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Machine-learned impurity level prediction for semiconductors:
the example of Cd-based chalcogenides
Arun Mannodi-Kanakkithodi 1✉, Michael Y. Toriyama1, Fatih G. Sen1, Michael J. Davis2, Robert F. Klie3 and Maria K. Y. Chan1✉

The ability to predict the likelihood of impurity incorporation and their electronic energy levels in semiconductors is crucial for
controlling its conductivity, and thus the semiconductor’s performance in solar cells, photodiodes, and optoelectronics. The
difficulty and expense of experimental and computational determination of impurity levels makes a data-driven machine learning
approach appropriate. In this work, we show that a density functional theory-generated dataset of impurities in Cd-based
chalcogenides CdTe, CdSe, and CdS can lead to accurate and generalizable predictive models of defect properties. By converting
any semiconductor + impurity system into a set of numerical descriptors, regression models are developed for the impurity
formation enthalpy and charge transition levels. These regression models can subsequently predict impurity properties in mixed
anion CdX compounds (where X is a combination of Te, Se and S) fairly accurately, proving that although trained only on the end
points, they are applicable to intermediate compositions. We make machine-learned predictions of the Fermi-level-dependent
formation energies of hundreds of possible impurities in 5 chalcogenide compounds, and we suggest a list of impurities which can
shift the equilibrium Fermi level in the semiconductor as determined by the dominant intrinsic defects. Machine learning
predictions for the dominating impurities compare well with DFT predictions, revealing the power of machine-learned models in
the quick screening of impurities likely to affect the optoelectronic behavior of semiconductors.

npj Computational Materials (2020)6:39 ; https://doi.org/10.1038/s41524-020-0296-7

INTRODUCTION
No crystalline material is devoid of defects and impurities. In fact,
the imperfections in a crystal determine its properties as much as
the regular arrangement of atoms do. When it comes to crystalline
semiconducting materials, it is known that defects such as
vacancies, native or impurity interstitials or substitutions, surface
states, and grain boundaries can influence their optoelectronic
properties. In the absence of external impurities, native defects
determine the equilibrium Fermi level in the semiconductor, and
thus the nature of conductivity (p-type, n-type or intrinsic) and
charge carriers1–3. The introduction of impurity atoms can change
the conductivity as determined by the dominant native defects,
based on their formation enthalpies as a function of the Fermi
energy1,4. Foresight about the impact of certain impurities on the
electronic structure and conductivity of the material is crucial in
either trying to curb their presence, or intentionally incorporating
them in the semiconductor lattice to induce a desirable
optoelectronic change.
It is important to be able to predict the electronic energy levels

created by impurities in semiconductors. While shallow acceptor
or donor levels are defined as defect levels close to the band
edges and do not affect the recombination of charge carriers,
deep defect levels can have both disastrous and potentially
beneficial effects. Deep levels can act as non-radiative recombina-
tion centers for minority charge carriers, which significantly
reduces their lifetime, impedes carrier collection or light emission,
and drastically brings down the solar cell or photodiode efficiency
and performance5. On the other hand, researchers have shown
that in principle, energy levels in the band gap can be used as
intermediate bands to facilitate absorption of sub-gap photons,
which could enhance the absorption efficiencies1,6,7.

Defect levels are often measured using methods like deep level
transient spectroscopy (DLTS) and cathodoluminescence (CL)8–11.
However, difficulties in incorporating specific impurities or
dopants in a given compound and in attributing measured levels
to specific defects make experimental methods less than ideal for
an extensive study of defects and impurities in semiconductors.
First-principles density functional theory (DFT) computations have
been widely used instead to simulate substitutional or interstitial
impurities and vacancies in crystalline materials using the super-
cell approach12–14. Impurity formation enthalpies, energy levels,
and resulting absorption coefficients calculated from DFT typically
match well with measured values15–19. However, DFT has
limitations of its own: the requirement of large supercells, charge
states, explicit image charge corrections, and an advanced level of
theory (such as hybrid functionals20 or GW corrections21) to
accurately determine band gaps make these calculations generally
expensive. Furthermore, prior knowledge is seldom utilized in
informing or accelerating new defect calculations; there is an
opportunity here for the creation of surrogate models based on
previously generated data, such that impurity properties for fresh
cases can be quickly and accurately estimated.
Today, machine learning (ML) has become an integral

