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The glassy solid as a statistical ensemble of crystalline
microstates
Eric B. Jones 1,2 and Vladan Stevanović 1,2✉

We present an alternative and, for the purpose of non-crystalline materials design, a more suitable description of covalent and ionic
glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. Motivated by the concept of
partially broken ergodicity, we analytically formulate the set of approximations under which the structural features of ergodic
systems such as the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity can be rigorously expressed as
statistical ensemble averages over different local minima. Validation is carried out by evaluating these ensemble averages for
elemental Si and SiO2 over the local minima obtained through the first-principles random structure sampling that we performed
using relatively small simulation cells, thereby restricting the sampling to a set of predominantly crystalline structures. The
comparison with XRD and RDF from experiments (amorphous silicon) and molecular dynamics simulations (glassy SiO2) shows
excellent agreement, thus supporting the ensemble picture of glasses and opening the door to fully predictive description without
the need for experimental inputs.
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INTRODUCTION
Modern approaches to describing the atomic structure of non-
crystalline solids are predicated upon the three classical models: (i)
the continuous random network (CRN) for covalent and ionic
systems, (ii) random close packing for metallic glasses, and (iii) the
random coil model for polymeric glasses1. While the random close
packing and random coil models are defined statistically over an
ensemble of random packings and random conformations
respectively, the CRN is usually conceptualized in terms of a
single “optimal” structural model2. Depicted in the left-hand side
of Fig. 1, the optimal structure is a single microstate that
minimizes the total energy subject to a certain bonding topology
constraint3.
That the covalent (or ionic) non-crystalline macrostate is also

identifiable with an ensemble of microstates can be understood by
considering the instance in which a glassy state is obtained by
supercooling from a liquid. To clarify, we use the terms “glass” or
“glassy state” to refer to a non-crystalline state obtained
specifically by supercooling a liquid and the term “amorphous”
to discuss non-crystalline solids obtained by any other means4. A
liquid can be described as a point in 3N dimensional configuration
space thermally sampling different local potential energy minima
and their attraction basins5,6. Liquids are ergodic. Time averages of
liquid properties are equivalent to ensemble averages on the
timescales accessible to experiment. Upon supercooling, the
resulting glassy state is no longer fully ergodic; not every
microstate strictly allowable by energy considerations is accessible
over experimental timescales. However, given that the configura-
tion point of the liquid roams freely over the potential energy
surface, it has been pointed out that a realistic quenching scenario
involves the configuration point becoming kinetically constrained
to some smaller region of configuration space, partially breaking
the full ergodicity but otherwise able to thermally sample and
locally relax between different basins of attraction in the glassy
state7–9.

This picture of glassy state formation complements and
supports the concept known as “confusion” as described by A.
L. Greer, which explains the formation of glasses in metallic
systems with complex alloy structure10. By creating an alloy with
many elements of widely varying atomic radii—Zr41.2Ti13.8Cu12.5-
Ni10.0Be22.5, for example—the potential energy surface remains so
complex upon supercooling from the liquid there becomes a very
low “chance that the alloy can select viable crystal structures, and
the greater the chance of glass formation” there becomes. From
the perspective of partially broken ergodicity, the alloy attempts
to visit all viable crystalline local minima accessible to it and
therefore winds up in a glassy state, which equates structurally to
an average over that set of minima.
In the present work, we present a general theory for describing

the atomic scale structure of glassy states, which is in harmony
with the concept of only partially broken ergodicity and which
allows for the covalent and ionic glassy solids to be treated in a
statistical manner on equal footing with metallic and polymeric
glasses. We emphasize that the ensemble picture described in this
paper does not equate to the well-known crystallite hypothesis in
which the glassy state is described as spatially local regions of
crystalline material—typically the ground state crystal structure—
embedded in a disordered matrix11. Rather, as we will demon-
strate an accurate interpretation of our results is that the structural
features such as the X-ray diffraction (XRD) pattern and the radial
distribution function (RDF) of the glassy state, broadly character-
ized as a non-periodic arrangement of atoms (local minimum) in a
macroscopically large unit cell, can be approximated as a linear
combination of the same structural features of many other local
minima, which do exhibit translational symmetry with relatively
small unit cells. The fact that the linear combination is formulated
as a thermodynamic average implicates the concept of partially
broken ergodicity and brings dynamics and fluctuations into the
picture. We thus argue neither for the notion of spatially localized
crystallinity nor the existence of an embedding disordered matrix.
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The idea of approximating non-periodic local minima as a linear
combination of finite number of periodic ones can be found in
lattice models such as the cluster expansion12,13. Cluster expan-
sion is a model Hamiltonian, a generalization of the Ising model,
often used when modeling alloys. It contains a finite number of
interaction terms (clusters) with the parameters describing
interaction strengths (the Js) typically obtained by fitting to the
first-principles computed total energies of a finite set of ordered
(small-cell, periodic) structures14. Thus, when computing the
energy of a large-cell, disordered alloy configuration using a
cluster expansion, one effectively uses an implicit linear combina-
tion of a finite number of ordered structures. What is new in our
work is a generalization of these ideas to systems that do not
contain an underlying lattice. Our results show that these kinds of
systems can also be represented as linear combinations of a finite
number of small-cell, periodic structures, each with their own
underlying lattice.
We proceed to show analytically how important structural

