Abstract
Negative Poisson’s ratio (NPR) in auxetic materials is of great interest due to the typically enhanced mechanical properties, which enables plenty of novel applications. In this paper, by employing firstprinciples calculations, we report the emergence of NPR in a class of twodimensional honeycomb structures (graphene, silicene, hBN, hGaN, hSiC, and hBAs), which are distinct from all other known auxetic materials. They share the same mechanism for the emerged NPR despite the different chemical composition, which lies in the increased bond angle (θ). However, the increase of θ is quite intriguing and anomalous, which cannot be explained in the traditional point of view of the geometry structure and mechanical response, for example, in the framework of classical molecular dynamics simulations based on empirical potential. We attribute the counterintuitive increase of θ and the emerged NPR fundamentally to the strainmodulated electronic orbital coupling and hybridization. It is proposed that the NPR phenomenon can also emerge in other nanostructures or nanomaterials with similar honeycomb structure. The physical origin as revealed in our study deepens the understanding on the NPR and would shed light on future design of modern nanoscale electromechanical devices with special functions based on auxetic nanomaterials and nanostructures.
Similar content being viewed by others
Introduction
For common materials, the lattice along one direction expands or shrinks as the other orthogonal directions are compressed or stretched, respectively. The Poisson’s ratio (ν) is the physical property used to quantify the phenomena, which is a positive value for most cases. However, for some special materials (the socalled auxetic materials), the ν can be negative^{1}. The negative Poisson’s ratio (NPR) is of great interest because the type of materials with NPR typically possess enhanced toughness, shear resistance, and efficient sound/vibration absorption, which enables plenty of novel applications, such as aerospace and defense^{2}. Historically, researches of the NPR are mostly conducted on the bulk auxetic structures, which are further extended to nanomaterials and more interesting phenomena are found. For instance, NPR is recently found in carbon nanotubes and metal nanoplates^{3,4}. In addition, since the discovery of graphene, twodimensional (2D) materials have been intensively studied for many years with promising applications in various fields^{5}. The NPR has been also realized in 2D materials with specific engineering, such as by cutting into nanoribbons^{6}, introducing vacancy defects^{7}, creating periodic porous^{8}, rippling curvature at very high temperatures^{9}, etc. Moreover, the NPR has been also reported recently in 2D materials without any external modifications to the structure, shape, or composition, such as the inplane NPR (for instance, borophene^{10}, pentagraphene^{11}, αsilica^{12}, Be_{5}C_{2}^{13}), the outofplane NPR (phosphorene^{14,15}, GeS^{16}, SnSe^{17}, arsenic^{18,19}, TiN^{20}), and both inplane and outofplane NPR possessed in bidirectional 2D auxetic material Ag_{2}S^{21}.
Currently, the understanding of the NPR phenomena is dominated by the geometry analysis in literature^{1,4,6,7,14,22,23,24}. The auxetic effect is generally thought to be independent of chemical composition and electronic structure, which originates from the special reentrant structures or the rigid building blocks linked by flexible hinges. However, Yu et al.^{25} reported recently that inplane NPR emerges in the 1Ttype 2D transitionmetal dichalcogenides (TMDCs), where the crystal structure possesses no reentrant or hingelike building block. The electronic effect rather than the mechanical factor is found responsible for the NPR^{25,26}. Therefore, an interesting and thoughtprovoking question arises that are there other exceptional nanomaterials without reentrant or hingelike building block possessing the NPR beyond the TMDCs?
In this paper, based on firstprinciples calculations, we systematically investigate the mechanical response to uniaxial strain of a class of 2D honeycomb structures (graphene, silicene, hBN, hGaN, hSiC, and hBAs). By applying uniaxial strain along the zigzag and armchair directions, respectively, it is found the NPR emerges in all the six 2D materials, but only with the strain applied along the armchair direction. The honeycomb structure with emerged NPR is distinct from all other known auxetic materials. By analyzing the evolution of key geometry parameters (bond length and angle) with strain increasing, it is found that the emerged NPR is due to the anomalous increase of bond angle, which, however, cannot be explained in the traditional point of view of the geometry structure and mechanical response. Deep understanding on the counterintuitive increase of bond angle is achieved from a fundamental view of electronic structure based on the analysis of orbital pDOS beyond the mechanical analysis. Our study on the NPR in the class of 2D honeycomb materials deepens the understanding on the origins of NPR, which would shed light on the advanced design of modern nanoscale electromechanical devices.
