=2

h�i h�i þhþið Þ c
tþ1
q;i�1 �

2Dtþ1
pq;iþ1=2

hþi h�i þhþið Þ �
2Dtþ1

pq;i�1=2

h�i h�i þhþið Þ
� ��

ctþ1
q;i þ 2Dtþ1

pq;iþ1=2

hþi h�i þhþið Þ c
tþ1
q;iþ1

�
(14)

where Δt is the time step. To fulfill numerical simulation, the coefficient
terms can be rewritten in the form of matrix and vector,

Atþ1
pp;i;i ¼

2Dtþ1
pp;iþ1=2

hþi h�i þ hþi
� �þ 2Dtþ1

pp;i�1=2

h�i h�i þ hþi
� � (15)

Atþ1
pp;i;i�1 ¼

2Dtþ1
pp;i�1=2

h�i h�i þ hþi
� � (16)

Atþ1
pp;i;iþ1 ¼

2Dtþ1
pp;iþ1=2

hþi h�i þ hþi
� � (17)

btþ1
p;i ¼ 1

Δt c
t
p;i þ

PM�1

q≠p

2Dtþ1
pq;i�1=2

h�i h�i þhþið Þ c
tþ1
q;i�1 �

2Dtþ1
pq;iþ1=2

hþi h�i þhþið Þ �
2Dtþ1

pq;i�1=2

h�i h�i þhþið Þ
� ��

ctþ1
q;i þ 2Dtþ1

pq;iþ1=2

hþi h�i þhþið Þ c
tþ1
q;iþ1

� (18)

where Atþ1
pp is the coefficient matrix on the left-hand side of Eq.(14), btþ1

p is
the right-hand side of Eq.(14). For zero-flux boundary condition,

Atþ1
pq;0;0 ¼ 1;Atþ1

ij;0;1 ¼ �1; btp;0 ¼ 0 (19)

and

Atþ1
pq;N�1;N�1 ¼ 1;Atþ1

pq;N�1;N�2 ¼ �1; btp;N�1 ¼ 0 (20)

Equations (14)–(20) subject to a set of linear equations, where the
coefficient matrices are in the form of tri-diagonal matrices, i.e.,

Atþ1
pp ctþ1

p ¼ btþ1
p (21)

which can be solved easily with tri-diagonal matrix algorithm. In case that
Atþ1
pp and btþ1

p are implicit, additional operations are required to estimate
the two terms for each time step as illustrated in the Algorithm 1 of
Supplementary Methods.

Parallelism of cost evaluator
The bottleneck of the efficiency for the numerical inverse method lies in the
time-consuming process of evaluating the objective function. In the
framework of HitDIC software, a cost evaluator is responsible for calling
the solver to diffusion equations to produce predictions, and calculating the
deviation between the predictions and observations for the output of the
objective function. For the sample dataset of large size, the evaluation of
objective function is computationally expensive, which may be unfeasible
without HPC. To assess the computing resources on HPC, the parallelism
with MPI technique is adopted for the cost evaluator, as illustrated in Fig. 8a.
The proposed parallelism mechanism behind the cost evaluator is suitable
for genetic algorithm, MCMC with multiple chains and so on. Taking the
genetic algorithm as an example, each iteration is required to evaluate cost
for multiple guesses in a population, while the cost evaluator for each guess
relies on the predictions to multiple samples in the training dataset. More
specifically, the guesses and the samples are firstly rearranged to form the
sequence of tasks in the master node. Once tasks are ready, the signal from
the master node will be sent to the workers in the worker pool, while
the workers will then offload tasks from master node repeatedly. In an active
worker process, the cost evaluator would be executed in sequence, while
the value of objective function will then be transferred back to the master.
State of the worker will then be flushed and it will wait in the pool for the
remaining tasks. The master node is responsible for offloading tasks and
collecting the results to/from the computing nodes, and returning the
results to different optimization solvers.
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