component of materials design22. Researchers have extracted
models and design rules from materials data to drive the
accelerated discovery of NiTi alloys for thermal hysteresis23,
design of polymer dielectrics for improved energy storage in
capacitors24,25, synthesis of new classes of compounds26,27,
identification of new and improved catalysts28,29, and the design
of experiments in a smart and ‘adaptive’ fashion30. ML-based
design of materials usually begins with the generation of
sufficient data for candidate materials in terms of a property P,
and the conversion of all materials in the chemical space into a
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unique numerical representation X, referred to as descriptors,
feature vectors, or fingerprints. This is followed by a mapping
X!P between descriptors and properties using linear correla-
tion1,31 or a nonlinear regression technique such as ridge
regression32, support vector machine33, random forest34, LASSO
(Least Absolute Shrinkage and Selection Operator)35, or neural
networks36. The result of such an approach is a trained predictive
model which estimates P for any X, with a statistical uncertainty
or confidence interval that is also an output. The general outline
for developing machine-learned predictive models for properties
of materials based on DFT data and numerical descriptors is
shown in Fig. 1a.
The prediction of defect or impurity formation enthalpies and

energy levels can be accelerated by developing ML models
trained from DFT data, as has been shown in the recent past37. As
a demonstration of this approach, we take the example of Cd-
based chalcogenides, which are important semiconductors for
optoelectronic and solar cell applications38–40, and apply ML
algorithms on a dataset of DFT computed properties for hundreds
of impurity types in CdTe, CdSe, and CdS. These compounds are
chosen not only because CdTe-based cells are the second most
commonly used photovoltaics after Si, but also because in recent
years, significant improvements in the efficiency of CdTe solar cells
have arisen due to the elimination of the CdS buffer layer and the
introduction of Cd(Se,Te) into the absorber layer41. Therefore, the
prediction of impurity levels in ternary Cd chalcogenides of
various compositions is of technological importance. Each of these
compounds, henceforth referred to as CdX (X= Te/Se/S), exists in
the cubic Zinc Blende (ZB) structure42 shown in Fig. 1b. Although
delocalized states treated with PBE gives underestimated band-
gaps20,43, it has been shown that defect states at the PBE level can
be accurately characterized and compared against experiments or
higher levels of theory, e.g., as reflected in accurate defect
transition levels that span the physical band gap44. It has also
been shown in the past that suitable alignment schemes can be
used to ensure DFT defect levels agree with values obtained from
higher levels of theory45. In Fig. 1c, we plotted the band gaps

computed from PBE and HSE06 functionals alongside the known,
experimentally measured band gaps46,47 for 5 compounds: CdTe,
CdSe, CdS, and mixed anion compounds, CdTe0:5Se0:5 and CdSe
0:5S0:5; the HSE06 computed values match well with experiments.
Some discrepancies, eg. in the band gap of CdTe0:5Se0:5, could
arise from the lack of structural relaxation performed in HSE, the
neglect of spin-orbit coupling48, or from the anion ordering not
being adequately captured by SQS49. It was also reported that
CdTe1�xSex compound is found in the Wurtzite rather than Zinc
Blende structure, albeit only for x > 0.650. It must be emphasized
here that due to the high-throughput nature of this study and
some limitations of the level of theory used, we accept
uncertainties in computed band gaps and defect levels of up to
0.2 eV. The DFT computed lattice constants and band gaps for the
5 compounds are listed in Table SI-1.
In this work, we use both the PBE and HSE06 functionals to