Results
Mechanical properties
Figure 1 shows the response of driven strain, stress, and energy change per atom to the applied strains for the six 2D materials of graphene, silicene, hBN, hGaN, hSiC, and hBAs. When the uniaxial strains are applied along the zigzag and armchair directions, respectively, the mechanical response is anisotropic for all the six 2D materials. The stress is scaled by substituting the thickness including vacuum space with the effective layer thickness (graphene: 3.5 Å; silicene: 4.65 Å; hBN: 3.1 Å; hGaN: 3.74 Å; hSiC: 4.2 Å; hBAs:3.7 Å) based on the atomic van der Waals diameters^{27,28,29,30,31}.
Generally, the lattice constant along one direction decreases when the tensile strain is applied along other orthogonal directions. However, in graphene, the lattice constants along both the zigzag and the armchair directions simultaneously increase with large uniaxial tensile strains applied along either the zigzag (Fig. 1a) or the armchair (Fig. 1d) directions. While for silicene, hBN, hGaN, hSiC, and hBAs, the simultaneous increase of the lattice constants is only found when large uniaxial tensile strains are applied along the armchair direction, as shown in Fig. 1d. The simultaneous increase of the lattice constants with uniaxial strain applied is anomalous for its derived NPR. Note that the simultaneous increase of the lattice constants for silicene is very small compared to graphene, hBN, hGaN, hSiC, and hBAs, which might be due to the effect of its buckling structure.
With much larger strains applied, the structures fail, which is revealed by the mutation of lattice constants (Fig. 1a, d). The corresponding abrupt decreases of stress (Fig. 1b, e) and energy change per atom (Fig. 1c, f) also reveal the failure of the structure at very large strains, and the failure points are consistent with each other, respectively (see Supplementary Note 1 for more information). The situation for hGaN, hSiC, and hBAs is special compared to the other three 2D materials that their structures never fail when the uniaxial strain is applied along the armchair direction, which might be due to the strongly polarized bonds^{29,31,32}.
Negative Poisson’s ratio
The Poisson’s ratio is defined as^{22}
where \(\epsilon _1\) is the driven strain due to the applied strain (\(\epsilon _2\)). Since remarkable NPR only arise with uniaxial strain applied along the armchair direction as indicated in Fig. 1a, d, we extract the Poisson’s ratio in Fig. 2 for the six 2D materials with strains applied along the armchair direction based on the results as shown in Fig. 1d. Certainly, we only consider the cases with strain smaller than the failure points.
It shows that NPR emerges when the applied uniaxial strain is larger than some threshold values, where the lateral lattice constants begin to increase. The threshold values (~18%) are close to each other for graphene, hBN, hGaN, hSiC, and hBAs, despite their different NPR values and varying trends. In contrast, the threshold value is much larger for silicene (33%) and the NPR value is much smaller, which is consistent with the variation of lattice constant as analyzed above and could be attributed to the effect of its distinct buckled structure. Besides, the magnitude of NPR in hGaN is unexpectedly large compared to graphene, silicene, hBN, phosphorene^{14}, and other lots of materials^{1}.
Previous study from classical MD simulations reported that the NPR in graphene emerges when the strain along the armchair direction exceeds 6%^{22}. The discrepancy of the thresholds might be due to the different computational methods employed (firstprinciples vs. classical MD with empirical potential).