descriptors of the glassy state can be calculated as averages within
such an ensemble framework. The two quantities we choose to
calculate are the RDF, which captures the local order of the state,
and the XRD intensity, which captures the long-range order of the
state. For our theoretical development, we make no assumptions
regarding the structural periodicity of the ensemble microstates.
However, we will find that evaluating the RDF and XRD
expectation values for structural ensembles with a periodic unit
cell as small as 24 atoms reproduces experimentally measured
RDF and XRD patterns remarkably well for amorphous silicon (a-
Si). This result therefore establishes the “crystalline ensemble,”
shown on the right-hand side of Fig. 1 as an accurate, approximate
view of the glassy state. Similar ideas have been introduced
previously by Curtarolo and co-workers who proposed a spectral
descriptor for predicting glass-forming metallic alloys based on
enthalpy distribution of ordered structures: the more dissimilar the
structures with similar energies, the higher is the probability of
formation of the glassy state15.

RESULTS
Ensemble construction
In order to show the decomposition of the glassy RDF into a
thermal average, we begin with the expression for the two-point
density function for our glassy solid in the isothermal–isobaric (N,
p, T) ensemble16. We choose this ensemble because it is under
constant number of particles, temperature, and pressure (rather
than volume) that many practical experiments take place, and
which therefore need to accommodate microstates of varying
volume. We will hence consider the enthalpy as the relevant
thermodynamic potential. Later, we will set p= 0 for simplicity.
However, for the present theoretical development, it is important

to keep pressure arbitrary so as to allow for microstates of
differing volume, as mentioned above, since the volume of the
glassy state should be derivable as an expectation value, not taken
as an empirical input. The ensemble expectation value for the two-
point density function of an ergodic system reads:

nð2Þðr0; r00Þ ¼ h
XN

i¼1

X

j≠i

δðri � r0Þδðrj � r00Þi
ðN;p;TÞ

¼

¼ 1
Ξ

Z
dV

Z
dr1:::drNe�βðUðr1;:::;rN ;VÞþpVÞ

´
XN

i¼1

X

j≠i

δðri � r0Þδðrj � r00Þ; (1)

where Ξ is the partition function, U potential energy, and U+ pV
enthalpy of the system of N particles. The double summation in
the integrand runs over all particle pairs, and thus nð2Þðr0; r00Þ
describes the probability that any two particles occupy simulta-
neously the positions r0 and r″. Next, we split the configurational
integrals in Eq. (1) into a sum of integrals over the basins of
attraction Bα of various potential enthalpy minima (labeled α). In
this summation, we multiply and divide by the intra-basin
partition function Ξα �

R
Bα
dVdr1:::drNe�βðUðr1;:::;rN ;VÞþpVÞ . This

allows us to express the two-point density function exactly as a
weighted sum over two-point density functions constrained to
reside within the basins {Bα}.

nð2Þðr0; r00Þ ¼
X

α

Pα nð2Þα ðr0; r00Þ (2)

The Pα= Ξα/Ξ in Eq. (2) are the ensemble probabilities of
individual local minima, which we showed previously to correlate
with the experimental realizability of metastable polymorphs17,18.
To evaluate these probabilities, we will assume the “flat basin
approximation,” i.e., that the potential enthalpy adopts a square
well shape in every basin of attraction. Under this approximation,
Pα � f α exp � hα