compute impurity properties in different CdX compounds; the
eventual dataset of HSE impurity levels is one-fifth the size of the
corresponding PBE dataset, owing to the 2 orders of magnitude
difference in computational expense. We train separate ML
models for impurity properties computed with PBE and HSE,
and explore how models trained for lower fidelity (presumably,
PBE) can inform the higher fidelity (presumably, HSE) predictions.
We simulate impurities in several different defect sites in any CdX
compound: one cation site (MCd, where M is the impurity atom),
one or two anion sites (MX) and three or four interstitial sites (Mi),
based on whether it is a pure or mixed anion composition51; each
of these sites have been pictured for CdTe in Fig. SI-1. Impurity
atoms M are obtained by sweeping across the periodic table and
selecting elements from periods II to VI, as shown in Fig. SI-2.
An outline of the work presented in this manuscript is shown in

in Fig. 1d. DFT is used to compute the impurity formation enthalpy
as a function of chemical potential (μ), charge (q) and Fermi
energy (EF ), using Eq. (1) (in Methods), and the impurity charge
transition levels using equation (2) (in Methods). ML models are
trained for two types of properties: the neutral-state formation
enthalpy ΔH (Ef (q= 0) for Cd-rich to X-rich chemical potential

Fig. 1 Basic outline, structure and properties. a General outline of materials design process leading to ML-driven prediction of properties
based on DFT data and intermediate step of converting materials to numerical descriptors. b The Zinc Blende structure adopted by CdTe,
CdSe, and CdS. Cd atoms are shown in blue and Te/Se/S atoms in red. The unit cell has been indicated with dashed lines. c Comparison of
band gaps computed at the PBE and HSE06 levels of theory with reported experimental values46,47, for CdTe, CdSe, CdS, CdTe0:5Se0:5 and CdSe
0:5S0:5 . d Outline of the DFT and ML driven prediction of properties of impurities in Cd-based chalcogenides.
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conditions), and various impurity charge transition levels, ϵ(q1/q2),
which indicates the Fermi level at which the impurity containing
system transitions from one stable charge state (q1) to another
(q2). As shown in Fig. 1d, descriptors are generated for any CdX +
Msite system (where M and ‘site’ refer to the impurity atom and
defect site, respectively) based on tabulated elemental properties
of M (such as ionic radii and electronegativity), site coordination
environment, and properties computed from low-cost unit cell
defect calculations. A regression algorithm is applied to map the
descriptors to the properties, and predictive models are trained on
the PBE formation enthalpy, PBE impurity transition levels, and
HSE impurity transition levels. Comparisons in ML performance are
made for different sets of descriptors, level of theory (PBE or HSE),
and subset of computational data used for training. While models
are trained for impurities in CdTe, CdSe, and CdS, we performed
additional computations for selected impurities in CdTe0:5Se0:5
and CdSe0:5S0:5, to test the models’ out-of-sample predictive
ability. The power of this combined DFT+ML approach is
illustrated with machine-learned predictions of Fermi level
dependent formation enthalpies for the entire chemical space of
impurities in CdTe, CdSe, CdS, CdTe0:5Se0:5, and CdSe0:5S0:5. These
predictions, combined with the DFT computed formation
enthalpies of intrinsic point defects (vacancies, anti-site, and
interstitials) in each of the compounds, are used to obtain the list
of impurities which can shift the equilibrium Fermi level (as
determined by dominant native defects) and thus change the
nature of conductivity in the semiconductor.

RESULTS AND DISCUSSION
PBE data: formation enthalpy and transition levels
The zero charge version of Eq. (1) (in Methods) was used to
compute the formation enthalpy ΔH of impurities in CdX at Cd-
rich and X-rich chemical potential conditions, for a few hundred
impurity types. For CdTe, CdSe, and CdS, the neutral state impurity
calculations are performed for each of the 63 elemental impurities
as shown in Fig. SI-2, leading to a dataset of 315 ΔH ranges
(Cd-rich to X-rich) for each compound. The chemical potential of
any impurity atom is determined based on its stable compound
with Te or its stable compound with Cd, referenced to its
elemental standard state, where the structure for each compound
or element is collected from the Materials Project52. The computed
ΔH ranges have been plotted for the entire dataset in Figs. SI-3, SI-
4, and SI-5, and for a few selected cases in Fig. 2. It can be seen
from Fig. 2a–c that anti-site substitutional impurities such as ZrTe,
SeCd, and NaS have high formation enthalpies and would be
unstable, whereas other impurities like AgCd, STe, and BrS have
much lower formation enthalpies. Further, 22 impurities were
selected in CdTe0:5Se0:5 and CdSe0:5S0:5 across all 7 defect sites,
and ΔH was computed for each to test the trained ML models
(explained in the coming sections). The defect formation
enthalpies for mixed anion compounds are shown in Fig. SI-6
and Fig. SI-7. A description of the PBE ΔH dataset across the 5 CdX
compounds is provided in Table 1; data was generated for over
50% of the total chemical space of 1827 points.
Next, supercells containing impurity atoms were simulated in