Mechanistic explanation
Despite the different components, NPR emerges in all the six 2D materials with tensile strain applied along the armchair direction, which possess similar honeycomb structure. The honeycomb structure possesses no reentrant or hingelike building block, which is distinct from all other known auxetic materials^{1}. To understand how the NPR emerges, we study the evolution of the key geometry parameters to gain some insight. As shown in the inset of Fig. 3a, the lattice constant along the zigzag direction (l_{zigzag}) is governed by the bond length of b_{1} and the bond angle of θ. Note that we only consider the projection in the xyplane of b_{1} and θ for silicene with buckling structure. With tensile strain applied along the armchair direction, the variation of bond length b_{1} and bond angle θ shows similar behavior for the six 2D materials, as shown in Fig. 3. The bond length b_{1} first increases and then decreases (Fig. 3a). While for the bond angle θ, it first decreases and then increases, which is opposite to the variation of b_{1}. The opposite variation of θ and b_{1} can be intuitively understood in terms of their relation in geometry structure. When θ increases, the stretching force projected along the bond b_{1} decreases, leading to the decreased bond length. As shown in the inset of Fig. 3a, the l_{zigzag} is two times the projections of b_{1} along the zigzag direction
The variation of l_{zigzag} is positively correlated to the variation of both b_{1} and θ. However, the variation of l_{zigzag} (Fig. 1d) is consistent with the variation of θ (Fig. 3b), while opposite to the variation of b_{1} (Fig. 3a). Based on Eqs. (1) and (2), the relationship of Poisson’s ratio with the variation of b_{1} and θ is
Thus, considering the large pristine magnitude of b_{1} for the six 2D materials and the larger variation of θ than b_{1} as shown in Fig. 3, the variation of l_{zigzag} is dominated by the variation of θ, which would be slightly affected by the variation of b_{1}. Consequently, the first decrease and then increase of the l_{zigzag} lead to the emerged NPR when the strain along the armchair direction is larger than some threshold values.
It was found in a previous study based on classical MD simulations that^{22} the bond stretching other than the angle bending is responsible for the NPR in graphene with strain applied along the armchair direction. The mechanism is in contrast to the conclusions as analyzed above in this study that the NPR in graphene is emerged due to the bond angle (θ) bending. The difference may lie in the difference between the classical MD simulations and the firstprinciples calculations. For instance, in classical MD simulations, the accuracy largely depends on the employed empirical potential that is used to describe interatomic interactions. While in firstprinciples calculations, the interatomic interactions are governed by the atomic pseudopotential and the electronic structures. The empirical Brenner potential used in previous classical MD simulations does not involve any electronic properties. Thus, the widely used empirical Brenner potential might be not able to precisely describe the effect of strainmodulated electronic structures in graphene, and further the evolution of the geometry parameters (bond length b_{1} and bond angle θ). Such limitation leads to the misinterpretation of the underlying mechanism for the NPR in graphene by the classical MD simulations, despite its success in capturing the NPR phenomenon.
In short, some insight have been achieved into the reason why the NPR emerges based on the analysis of the key geometry parameters evolutions (b_{1} and θ) as the applied strains increase. With tensile strain applied along the armchair direction, the six 2D materials share the same mechanism for the emerged NPR despite the different components, which lies in the increased bond angle θ. However, the increasing θ with tensile strain applied along the armchair direction is counterintuitive as shown in Fig. 4h. The anomalous phenomena cannot be explained only in the traditional view of mechanical response of the geometry structure. Therefore, the insight from a fundamental view into the counterintuitive increasing θ (Fig. 4h) is necessary to gain deep understanding on the emerged NPR in the class of 2D materials, where the effect of the electronic structures must be involved.
