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Role of atomic-scale thermal fluctuations in the coercivity
Yuta Toga 1,2,3✉, Seiji Miyashita2,3,4, Akimasa Sakuma5 and Takashi Miyake 2,6

The microscopic mechanism of coercivity at finite temperature is a crucial issue for permanent magnets. Here we present the
temperature dependence of the coercivity of an atomistic spin model for the highest-performance magnet Nd2Fe14B. For
quantitative analysis of the magnetization reversal with thermal fluctuations, we focus on the free energy landscape as a function of
the magnetization. The free energy is calculated by the replica-exchange Wang–Landau method. This approach allows us to
address a slow nucleation problem, i.e., thermal activation effects, in the magnetization reversal. We concretely observed that the
thermal fluctuations lead to a downward convexity in the coercivity concerning the temperature. Additionally, through analyzing
the microscopic process of the thermal activation (nucleation), we discover the activation volume is insensitive to a magnetic field
around the coercivity. The insensitivity explains the linear reduction of the free energy barrier by the magnetic field in the
nucleation process.
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INTRODUCTION
Demands on high-performance permanent magnets have become
an imperative subject of the save-energy technology for sustain-
able environments1,2. To improve the performance of magnets,
there is often a great desire to understand the temperature
dependence of coercivity. Experimental and theoretical researches
have been extensively carried out to investigate the microscopic
understanding of the coercivity mechanism from atomic-scale
magnetic structure3–10. Recently, a scanning hard X-ray microp-
robe was employed to visualize the nucleation and domain wall
motion of magnetization reversal processes from the grain
boundary interfaces in the highest performance magnet
Nd2Fe14B

8. Until now, a study on the microscopic approach to
temperature effects on coercivity, especially a slow nucleation
process, has not been reported. The nucleation leads to the
observation time dependence of the coercivity. This is phenom-
enologically known as coercivity reduction by thermal activation
effect11–15.
Large reduction of coercivity from the theoretically expected

value is an essential current problem which has been called
"Discrepancy to theory" by Kronmüller et al.16. In this regard,
extensive works have been done to elucidate the reason for the
discrepancy17–21, but not yet clear from the atomistic viewpoint.
The present paper studies the reduction due to thermal
fluctuations. The magnetization reversal is a transition from a
metastable state to a stable state by overcoming energy barriers
under a reverse magnetic field. In this overcoming process, a
reverse nucleus is formed. Under thermal fluctuations, the
nucleation occurs stochastically, that is, thermal-activated relaxa-
tion. Thus the coercivity, i.e., the threshold field, depends on the
observation time. In the permanent magnet applications, the
metastable state is required to be stable for the duration of
the order of a second. To handle such a slow relaxation process, a
method that uses the energy landscape has been developed, also
known as the minimum energy path (MEP)22. For the magnetiza-
tion reversal, MEP has been studied in the continuum approxima-
tion models with parameters with respect to a given

temperature15,18,19,23. However, the aforementioned method has
not considered thermal fluctuations. In the present work, we
propose an approach to evaluate the temperature dependence of
the coercivity from a microscopic viewpoint by using an atomistic
model. In contrast to the MEP, the present technique directly
handles thermal fluctuations and also the atomistic information in
the magnetization reversal process. In particular, we focus on the
Neodymium (Nd) magnet Nd2Fe14B

24.
The coercivity is a non-equilibrium concept concerning the

collapse of a metastable state, but not expressed by an
equilibrium expectation value. Thus, we need a dynamical model.
The relaxation time is estimated from the free-energy barrier FB by
using the form (like Arrhenius law):

τ ¼ τ0e
βFB ; (1)

where τ0 is the reciprocal of the attempt frequency, which is
typically set to 10−11 s12. Then, for the observation time of 1 s,
setting τ= 1 s, the barrier height is given by FB= 25.3 kBT. The free
energy is given by the Nd2Fe14B atomistic spin Hamiltonian, which
was recently developed and successfully reproduced static
properties of the Nd2Fe14B magnet (shown in “Methods”)25.
To calculate the free energy as a function of the z-component of

the magnetization F(Mz) for a huge system (up to 24.6 nm ×
24.6 nm × 25.6 nm, 1,130,626 spins), the size required to handle a
nucleation process, we have developed an approach for the
coercivity calculation based on the replica-exchange
Wang–Landau (REWL) method26,27. Remarkably, we can perform
an efficient parallelization scheme for the original Wang–Landau
Monte Carlo (WLMC) method28 (see “Methods”).