charge states of +3, +2, +1, −1, −2, and −3. For each of these
calculations, the total DFT energies and charge correction terms
(using Freysoldt’s correction14,53) were obtained, and Eq. (2) (in
Methods) was used to compute the various charge transition
levels. All computed transition levels, namely, +3/+2, +2/+1, +1/
0, 0/−1, −1/−2, and −2/−3, are plotted for the entire dataset of
impurities in different sites in CdTe, CdSe, and CdS in Figs. SI-8, SI-
9, and SI-10, respectively. This data has been presented once again
for selected impurities in Fig. 2d–f. It should be noted that on
occasion, transition levels like +1/−1 or +2/0 may exist, in which
case the q/(q−1) and (q−1)/(q−2) transition levels are considered

to be equal to the q/(q−2) transition level (for eg., +1/0= 0/−1=
+1/−1). It can be seen from Fig. 2d–f that a number of impurities
introduce energy levels in the band gap. This is attributed to the
fact that an element prefers an oxidation state that is different
from that of the element it is substituting; for instance, BiCd leads
to a net +1 charge in the system for a majority of the band gap
and displays a +1/0 transition level close to the CBM, because of
Bi adopting a +3 oxidimpurity transition levels.ation state as
opposed to +2. Impurities that create mid-gap energy levels will
be of interest if their formation enthalpies are low enough for
them to be competitive with respect to dominant intrinsic point
defects. Further, for the 22 additional impurities in CdTe0:5Se0:5
and CdSe0:5S0:5, all the transition levels are computed and plotted
in Figs. SI-11 and SI-12. As listed in Table 1, DFT data was
generated for 100% of the CdTe points, but 10% or less for CdSe,
CdS, CdTe0:5Se0:5, and CdSe0:5S0:5. The total DFT dataset covers
about 23% of the chemical space, providing a great opportunity
for machine learning the remaining data points in a fraction of the
time it takes to perform explicit DFT computations.

Descriptors for machine learning
As shown in Fig. 1a, the training of prediction models for material
properties proceeds via the crucial intermediate step of descriptor
generation. In this work, we utilize different sets of descriptors that
represent the impurity atom and the defect site coordination, as
well as some properties estimated from low-cost unit cell
calculations. Similar descriptors were recently applied by us to
represent impurities at the Pb-site in methylammonium lead
bromide1, from which we were able to train simple models to
describe the formation enthalpy and charge transition levels. In a
similar vein, we use the elemental properties of the impurity atom
M, the number of Cd or X (Te/Se/S) neighboring atoms at the
given defect site, and energetic and electronic properties
calculated by modeling the MCd, MX or Mi impurity in an 8-atom
(Zinc Blende) CdX unit cell instead of a 64-atom supercell. The unit
cell calculation is two orders of magnitude cheaper than the
corresponding supercell calculation.
We apply different combinations of descriptors and use

different regression algorithms to train predictive models for ΔH
and ϵ(q1/q2). A base set of descriptors, namely the period and
group of M, a defect site index (set as 0 for MCd, 1 for MX, 0.50 for
Mi(neutral site), 0.25 for Mi(Cd-site) and 0.75 for Mi(X-site)), and
the number of Cd and X neighbors, is used in every combination.
In addition, the elemental properties of M, such as the first
ionization energy, electronegativity, and ionic radii, are used as
descriptors to encode information about the structural and
bonding characteristics of the impurity atom. Lastly, the impurity
formation enthalpy at Cd-rich, intermediate, and X-rich chemical
potential conditions, and the valence band and conduction band
edges (universally aligned using the deep 5s semi-core state of Cd)
calculated from the unit cell defect calculation are added as
descriptors. Ultimately, we apply the following three sets of
descriptors (in addition to the base set descriptors) independently
to train the models:

1. Elemental properties
2. Unit cell defect properties
3. Elemental properties + unit cell defect properties

In Fig. 3a, we plot the Pearson correlation coefficient (jrj)
between each descriptor and 9 different properties, namely
the ΔH for Cd-rich, intermediate and X-rich conditions, and the
+3/+2, +2/+1, +1/0, 0/−1, −1/−2, and −2/−3 impurity
transition levels. It can be seen that while some of the elemental
properties have a correlation of 0.40 to 0.50 with ΔH and ϵ(q1/q2),
the unit cell defect properties exhibit the highest correlations.
The valence and conduction band edges from unit cell defect
calculations show a correlation of jrj = 0.82 and jrj = 0.74,

A. Mannodi-Kanakkithodi et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020) 39



Table 1. Details of the DFT dataset.

Property CdX Impurity atoms Defect sites Transition levels Total chemical space DFT data % of computed data

PBE ΔH CdTe 63 5 – 63 × 5= 315 315 100

CdSe 63 5 – 63 × 5= 315 315 100

CdS 63 5 – 63 × 5= 315 315 100

CdTe0:5Se0:5 63 7 – 63 × 7= 441 22 �5

CdSe0:5S0:5 63 7 – 63 × 7= 441 22 �5

Total 1827 989 �54

PBE ϵ(q1/q2) CdTe 63 5 6 63 × 5 × 6= 1890 1890 100

CdSe 63 5 6 63 × 5 × 6= 1890 198 �10.5

CdS 63 5 6 63 × 5 × 6= 1890 198 �10.5

CdTe0:5Se0:5 63 7 6 63 × 7 × 6= 2646 132 �7

CdSe0:5S0:5 63 7 6 63 × 7 × 6= 2646 132 �7

Total 10962 2550 �23

HSE ϵ(q1/q2) CdTe 63 5 4 63 × 5 × 4= 1260 240 �19

CdSe 63 5 4 63 × 5 × 4= 1260 132 �10.5

CdS 63 5 4 63 × 5 × 4= 1260 132 �10.5

CdTe0:5Se0:5 63 7 4 63 × 7 × 4= 1764 88 �5

CdSe0:5S0:5 63 7 4 63 × 7 × 4= 1764 88 �5

Total 7308 680 �9.3

Fig. 2 PBE computed properties. Neutral-state impurity formation enthalpies computed at the PBE level of theory for selected impurity
atoms in different sites in (a) CdTe, (b) CdSe and (c) CdS, and charge transition levels (from +3/+2 to −2/−3) calculated at the PBE level of
theory for selected impurity atoms in different sites in (d) CdTe, (e) CdSe and (f) CdS. ΔH has been plotted for some very unstable impurities as
well (like HfSe and Tai) to show the variety in the impurity property data that goes into training predictive models.
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respectively, with the +1/0 and 0/−1 impurity transition levels.
Further, ΔH (Cd-rich), ΔH (intermediate) and ΔH (X-rich) show a
correlation of jrj > 0.90 with the corresponding ΔH values from
unit cell defect calculations. When training predictive models for

the impurity formation enthalpies and transition levels using
these descriptors, one can expect more accurate predictions
when including the unit cell defect properties as opposed to
using elemental properties exclusively. However, while the unit

Fig. 3 Correlations and prediction errors. a Coefficient of linear correlation (jrj) between the properties of interest, ΔH and ϵ(q1/q2), and each
of the descriptors. In b and c, prediction RMSE is plotted against the training set size for random forest models trained for ΔH (Cd-rich) using 3
different sets of features, for the test set points (total CdTe+CdSe+CdS dataset minus the training set) and the out-of-sample points (set of 22
impurities each in CdTe0:5Se0:5 and CdSe0:5S0:5) respectively. Similar plots are shown for ϵ(q1/q2) (at the PBE level of theory) (d) test set points
and (e) out-of-sample points.
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cell defect calculations are not computationally intensive, the
remaining descriptors can be generated with no additional
computations at all, and thus have an advantage. In the next
section, we examine the accuracy of regression models trained
using different sets of descriptors.