Insight from electronic structure
To reveal the underlying mechanism, we further study the evolution of orbital projected density of states (pDOS) of the six 2D materials with strains applied along the armchair direction. We plot the pDOS for comparison of the pristine state, the state where NPR is going to arise and the state where the structure is going to fail (Graphene: 0%, 14%, 27%; Silicene: 0%, 30%, 38%; hBN: 0%, 13%, 25%; hGaN: 0%, 17%, 33%; hSiC: 0%, 16%, 37%; hBAs: 0%, 26%, 35%). Generally for the six 2D materials, the contribution of p_{x} orbital (along the zigzag direction) change nonmonotonically with the increasing strain applied along the armchair direction, which first increases slightly and then decreases largely, as shown in Fig. 4 for the three representative cases. The increased and decreased contribution are evidently shown by the approaching to and deviating away the valance band maximum (VBM), respectively. Consequently, the attractive interactions along the zigzag (x) direction are firstly enhanced and then weakened with the strainmodulated p_{x} orbital coupling, as revealed by the orbitals’ evaluation close to the VBM (Fig. 4a–m). For the 2D honeycomb structures studied in this work, all their p_{x}DOS near VBM present similar trend (first increase and then decrease), which reveals the changes of strainmodulated p_{x} orbital coupling. Considering the geometry structure of the honeycomb structure as shown in Fig. 3a, the bond angle θ first decreases and then increases, leading to the emerged NPR.
It is worth to note the special cases of silicene and hGaN. For silicene, due to the distinct buckling structure, there exists coupling between p_{x} and p_{z} orbitals, which is different from graphene and hBN with planar structure. Consequently, the contribution of p_{x} orbital is mediated by p_{z} orbital, which does not decrease largely with strain applied. Thus, the interaction is not remarkably weakened, the increase of l_{zigzag} in silicene is very small, and the NPR effect is very weak. As for hGaN, previous studies have indicated the significant effect of Gad orbital^{29,31}. The d orbital splits into two groups of d_{xy;yz;zx}(t_{2g}) and \(d_{x^2  y^2;z^2}\left( {e_{\mathrm{g}}} \right)\). Here we focus on the e_{g} orbitals, which couple strongly with the p_{x} orbitals. With the applied strain increasing, the coupling strength of e_{g}p_{x}orbitals becomes stronger due to the increased contribution of e_{g}, which approaches the VBM as shown in Fig. 4f. The e_{g}p_{x}orbitals coupling leads to the strongly polarized GaN bonding and protects the GaN bond from breaking. Thus, the structure of hGaN never fails with the applied strain and the magnitude of NPR in hGaN is unexpectedly large. Similar phenomena are also observed for hSiC and hBAs, which possess similar polarized bonding as hGaN.
Based on the above discussion, the emergence of NPR in the six 2D materials together with the counterintuitive increase of θ are thoroughly understood from the point of view of electronic structure based on the analysis of orbital pDOS. Furthermore, the NPR phenomenon can be anticipated to also emerge in other nanostructures or nanomaterials with similar honeycomb structure.
Discussion
In summary, based on firstprinciples calculations, we performed systematic study on the anisotropic mechanical response to uniaxial strain of a class of 2D honeycomb structures (graphene, silicene, hBN, hGaN, hSiC, and hBAs). Intrinsic NPR is found in all the six 2D materials when the strain is applied along the armchair direction. The honeycomb structure is distinct from all other known auxetic materials. By analyzing the evolution of key geometry parameters (bond length (b_{1}) and bond angle (θ)) with strain increasing, it is found that the six 2D materials share the same mechanism for the emerged NPR despite the different components, which lies in the increased bond angle θ. However, the increase of bond angle θ at large strains is quite intriguing and anomalous, which cannot be explained in the traditional point of view of the geometry structure and mechanical response, such as in the framework of classical MD simulations based on empirical potential. Deep understanding on the counterintuitive increase of θ is achieved from a fundamental view of electronic structure based on the analysis of orbital pDOS. We find that the emerged NPR with the increased θ is fundamentally due to the strainmodulated orbital coupling and hybridization, which lead to the weakened attractive interactions. From the above results and conclusions, we propose that the NPR phenomenon can also emerge in other nanostructures or nanomaterials with similar honeycomb structure. Our study not only makes a comprehensive investigation of the NPR in the six 2D materials with honeycomb structure, but also reveals the physical origins, which deepens the understanding on the NPR and would shed light on future design of modern nanoscale electromechanical devices with special functions based on auxetic nanomaterials and nanostructures.