RESULTS AND DISCUSSION
Temperature dependence of the coercivity
The obtained F(Mz) for zero magnetic field (Hz= 0) at T ¼ 0:46 T cal

C
is depicted in Fig. 1a by the red curve (TcalC is the Curie
temperature of the model). Notably, this is the quantitatively
correct (not schematic) form of F(Mz) for an atomistic spin model
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representing the Nd2Fe14B magnet. Shapes of the free energy with
the reverse magnetic fields Hz are exactly given by F(Mz) + μ0HzMz.
This is clearly illustrated in Fig. 1a. Close to the spinodal point, the
point at which the metastability disappears, magnetization
reversal occurs when the free energy barrier FB (see Fig. 1a)
becomes compatible with the temperature. The Hz dependence of
FB is given in Fig. 1b, where we define H0 as the field at which
FB= 0. Similarly, Hc is defined as the field at which FB = 25.3 kBT.
We call the former "spinodal field" and the latter "coercivity with
thermal activation". As mentioned above, Hc corresponds to the
coercive field for the observation time τ= 1.0 s. In order to see
how the magnetization reversal initiates, in Fig. 1c, we depict the
spatial distributions of the magnetization reversal probability at
the points shown by arrows in Fig. 1a, which were obtained by the
REWL method. As expected, we found out that the reversal begins
at the corner. There are two reasons for this reversal: One is the
decrease of a local magnetic anisotropy due to surface thermal
fluctuations. Secondly, the reduction of an exchange energy by
decouplings at the corner facilitates the nucleation. Here, all the
corners are equivalent, and symmetric configurations are found.
However, in an individual process, one of the corners is selected.
Figure 1d illustrates a plot of MC snapshots at the corresponding
fields.
The temperature dependencies of several formulae for the

coercivities are depicted in Fig. 2, and are compared with the ideal
coercivity Hk. Here, we determined Hk as H0 of the same system
size with the periodic boundary condition. In the calculated
temperature range, we confirmed that Hk takes almost same value
as the magnetic anisotropy field Ha ¼ 2K1=Ms, where K1 is the
magnetic anisotropy constant20,25 and Ms is the saturated
magnetization at the given temperature. The coercivity Hr of
permanent magnets is reduced from its limit value Hk by various
external influences. These reductions have been expressed in the
following forms13,16:

Hr ¼ αHk � Ht �MsNd

¼ α0Hk �MsNd;
(2)

where Ht = H0 − Hc and α = H0/Hk. Here, Ht and α represent the
thermal activation field and phenomenological factor, respec-
tively. The factor α often means the reduction due to the
microstructure such as defects, and the surfaces. On the other
hand, α0 ¼ Hc=Hk is an expression with an alternate definition for
Hk including Ht. The second line of Eq. 2 is known as “Kronmüller
equation”. The terms of the demagnetization field �MsNd

express the reduction due to the dipole–dipole (DD) interaction.
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Fig. 1 Free energy landscape simulation. a Free energies as a function of Mz for the Nd2Fe14B isolated grains at 0:46 T calC , whose size is (Lx, Ly,
Lz)= (14.1, 14.1, 14.6) nm (212,536 spins). Red line is for Hz= 0 and other lines are for applying Hz. b Free-energy barriers as a function of μ0Hz
for four system sizes: Lx = 10.6, 14.1, 21.1, and 24.6 nm (Ly = Lx, Lz = 1.038Lx), evaluated from F(Mz, Hz) similar to Fig. 1a. c The distributions of
reversed probability Pd at Fe spins sliced by (110) plane, which correspond to the points (i–iii) in Fig. 1a. d Four MC snapshots of reversed Fe
spins for the three points.
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Fig. 2 Temperature dependence of coercivity. The blue line μ0H0
and the red line μ0Hc were calculated from Fig. 1b for 21.1 nm × 21.1
nm × 21.9 nm (713,172 spins) isolated grain at each temperature.
The colored area depicts the coercivity μ0Hc under the demagne-
tization fields in the range of demagnetization factor Nd = 0.5–1.0.
The green and purple squared lines denote the experimental
measurements in sintered29 and the hot-deformed with grain
boundary diffusion of Nd-Cu alloy14 magnets, respectively. Inset
shows α= H0/Hk and α0 ¼ Hc=Hk.
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Our approach can handle the temperature dependence of α and
Ht explicitly. Unlike the continuum approximation, temperature is
naturally introduced in our model by the Boltzmann weights in
the MC simulation. This is because we used the atomistic model.
The continuum approximation works with temperature-
dependent input parameters in which thermal fluctuations are
not included in the motion. We have also plotted the results of
coercivity Hr with respect to the demagnetization factors Nd = 0.5
and 1.0 with temperature-dependent magnetization Ms. Since
the demagnetization field �NdMs approximately introduces the
effects of the DD interaction as the uniform field, so it cannot
consider the size and shape dependences of Nd