Predictive models using regression
Three regression algorithms, namely Random Forest regression
(RFR)34, Kernel Ridge Regression (KRR)32, and LASSO regression35

(see details in Methods) were applied to train predictive models
for ΔH and the ϵ(q/q−1) transition level for a given charge q. For
each property, we trained models using the CdTe, CdSe, and CdS
data, and data generated for CdTe0:5Se0:5 and CdSe0:5S0:5 was
used to test the out-of-sample predictive power. For the impurity
formation enthalpy, we train separate models for ΔH (Cd-rich) and
ΔH (X-rich), since the two values provide the range of possible
enthalpies over the chemical potential region of stability. The
effects of training set size and choice of descriptors are studied by
estimating the mean and standard deviation in prediction error
over 100 different models trained (from different training sets) for
any given case. For each regression technique, a grid-based search
was applied to optimize the regression parameters, such as the
number of trees and the number of features needed for splitting
nodes in RFR, and the gaussian width and regularization
parameter in KRR. To control overfitting of the ML models,
k-fold cross-validation was used, wherein the training set is
divided into k (here k= 5) sets and each of the k sets is used as an
internal test set while training is performed using the remaining
k−1 sets. The optimal ML parameters are obtained by minimizing
the cross-validation error, that is the error on the kth set from the
model trained using k−1 sets.
The root mean square errors (RMSE) of RFR models trained for

ΔH (Cd-rich) are plotted as a function of the training set size for
three sets of descriptors (each containing the base set), for the test
set in Fig. 3b, and the out-of-sample points in Fig. 3c. All
prediction errors steadily decrease with increasing training set
size. It can be seen that for both the test and out-of-sample points,
using just the elemental properties as descriptors leads to much
higher errors than using the unit cell defect properties. The
combination of elemental and unit cell defect properties shows
the best prediction accuracies, and saturate fairly early to about
0.40 eV for the test set and 0.55 eV for the out-of-sample points,
proving that reasonable prediction accuracies can be achieved
with about 50% of the total data used for training. In Table 2, we
have listed the RMSE for predictive models trained using RFR, KRR,
and LASSO, with 90% of the dataset of CdTe, CdSe, and CdS points
used for training, independently applying the three sets of
descriptors. RFR shows better performances than LASSO for every
set; KRR shows slightly better test set errors than RFR, but the RFR
predictions on the out-of-sample CdTe0:5Se0:5 and CdSe0:5S0:5
points are undeniably better, which gives us confidence to use the
random forest models going forward. Figure 4 shows parity plots
for the best RFR models trained using 90% of data for training, for
ΔH (Cd-rich) in panel a and ΔH (X-rich) in panel b. The
corresponding models trained using KRR and LASSO are shown
for comparison in Fig. SI-14.
We trained regression models in a similar fashion for ϵ(q/q−1)

impurity transition levels. In this case, we add two additional
descriptors to the earlier sets: the impurity atom oxidation state
(O1) and the oxidation state (O2) of the defect site atom (+2 for
Cd, −2 for Te/Se/S, and 0 for interstitial), such that O1 − O2 = q;
this enables the training of one model for ϵ(q/q−1), rather than
separate models for +2/+1, 0/−1, etc. Fig. 3d,e show the
prediction RMSE for test and out-of-sample points, respectively,
using the three sets of descriptors (each containing O1 and O2 as
additional dimensions) as a function of the training set size. While