Methods
All the firstprinciples calculations are performed based on the density functional theory (DFT) using the projector augmented wave method^{33} as implemented in the Vienna ab initio simulation package (VASP)^{34}. The Perdew−Burke−Ernzerhof^{35} of generalized gradient approximation is chosen as the exchangecorrelation functional. The kinetic energy cutoff of wave functions is set as 2.5 times the maximal energy cutoff in the pseudopotentials for each material. The orthorhombic supercell is constructed containing two primitive cells (four atoms). The MonkhorstPack^{36} kmesh of 19 × 11 × 1 is used to sample the Brillouin Zone. The energy convergence threshold for the selfconsistent field calculations is set as 10^{−6} eV. The vacuum spacing of 20 Å is employed along the outofplane direction. The uniaxial strains are applied along the typical zigzag and armchair directions, respectively. The strain is defined as (l − l_{0})/l_{0}, where l is the lattice constant under strains and l_{0} is the original lattice constant with no strain. All geometries are fully optimized for all cases until the Hellmann−Feynman forces on all the atoms are smaller than 10^{−5} eV/Å. By testing the effect of the size of the supercell in calculations, it is verified that the mechanical properties studied here are accordant. The structural stability of the strained situations where the NPR already emerges is verified by the 1000 fs DFT level MD simulations with the NVE ensemble (see Supplementary Materials for more information).
Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
Jiang, J.W., Kim, S. Y. & Park, H. S. Auxetic nanomaterials: recent progress and future development. Appl. Phys. Rev. 3, 041101 (2016).
Lipsett, A. W. & Beltzer, A. I. Reexamination of dynamic problems of elasticity for negative poissons ratio. J. Acoustical Soc. Am. 84, 2179–2186 (1988).
Shen, L. & Li, J. Transversely isotropic elastic properties of singlewalled carbon nanotubes. Phys. Rev. B 69, 045414 (2004).
Ho, D. T., Park, S.D., Kwon, S.Y., Park, K. & Kim, S. Y. Negative poissons ratios in metal nanoplates. Nat. Commun. 5, 3255 (2014).
Balandin, A. A. & Nika, D. L. Phononics in lowdimensional materials. Mater. Today 15, 266–275 (2012).
Jiang, J.W. & Park, H. S. Negative Poissons ratio in singlelayer graphene ribbons. Nano Lett. 16, 2657–2662 (2016).
Grima, J. N. et al. Tailoring graphene to achieve negative Poisson’s ratio properties. Adv. Mater. 27, 1455–1459 (2015).
Wojciechowski, K. W., Scarpa, F., Grima, J. N. & Alderson, A. Auxetics and other systems of negative characteristics. Phys. Status Solidi (B) 253, 1241–1242 (2016).
Zakharchenko, K. V., Katsnelson, M. I. & Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009).
Mannix, A. J. et al. Synthesis of borophenes: anisotropic, twodimensional boron polymorphs. Science 350, 1513 (2015).
Zhang, S. et al. Pentagraphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112, 2372–2377 (2015).
zelik, V. O., Cahangirov, S. & Ciraci, S. Stable singlelayer honeycomblike structure of silica. Phys. Rev. Lett. 112, 246803 (2014).
Wang, Y., Li, F., Li, Y. & Chen, Z. Semimetallic be5c2 monolayer global minimum with quasiplanar pentacoordinate carbons and negative poisson/’s ratio. Nat. Commun. 7, 11488 (2016).
Jiang, J.W. & Park, H. S. Negative Poissons ratio in singlelayer black phosphorus. Nat. Commun. 5, 4727 (2014).
Du, Y. et al. Auxetic black phosphorus: a 2D material with negative Poissons ratio. Nano Lett. 16, 6701–6708 (2016).
Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Enhanced piezoelectricity and modified dielectric screening of twodimensional groupiv monochalcogenides. Phys. Rev. B 92, 214103 (2015).