30. However, the
simulation results qualitatively validate those of the experiments
because an increase in temperature leads to a downward
convexity in coercivity even without �NdMs. The effects of the
DD interaction will be discussed later. In the figure, we compare
the result with experimental observations. The green squares are
data for a sintered sample and the purple ones for a diffused hot-
deformed sample. In the former, the effect of polycrystalline
causes a further reduction31, while in the latter grains are
separated and compatible with the present calculation. In the
former case, other effects would subject to the multi-grain
approach in the future. Thus, the present result gives the upper
limit of the coercivity at finite temperatures.
For some sintered polycrystalline magnets (corresponding to

the green line in Fig. 2), Kronmüller and Durst phenomenologically
estimated the decay factor as α0exp ¼ 0:89� 0:93 from measured
magnetic properties around room temperature16. In the inset of
Fig. 2, we show the temperature dependence of α and α0. The
difference of α from 1 reflects the decrease of the surface
magnetic anisotropy by thermal fluctuations, and α0 also includes
the thermal activation effects. The decay factors at room

temperature (here, T = 0.51 TC) are determined as α = 0.93 and
α0 ¼ 0:73. In the case of the experiment, exchange interactions at
the grain boundary interfaces suppress the interface thermal
fluctuations. The suppression is one of the origins of the difference
between α0exp and α0.

Nucleation mechanism
Next, we consider the mechanism of the thermal activation
(nucleation) process for which the concept of “activation volume”
has been introduced11–15. The symbol ΔMz represents the
difference of the magnetization between those at the local
minimum Mz = Mb of the free energy and those at the local
maximum Mz = Mt (see Fig. 1a). It is confirmed that ΔMz gives the
activation volume V:

V ¼ ΔMz=Ms: (3)

Note that the unit of Ms is (μB/volume). Activation volume has
been defined by

V ¼ � 1
μ0Ms

∂FB
∂Hz

: (4)

By differentiating FB:

FBðHzÞ ¼ FðMt;HzÞ � FðMb;HzÞ
¼ FðMt; 0Þ � FðMb; 0Þ þ μ0HzðMt �MbÞ;

(5)

it is obvious that definition Eqs. 3 and 4 are equivalent. Here, we
note that F(Mt(b), 0) depends on Hz since Mt(b) is a function of Hz. In
Fig. 3a, the activation volumes obtained by the both definitions
Eqs. 3 and 4 were plotted. This confirms the equivalence.
From Eq. 4, the field dependence of FB is related to the

nucleation process. Thus, we focus on the exponent n which is
widely used for the dependence in the phenomenological form:

FB / ð1� Hz=H0Þn: (6)

The exponent n is 2 for coherent magnetization reversal. However,
according to the authors12,14, the experimental value for n was
given to be approximately 1.0. We evaluated the value of n in the
atomistic magnetization reversal process around the coercivity. It
should be noted that the value of n varies depending on the range
of μ0Hz (shown in Fig. 3a), where we fit the data. However, for a
wide range of μ0Hz, it was observed that the value of n was
approximately 1.3. We, therefore, propose that the small value of n
is ascribed to the peculiar shape of the free energy. Here we
define δF(δMz) for the free energy near the local minimum, i.e., δF
(δMz) = F(Mb − δMz) − F(Mb), where δF(ΔMz) = FB. The shapes of
δF(δMz) for the fields μ0Hz = 0, 2.8, and 3.61 T are depicted in
Fig. 3b, where a cusp is pointed by the arrow in each figure.
The cusp represents the point at which the type of the

magnetization reversal changes32: for small value of δMz (see in
Fig. 3b), the reversal process is the nucleation type, where we
expect

δFðδMzÞ / δMz; (7)

while for large value of δMz, δF(δMz) is mainly given by the change
due to a domain wall (DW) motion, where we expect

δFðδMzÞ / δM2=3
z þ const: (8)