τ

� �
=Ξ, where hα is the enthalpy per particle at the

local minimum of the basin Bα, τ= kBT/N is an effective (scaled)
temperature, and fα is the hypervolume of the basin Bα. We also
showed that fα can be estimated from the relative frequency of
occurrence of a local minimum α in the first-principles random
structure sampling (explained below). Meanwhile, nð2Þα ðr0; r00Þ is the
intra-basin expectation value of the two-point density operator.
We will approximate the intra-basin average by the two-point

density function found at the minimum of the basin Bα. Given the
relationship between the two-point density function and the two-
point correlation function nð2Þðr0; r00Þ ¼ hni2gð2Þðr0; r00Þ with 〈n〉 the
ensemble averaged global number density, we express gð2Þðr0; r00Þ
also as a weighted sum using Eq. (2)

gð2Þðr0; r00Þ ¼
X

α

nα
hni

� �2

Pα gð2Þα ðr0; r00Þ: (3)

where nα is the global number density of the minimum of the
basin Bα. In order to derive the RDF, we perform three more steps.
First, make the coordinate transformation to a “displacement”
coordinate r ¼ r0 � r00 and a “center of mass” coordinate,
R ¼ 1

2 ðr0 þ r00Þ. Second, volume average g(2)(r, R) over the center
of mass coordinate. And third, average the resulting pair
correlation function g(2)(r) over the polar coordinates of θr and
ϕr. The final expression for the RDF as a weighted sum is:

gð2ÞðrÞ ¼
X

α

nα
hni

� �
Pα gð2Þα ðrÞ: (4)

And using the relationship between the structure factor and the
pair correlation function S(q)= 1+ 〈n〉∫〈V〉dre

−iq⋅rg(2)(r), one can
show that the powder diffraction intensity I(2θ) can be similarly

Crystalline
Ensemble

+

+

Continuous Random
Network

Glassy
Solid

Fig. 1 Two descriptions of the covalent and ionic glassy solids.
The widely accepted continuous random network model describes
the glassy state as a single microstate. Meanwhile, our findings
speak to a statistical ensemble of crystalline microstate description
that features remnant, but reduced, ergodicity from the liquid.
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expressed (see Supplementary Material)16 as:

Ið2θÞ ¼
X

α

Pα Iαð2θÞ: (5)

Here we pause to comment on the relationship between the
glass-forming ability (GFA) descriptor introduced by Perim et al.,
the derivations in this section, and Eq. (2) in particular15. For a
fixed stoichiometry {x}, the GFA descriptor reads
χGFAðfxgÞ ¼

P
i f ðHiÞgð ψij iÞ=hðfxgÞ. Each f(Hi) plays a role equiva-

lent to Pα in Eq. (2), the difference being that each f(Hi) takes into
account the Boltzmann-type weighting of a local minimum while
each Pα additionally integrates the Boltzmann contribution of the
basin of attraction to the local minimum. Meanwhile, gð ψij iÞ gives
a numerical factor that assesses the structural similarity of the local
minimum ψij i to the ground state crystal structure ψ0j i, and h{(x)}
is a normalization constant. Equivalently, each nð2Þα ðr0; r00Þ in Eq. (2)
constitutes a normalized measure of structural similarity to the
ground state insofar as similar crystal structures will share similar
two-point density functions. One could therefore imagine
calculating any of the expectation values in this section through
a range of compositions at some fixed τ. At some compositions,
the RDF, for example, might contain sharp coordination shell
peaks, while at another composition, such peaks might become
more broadened. We expect that such correspondences would
occur at compositions where the GFA descriptor displays little
prominence and pronounced peaks, respectively. Such tandem
calculations could be an interesting direction for future work.
Having formulated the conditions under which the glassy RDF and
XRD can be evaluated by proper statistical averages over sets of
potential enthalpy minima, we would like to emphasize that these
derivations do not suggest whether the minima are ordered (i.e.,
representable within a small size unit cell) or not. What we will
show next in the numerical evaluation of XRDs and RDFs for
silicon and silica glass, the details of which are outlined in the
“Methods” section, is that an accurate description of these
quantities can be obtained if one restricts the set of local minima
only to small-cell, periodic structures.