Zhang, L.C. et al. Snse monolayer: superflexible, auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Sci. Rep. 6, 19830 (2016).
Kamal, C. & Ezawa, M. Arsenene: twodimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015).
Xue, J. H. et al. Negative Poissons ratios in fewlayer orthorhombic arsenic: firstprinciples calculations. Appl. Phys. Express 8, 041801 (2015).
Zhou, L., Zhuo, Z., Kou, L., Du, A. & Tretiak, S. Computational dissection of twodimensional rectangular titanium mononitride TiN: auxetics and promises for photocatalysis. Nano Lett. 17, 4466–4472 (2017).
Peng, R. et al. Singlelayer Ag_{2} S: a twodimensional bidirectional auxetic semiconductor. Nano Lett. 19, 1227–1233 (2019).
Jiang, J.W., Chang, T., Guo, X. & Park, H. S. Intrinsic negative Poissons ratio for singlelayer graphene. Nano Lett. 16, 5286–5290 (2016).
Jiang, J.W., Chang, T. & Guo, X. Tunable negative Poisson’s ratio in hydrogenated graphene. Nanoscale 8, 15948–15953 (2016).
Wan, J., Jiang, J.W. & Park, H. S. Negative Poisson’s ratio in graphene oxide. Nanoscale 9, 4007–4012 (2017).
Yu, L., Yan, Q. & Ruzsinszky, A. Negative Poissons ratio in 1ttype crystalline twodimensional transition metal dichalcogenides. Nat. Commun. 8, 15224 (2017).
Qin, Z., Qin, G. & Hu, M. Origin of anisotropic negative Poissons ratio in graphene. Nanoscale 10, 10365–10370 (2018).
Nika, D. L. & Balandin, A. A. Twodimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012).
Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010).
Qin, Z., Qin, G., Zuo, X., Xiong, Z. & Hu, M. Orbitally driven low thermal conductivity of monolayer gallium nitride (gan) with planar honeycomb structure: a comparative study. Nanoscale 9, 4295–4309 (2017).
Li, H. et al. Thermal conductivity of twisted bilayer graphene. Nanoscale 6, 13402–13408 (2014).
Qin, G., Qin, Z., Wang, H. & Hu, M. Anomalously temperaturedependent thermal conductivity of monolayer gan with large deviations from the traditional 1/r law. Phys. Rev. B 95, 195416 (2017).
Qin, Z., Xiong, Z., Qin, G. & Wan, Q. Behavior of aluminum adsorption and incorporation at gan(0001) surface: firstprinciples study. J. Appl. Phys. 114, 194307 (2013).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B 59, 1758–1775 (1999).
uller, J. Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Acknowledgements
G.Q. is supported by the Fundamental Research Funds for the Central Universities (Grant No. 531118010471). Z.Q. is supported by the National Natural Science Foundation of China (Grant Nos. 11904324, 11847158) and the China Postdoctoral Science Foundation (2018M642774). The numerical calculations in this paper have been done on the supercomputing system of the National Supercomputing Center in Changsha.
Author information
Authors and Affiliations
Contributions
Both the authors researched, collated, and wrote this paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Qin, G., Qin, Z. Negative Poisson’s ratio in twodimensional honeycomb structures. npj Comput Mater 6, 51 (2020). https://doi.org/10.1038/s415240200313x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s415240200313x
This article is cited by

Unconventional mechanical and thermal behaviours of MOF CALF20
Nature Communications (2024)

Theoretical prediction and shapecontrolled synthesis of twodimensional semiconductive Ni3TeO6
npj 2D Materials and Applications (2023)

Multiferroicity and giant inplane negative Poisson’s ratio in wurtzite monolayers
npj Computational Materials (2022)

Twodimensional auxetic pentagonal materials as water splitting photocatalysts with excellent performances
Journal of Materials Science (2022)

Ab initio study of anisotropic mechanical and electronic properties of strained carbonnitride nanosheet with interlayer bonding
Frontiers of Physics (2021)