This magnetization reversal mechanism is schematically pictured
in Fig. 4. This difference can be understood in the following
picture. In the case of the Heisenberg type with uniaxial
anisotropy (corresponding to the Nd2Fe14B spin model), the
critical nucleation size (ΔM1=3

z � Rc) is about the domain wall
width δdw. And thus, before the cusp point (R < Rc, where R is the
width of the magnetization reversing region, see Fig. 4b) the
nucleation region is growing where we have Eq. 7. Around
the cusp point, a fully reversed region appears. And after this
point, the excess free energy δF comes from the domain wall, i.e.,
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Fig. 3 Magnetic field dependence of activation volume. a The
activation volume V as a function of μ0Hz for two system sizes at
0:46 T calC . Circle points are evaluated from Eq. 3 while solid lines are
evaluated from Eq. 4. Squared lines are the exponent n of free
energy barrier in formula 6. b Field dependence of the shape of free
energy as a function of δMz for Lx = 24.6 nm. Blue points are the top
of the free energy barrier, which corresponds to Mt, and black arrows
denote the cusp in the free energy. Green line shows the value on
the right axis.
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the surface of the fully reversed region. In this case we have Eq. 8.
For comparison, we show the case of Ising model where δdw is
much smaller than Rc at low temperatures, and we have the
dependence Eq. 8 for almost all R except very small R. This
comparison is schematically pictured in Fig. 4d.
To clearly see the change of exponent, in Fig. 3b, we show the

differentiate log ðδFÞ by log ðδMzÞ with the green curve which
gives roughly the power k when we assume the dependence:
δF ¼ CδMk

z þ D (C and D are constant). We find that k is close to 2/
3 for large δMz and jump at the cusp. Around δMz = 0, thermal
fluctuations enhance the behavior of k = 2, i.e.,

δFðδMzÞ / δM2
z ; (9)

which makes it difficult to identify the behavior δF ∝ δMz (i.e., k =
1) for the nucleation process. This fact causes that we have an
intermediate value (n ≃ 1.3) numerically. However, k clearly
changes from 2 to 1 with δMz, which supports the present
scenario.
In any case, δF has regions of upward convex and downward

convex between which the cusp exists. This structure causes ΔMz

to be less dependent on Hz for a range of Hz
33, which can be seen

from comparing the blue points in Fig. 4a, c. In this range, V is a
constant and it results in the value of n= 1 by Eq. 4. Note that, the
reason for the cusp explains the drastic change in the magnetiza-
tion distribution between (i) and (iii) in Fig. 1c, d.
If we assume n = 1 for any Hz, then the result is the widely used

phenomenological equation for the thermal activation effects13:

H0
t ¼

25:3kBT
μ0MsVc

; (10)

where Vc is the value of V at Hz = Hc. In Fig. 5, we compare the
temperature dependence of Ht and H0

t. We found a qualitatively
similar dependence. The difference between H0

t and Ht becomes
significant in the high-temperature range, which is attributed to
the fact that the activation volume and n are not exactly constant.
Thus, the difference due to the changes in the magnetization
reversal type and surface effects, as shown in Figs. 3 and 4.
It is necessary to mention the exact effects of the DD

interaction, which is approximately introduced as the

demagnetization field in the present study. The DD interaction
brings the non-uniformity of local demagnetization fields near
corners and edges in grains, unlike the demagnetization field. The
non-uniformity should change the nucleation process from the
calculation results. However, the strength of the local field
increases logarithmically with system size30,34,35, and the nuclea-
tion behavior is protected by the cusp structure. Thus, the
nucleation mechanism we proposed is expected not to qualita-
tively change up to a certain large grain size (Lx ≃ 1 − 10 μm).
Above this size, since magnetic domain structures are formed36,
the DD interaction should be incorporated into the spin
Hamiltonian.
In summary, our atomistic approach by the free energy

landscape simulations revealed essential characteristics of the
thermal activation effects for permanent magnets, i.e., the
downward convexity in the coercivity concerning the tempera-
ture, the microscopic definition of the activation (nucleation)
volume, and also the exponent n = 1 for the well-used energy
barrier formula (6). The present study should be the first step to
study the characterization of coercivity at finite temperatures from
microscopic information, and the method will be extended to the
cases complex of grains with the DD interaction in the future.