Evaluation of observables
We note that, from hereon, all calculated observable quantities
will be cited at p ≈ 0 GPa in order to be able to reference them
against experimental data. The terms “energy” and “enthalpy” will
therefore be synonymous in the following. In order to understand
the effective thermodynamics of our ensemble, we plot two
important thermodynamic quantities in Fig. 2 as a function of the
ensemble effective temperature τ= kBT/N for elemental Si. The
expectation value of the energy per particle relative to the
diamond Si ground state, 〈E〉− EGS, is shown in black, while the
expectation value of the volume as a fraction of the ground state
volume, 〈V〉/VGS, is shown in gray (right axis). All of these
expectation values are obtained using previously derived ensem-
ble averaging formulae and the large number of local minima
generated using the first-principles random structure sampling
procedure explained in detail in the “Methods” section. Briefly, this
procedure involves generating fully random unit cell vectors and
atomic positions for N atoms of a predefined chemical identity.
Subsequently, all of these random structures are fully relaxed
(volume, cell shape, and positions) to the closest local minimum
using density functional theory and the steepest descent
algorithm. Solid and dashed lines in Fig. 2 correspond to the
results with N= 24 atoms (~10,000 random structures) and N= 16
atoms (~15,000 random structures), respectively.
All curves shown display the sigmoid-type signature of an

effective order–disorder phase transition, with increasing unit cell
size N= 16→ 24 rendering the character of the transition sharper.
While the low τ regime, demarcated by shaded blue region, clearly
describes the ground state properties of the system—zero energy

and unit fractional volume—the high τ regime (red shading)
involves a large density of states with energy roughly clustered
around ~0.3 eV/atom, leading to a high τ energy expectation,
which asymptotes to that value. Meanwhile, the fractional volume
in the high τ limit goes to ~0.89.
Given evidence of an effective order–disorder transition, we

now proceed to show that the ground (low τ) state corresponds to
diamond silicon (d-Si) and that the high τ state corresponds to an
ideal silicon glass (g-Si). In Fig. 3a, we show ensemble RDFs for the
low τ regime (blue) and the high τ regime (red), averaged

Fig. 2 Evidence of effective order–disorder transition. Energy
expectation value and fractional volume per atom as a function of
the effective temperature τ. A low τ and high τ regime are clearly
discernible, which correspond to structurally ordered and disor-
dered states, respectively.

Fig. 3 Accurate prediction of short- and long-range order for
ideal, glassy Si. In both the ensemble averaged a RDF and b XRD
patterns, the low τ regime shows the characteristic peaks of
diamond silicon while the high τ regime displays remarkable
agreement with the experimental RDF and XRD for a-Si.

E.B. Jones and V. Stevanović

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    56 



according to Eq. (4) with a unit cell of N= 24 atoms. We also plot
the experimental RDF for a-Si prepared by ion implantation (black
dots)19. The distinct crystalline peaks of the low τ RDF confirm that
our ground state structure indeed corresponds to d-Si20. At high τ,
we find that the RDF broadens and overlays the experimental RDF
to a rather remarkable degree of accuracy. This agreement in the
local ordering of a-Si demonstrates that averaging the local order
parameter (RDF) of an ensemble of crystalline arrangements of
atoms can be described according to the principle of partial,
remnant ergodicity.
Figure 3b contains powder XRD patterns, again for the

ensemble low and high τ regimes averaged according to Eq. (5)
and for an experimentally prepared a-Si21. The low τ peaks again
clearly demonstrate the crystallinity of the d-Si ground state22.
Meanwhile, the high τ averaged XRD faithfully reproduces the two
broad experimental humps shown in black. Given that each
individual microstate in our ensemble possesses sharp diffraction
peaks—due to a long-range order on the periodic 24 atom cell—
the two broad humps in the high τ regime must result from the
thermal superposition destroying the long-range order found in all
of the constituent microstates. Therefore, within the context of our
present framework, one can effectively describe the lack of long-
range order in a glassy solid as resulting from an incommensu-
rateness in the long-range order of different (periodic)
microstates.
Having established that the crystalline ensemble correctly

reproduces both the short- and long-range order parameters of
a-Si, we turn to a discussion of two other important measured
properties of disordered silicon states, the excess enthalpy and the
density, in order to elucidate the high τ state as describing g-Si.
The excess enthalpy of liquid silicon over that of the crystal has
been measured to be ~0.47 eV/atom23. Recall that the high τ state
has an excess energy of ~0.3 eV. From the perspective that a liquid
shares many of the same configurational states with its
corresponding glass and differs mostly with respect to some
added kinetic energy, the high τ state sits at an energy value
identifiable with glassy states potentially accessible by very fast
melt quench. Indeed, if we approximate the kinetic energy of an
atom in liquid silicon at temperature T as (3/2)kBT and use the
melting temperature of silicon (1687 K), then the kinetic energy
per Si atom is 0.22 eV. The estimate of the excess enthalpy of
liquid silicon with respect to the crystalline phase is then 0.22+
0.3= 0.52 eV. The measurement of 0.47 eV/atom constitutes a
lower bound for the excess enthalpy per atom of liquid Si, with
0.47–0.52 eV/atom the full range cited in ref. 23. Our calculation of
configurational excess enthalpy, coupled with a simple estimate of
kinetic excess enthalpy from the equipartition theorem, is
therefore able to accurately replicate the excess enthalpy of
liquid Si with respect to the crystalline ground state. This view is
supported by the fact that the fractional volume asymptotes in the
high τ limit to ~0.89 at N = 24, representing a 2% error relative to
the experimental value of the volume of liquid Si as a fraction of
the volume of the diamond Si (Vliq./VGS ≈ 0.91), shown as a green
point in Fig. 2. Note that the effective temperature at which the
experimental Vliq./VGS is plotted corresponds to the physical
melting temperature of d-Si, T= 1687 K24.
We therefore predict that the ideal g-Si should be more dense

than d-Si, consistent with the fact that liquid Si is also more dense.
The ideal CRN model also predicts that g-Si should be more dense
since any variation in bond angles from perfect tetrahedral
coordination densifies the structure25. By contrast, a-Si has been
measured to be 1.8% less dense than d-Si26. This density deficit is
attributable to a large concentration of coordination defects in the
glassy structure due to the ion implantation2,19,27,28, which also
lower the excess energy of a-Si to around ~0.07–0.15 eV/atom as
measured by differential scanning calorimetry29,30. A quenching
method that is fast enough to produce the true glass transition

should, according to our results and the discussion from ref. 25,
create the high τ g-Si.

Cell size and the number of structures
Given all this, one might ask about the dependence of these
results on both the number of atoms in the simulation cell and the
number of structures needed to accurately represent XRD and RDF
of a-Si. To answer these questions, we performed the following
exercise. We treated the RDF and XRD from Fig. 3, computed with
N= 24 over approximately 10,000 random structures, as a
reference, and asked how many structures at fixed N are needed
to reproduce those curves to within a somewhat arbitrary 0.03
average absolute deviation. The deviation is calculated as an
integral ∫∣RDF− RDFref.∣dr divided by ∫RDFref.dr where RDFref. is the
reference RDF. Analogous equation is used for the XRD.
As expected, larger the cell size used in the random structure

sampling less structures one needs to get within a certain
tolerance and this is true for both RDF and XRD. However, one
does not achieve a given tolerance with the same number of
structures. Again, not surprisingly, it takes more structures to
converge XRD than RDF, as XRD is generally more sensitive to
long-range correlations that are present in finite size structures.
From our calculations, it requires only 450 structures with N= 24
to get within 0.03 of the reference RDF and about 1300 structures
to get converged XRD. With smaller number of atoms, however, it
becomes much harder to reach this accuracy. With N= 16, one
needs about 4300 structures to converge RDF, and even with
~15,000 random structures, the average absolute deviation is
hardly <0.05 in XRD. As shown in Fig. 4, this is mainly because of
the relatively sharp features in the ensemble averaged XRD
patterns that remain for N= 16 as well as N= 12 implying a level
of long-range correlations not present in the glassy state. Further
decrease in the cell size to N= 12 render achieving the target
accuracy unattainable for both XRD and RDF with the total of
nearly 10,000 structures we calculated. This result indicates that
for a given accuracy there exists a lower limit in the number of
atoms needed to describe the disorder in the glassy state.
Furthermore, there are also trade-offs between the size and the
required number of structures that one needs to be mindful of
when employing this methodology to model glassy solids.

Beyond Si
Finally, in order to demonstrate that our results are generally
applicable, we show three partial RDFs for vitreous SiO2 in Fig. 5.
The red curve in each panel corresponds to the high τ state while

Fig. 4 The ensemble averaged high-τ X-ray diffraction patterns
calculated for different unit cell sizes and different number of
structures. The curves are manually shifted along the y-axis for
clarity. The blue curve (N= 24 with ~10,000 structures) is used as a
reference while all the others illustrate the size and number of
structure dependence (see text for details).
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the dotted black line represents the RDF from a structural model
of amorphous silica (a-SiO2) obtained by a molecular dynamics
calculation by Hoang on a 3000-atom unit cell31. Here again, the
high degree of agreement between the partial RDFs calculated as
a single microstate on a large supercell (black) and our high τ RDFs
calculated as ensemble averages of ~4000, 24-atom crystalline
microstates (red) establishes the mutual compatibility of these
viewpoints in describing glassy structure. Furthermore, the first
coordination shells of Si with O and O with Si are computed to be
~4.01 and ~2.01 respectively, consistent with known experimental
measurements32. The small discrepancy in peak heights in the
Si–Si and O–O components of Fig. 5a, c are a result of a splitting of
the first coordination shells and attendant creation of small peaks
below the hard-core radius due to a small set of crystalline
microstates with substitutional disorder between Si and O sites.
This splitting is expected to wash out in a larger sampling of the
potential energy surface. Finally, we mention here that, although
our methodology performs well in characterizing structural
descriptors of glassy states due to its present form as a
configurational theory, dynamically dependent quantities such
as specific heat remain most easily and accurately calculated via
supercell-based methods such as parallel tempering molecular
dynamics33. Efficient formulations of ensemble expectations for
dynamical observables is an interesting direction for future work.