METHODS
Atomistic spin model
The atomistic classical spin Hamiltonian of Nd2Fe14B magnet was recently
proposed for the study of thermodynamic properties at finite temperatures
by using Monte Carlo (MC) method20,25,35,37 and stochastic
Landau–Lifshitz–Gilbert equation38. It is given by

H ¼ �2
X
i< j

Jijsi � sj �
X
i2Fe

Diðszi Þ2 �
X
i2Nd

X
l¼2;4;6

Dl
iðszi Þl; (11)

where Jij is the exchange coupling constants between the i-th and j-th
spins up to a cut-off range (in the present work 3.52 Å), and si is the
normalized spin moment at the i-th site. The second and third terms are
the magnetic anisotropy of Fe and Nd sites, respectively. The coefficients
Jij, Di, D

l
i and magnetic moments are determined from ab-initio calculations

and experimental data25. Note that Curie temperature of the model with
given parameters is T calC ¼ 870 K, which is higher than the experimental
observation (TexpC ’ 585 K). This difference must be adjusted by fine-
tuning of the parameters, but the qualitative properties are well
reproduced20,25.

Wang–Landau method for magnetization
The partition function of a spin system is generally described as follows:

Z ¼
X
R

e�βHðRÞ ¼
X
E

X
Mz

gðE;MzÞe�βE ; (12)

where β = 1/kBT is the inverse temperature, E is the internal energy of a
spin configuration R, Mz is the z-component of a total magnetization and g
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pictures of a, c energy landscape and b, d spin configuration
in the magnetization reversal processes at low-temperature limit.
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c, d Ising type. The energy landscapes under several magnetic fields
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energy barriers.

Temp./TC

μ 0
H
t,
μ 0
H
t'(
T)

μ0(H0-Hc)

25.3kBT
μ0 Vcs

Fig. 5 Thermal activation reduction. The shifts of the coercivity
due to the thermal activation effects, evaluated from the two ways:
Ht = H0 − Hc and Eq. 10.

Y. Toga et al.

4

npj Computational Materials (2020)    67 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



(E, Mz) is the joint density of states. By using g(E, Mz), the magnetization
dependence of the free energy F(β, Mz) and a partial partition function ZMz

can be defined by following formula:

Fðβ;MzÞ ¼ �β�1ln ZMz ; (13)

ZMz ¼
X
E

gðE;MzÞe�βE : (14)

The Wang–Landau Monte Carlo (WLMC) method28 allows us to calculate g
(E, Mz) in the basis of a relation: h(E, Mz) = g(E, Mz)w(E, Mz), where h(E, Mz) is
the histogram of the spin states obtained by MC sampling with a weight w
(E, Mz). If a flat histogram (h is constant) can be obtained by arbitrarily
adjusting w(E, Mz) in a MC simulation, g(E, Mz) is proportional to the
reciprocal of the adjusted w(E, Mz).
As mentioned above, adjusting the weight for two-dimensional or multi-

dimensional space requires massive calculation cost. To reduce the cost,
for the MC sampling in the energy space, we use Boltzmann weight, i.e.,
wðE;MzÞ ¼ wðMzÞ expð�βEÞ39,40. Then, the histogram of Mz space can be
written as follows (using Eq. 14):

hðMzÞ ¼
P
E
hðE;MzÞ

¼ wðMzÞZMz :
(15)

Therefore, by obtaining a flat histogram in one dimensional space of Mz to
adjust w(Mz), the free energy can be calculated from Eq. 13:

Fðβ;MzÞ ¼ �β�1ln C
wf ðMzÞ

¼ C þ β�1lnwfðMzÞ;
(16)

where C is constant, wf is the adjusted w when obtaining the flat
histogram. Since the continuous spin system cannot determine C by
calculation at each temperature, so in this study, we proceed with the
calculation of the coercivity using the relative values of F. Although the
above scheme requires the simulation for each temperature due to the use
of Boltzmann weight, it significantly reduces the calculation cost for free
energy as a function of Mz.