DISCUSSION
We have shown that both the short- and long-range order of
covalent and ionic glassy solids can be accounted for by taking
thermal averages over an ensemble of crystalline microstates, thus
validating the concept of remnant partial ergodicity in these
systems. We have also laid out the framework and the
approximations within which the ensemble picture rigorously
follows from the statistical treatment of fully ergodic systems. The
partial ergodicity is taken into account by considering the
potential enthalpy of the system and including only low-energy

local minima obtained through the first-principles random
structure sampling. Such an approach is consistent with the
principle of remnant ergodicity within a region of configuration
space and affords a fully first principles (no fitting to experiments)
accounting of the structural features of glassy Si and SiO2. At the
same time, the crystalline ensemble model opens the door to
calculating functional properties of glasses by averaging over the
contributions to those properties carried by each microstate in the
ensemble.

METHODS
Computational random structure sampling
The computational construction of an ensemble of structural microstates
and attendant evaluation of ensemble averages utilizes the first-principles
random structure sampling to generate the atomic configurations that
reside at local minima, calculate their enthalpy hα, and assess their
associated basin hypervolumes fα relative to one another. We remark that
these three steps have been thoroughly detailed in our previous work17,18,
so we simply sketch them here.
The first step is to generate large number of random initial structures

with a fixed number of atoms in a unit cell N. For Si, we will show results for
N= 16 and 24, while for SiO2 we will cite results just for N= 24. We find
that N= 24 is sufficient in each case to attain converged RDF and XRD
patterns via ensemble averaging. Once N has been chosen, a random unit
cell geometry is specified by choosing randomly three lattice constants, a,
b, c and the corresponding angles α, β, γ. The unit cell is then populated
(quasi)randomly with N number of atoms. In case of Si, the population is
truly random, while for SiO2 we utilize the random superlattice
construction17 that biases the structures toward predominant Si–O
coordination. For Si, 15,000 such random structures were generated with
N= 16 atoms in the unit cell and 10,000 structures were generated for
N= 24. For SiO2, 4000 random structures were generated with N= 24.
Volume, ionic, and cell-shape degrees of freedom were relaxed for all
initialized random structures using the VASP implementation of density
functional theory (DFT) with the projector augmented wave method and
Perdew, Burke, Ernzerhof exchange correlation functional34–36. Calculations
were restarted until total energy converged to within 3meV/atom
between successive ionic steps and until residual forces and pressures
were below 10−4 eV/atom and 3 kbar, respectively. Once relaxed, the
enthalpy was then evaluated at each minimum using the DFT-calculated
total energy and volume per atom hα= Eα+ pVα.

Evaluation of ensemble averages
Finally, note that, in the evaluation of an ensemble average, atomic
structures that show up more than once will naturally generate a
multiplicity fα relative to the total number of structures relaxed owing to
the additivity of equivalent Boltzmann factors, i.e., for some observable A:

hAi ¼
X

α

Aα
e�hα=τ

Ξ
¼

X

α0
Aα0 f α0

e�hα0 =τ

Ξ
; (6)

where α here indexes the crystal structure at each local minimum just as it
is found after the initial random structure sampling process and α0 indexes
equivalence classes of local minimum such that crystal structures found
within the equivalence class are the same. The multiplicity fα therefore
quantifies the fraction of configuration space, which leads to the structure
α0 as the stable local minimum. Therefore, we do not need to sort
structures into equivalence classes before taking the average and the
relative size of different basins of attraction is naturally included.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
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Fig. 5 Partial radial distribution functions for the components of
vitreous SiO2. The three partial RDFs considered are a Si–Si, b Si–O,
and c O–O. At high τ, the RDF expectation values agree well with
previously calculated molecular dynamics results from Hoang31.
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