1/t algorithm
To obtain a flat histogram, the WLMC method adjusts the weight as
wðM0

zÞ ! e�ηwðM0
zÞ every update attempt (even if no update) of the spin

state with a random walk, where η(>0) is a modification factor, M0
z is the

total magnetization of the state after the attempt. From the formulations
of the previous section, update attempts of the spin state were performed
according to the following transition probability:

PðE;Mz ! E
00
;M

00
zÞ ¼ min 1;

wðE00
;M

00
zÞ

wðE;MzÞ

 !
(17)

¼ min 1; e�β E
00 �E�GðM00

z ÞþGðMzÞ½ �� �
;

GðMzÞ ¼ β�1lnwðMzÞ;

where E″ and M
00
z are the values of a trial state. Therefore, in the actual

simulation, G is adjusted instead of w as GðM0
zÞ ! GðM0

zÞ � ~η, where ~η ¼
β�1η (>0). This redefined modification factor ~η has the unit of energy,
which is convenient to adjust G with consistent values regardless of
temperature.
Adjustment of G at every update attempt accelerates the convergence;

however, it breaks a detailed balance condition. Thus, it is necessary to
reduce ~η so as not to affect the results of the MC simulation. To perform
the reduction, the present study adopt the so-called 1/t algorithm41 which
resolves systematic error due to histogram flatness condition in the
original WLMC method. The algorithm reduces the ~η as αNbin/t, where α is
proportionality coefficient (here, we set α = 1.0 eV), t is the number of
update attempts of the spin state and Nbin is the number of Mz levels in the
simulation range of interest, Mz 2 ½Mmin

z ;Mmax
z �. Note that, since the WLMC

method requires to treat Mz discretely for the MC sampling with Eq. 17, in
this study, we adopt the grid where h(Mz) and G(Mz) are discretized with
the bins of mw = 0.3 − 0.5μB width, and Nbin ¼ ðMmax

z �Mmin
z Þ=mw . As a

practical matter, during small t, the changes in ~η is so large that the
simulation does not convergence. Thus, the initial value of ~η is set to be 1.0
eV, and it is reduced until ~η � Nbin=t (eV) as ~η ! ~η=2 at every random
walker visit to the all the magnetization bins.

Algorithm 1.
The REWL method for Mz with 1/t algorithm.

Replica exchange parallelization approach
For further large-scale simulation, we use the replica-exchange
Wang–Landau (REWL) method26,27, which is an efficient parallelization
approach. The simple idea for parallelization in the WLMC method can be
realized to divide the magnetization range by a small range and to
allocate the piece into each processor. Each processor simulates the
WLMC method individually. However, the small range may break
ergodicity and inhibit the relaxation of the spin state. The REWL method
is to recover the ergodicity by exchanging the spin configurations among
these processors.
For the replica-exchange (RE), it is necessary to overlap the areas

allocated to each processor, like Fig. 6. Previous research27 proposed that
the efficiently overlap ratio is 62.5–75% (we set 70%). In this study, every
Ns spin update attempt, we try to exchange the spin configuration
between neighbor processors according to the following exchange
probability:

PRðX 2 n $ Y 2 mÞ ¼ min 1;
wnðYÞwmðXÞ
wnðXÞwmðYÞ

� �
(18)

¼ min 1; e�β GnðXÞþGmðYÞ�GnðYÞ�GmðXÞ½ �
� �

;

where n(, m) is the index of the adjacent processors, X(, Y) is the spin
configuration from which E and Mz can be calculated, and wn(, Gn) is the
values of w(, G) on the processor n. The exchange probability only
depends on Mz and not on E. If the spin configurations are not in the
overlapping range, PR = 0.
As mentioned in Eq. 16, F (and G) can only be calculated as relative

values. Thus, the values of F for the processors require to be corrected and
connected so that the average value of the overlapping range is equal.
After this connection, the average of F for all the processors is calculated as
a result. Note that, just to improve connectivity among the processors, we
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omit the edge ranges (5%, shown in Fig. 6) of each processor in the above
correction and averaging (not so important).
To show the effectiveness of the RE, in Fig. 7a, b, we plot the flatness

δh ¼ maxðhÞ �minðhÞ½ �=meanðhÞ as a function of t=Nbinð¼ 1=~ηÞ in the
simulations with and without RE. The accuracy of the REWL method is
determined by the smallness of δH and ~η. Thus, the figure clearly indicates
that RE is necessary to obtain a converged result, especially at large system
size. The results in this study are set to satisfy the following convergence
conditions: δH < 10−2 and ~η < 10�8 ðeVÞ. Figure 7c and d show the
parallelization efficiency for the two system sizes in strong scaling with
under the two convergence conditions. This result indicates that the
parallelization is achieved with the ideal efficiency.

The pseudocode of the implemented methods in the present study is
described in Algorithm 1. Through the methods, for large system size (up
to 1,130,626 spins), we made it possible to calculate the free energy as a
function of Mz.
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