the errors steadily go down with infusion of more training data,
there is only a slight improvement in prediction performances
going from elemental to unit cell defect properties as descriptors.
The respective feature importance values (in %, obtained from the
random forest algorithm) have been listed for different RFR
models in Table SI-2; it can be seen that while the unit cell defect
formation enthalpy has the highest importance for predicting ΔH,
as follows from Fig. 3a, the impurity atom oxidation state O1
shows the highest importance for ϵ(q/q−1). Despite the notable
correlation between certain transition levels like +1/0 and 0/−1
and the band edges from unit cell defect calculations, the
improvement in prediction performance upon adding unit cell
defect properties is less drastic; regardless, the best accuracies are
still obtained while using the elemental + unit cell defect
properties as descriptors.
From Fig. 3d, e, it can be seen that the RMSE gradually

saturates to around 0.31 eV for the test set and 0.34 eV for the
out-of-sample points. Further, ϵ(q/q−1) prediction RMSE are
listed for RFR, KRR and LASSO models (using 90% of the dataset
of CdTe, CdSe, and CdS points for training) in Table 3; KRR
predictions when using the elemental + unit cell defect
properties are comparably good whereas LASSO errors are
higher. Parity plots for the best RFR models trained for ϵ(q/q−1)
are presented in Fig. 4, with performances shown (along with the
uncertainties) for the training and test points in panel c and for
the out-of-sample CdTe0:5Se0:5 and CdSe0:5S0:5 points in panel d.
Parity plots for models trained using KRR and LASSO are shown
in Fig. SI-15.
We have seen that predictive models can be trained for both ΔH

and ϵ(q/q−1) using a set of elemental properties and unit cell
defect properties as descriptors, and predictions can be made
with high accuracy for impurities in out-of-sample mixed-anion
compounds. With this confidence, we use the models presented in
Fig. 4 to predict the impurity formation enthalpies and charge
transition levels (at the PBE level of theory), respectively, for all
impurities in CdTe, CdSe, CdS, CdTe0:5Se0:5, and CdSe0:5S0:5. Before
making these predictions for the entire chemical space and using
them to screen candidates that act as ‘dominating’ impurities, we
explore the possibility of training such models for the HSE06
ϵ(q1/q2) values. It should be noted that the PBE computed
transition levels have been shown to span the physical band gap
of the semiconductor44, and also known to match well with HSE

Table 2. RMSE (in eV) for regression models trained for PBE ΔH
(Cd-rich), using different methods and sets of features.

Dataset Regression method Elemental
properties

Unit cell
defect
properties

Elemental
+ unit cell
defect
properties

Training RFR 0.40 0.20 0.17

KRR 0.40 0.30 0.20

LASSO 0.62 0.50 0.44

Test RFR 0.65 0.45 0.38

KRR 0.68 0.40 0.32

LASSO 0.75 0.52 0.47

CdTe0:5Se0:5 RFR 0.84 0.57 0.52

KRR 0.80 0.65 0.57

LASSO 0.95 0.73 0.65

CdSe0:5S0:5 RFR 0.86 0.63 0.57

KRR 0.75 0.68 0.70

LASSO 0.92 0.70 0.72
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computed values54. As we discuss later, both the PBE and HSE
transition levels can compare well with experimentally measured
values. In the next section, we present a smaller computational

dataset of impurity levels computed using the HSE06 functional,
and train predictive models for the same.

DFT data and ML models: HSE ϵ(q1/q2)
For the HSE06 impurity calculations, we consider the same
chemical space of 63 elements as impurity atoms, and for
selected impurities, we calculated 4 transition levels (+2/+1, +1/0,
0/−1, −1/−2), since a large majority of the impurity levels that
occur within the band gap or around the band edges belong to
one of these 4 transitions. Because of the reliability of PBE
formation enthalpies in screening low energy impurities, and the
requirement of HSE-based chemical potentials of relevant species,
we calculated only ϵ(q1/q2) and not ΔH at the HSE level of theory.
As shown in Table 1, we generate computational data for 19% of
the total CdTe points, about 10% each of the CdSe and CdS points,
and about 5% each of the points belonging to CdTe0:5Se0:5 and
CdSe0:5S0:5. This totals to a dataset of less than 10% of the entire
space of HSE ϵ(q1/q2) levels in the 5 compounds. A glimpse of this
dataset is provided in Fig. 5; the +2/+1 to −1/−2 transition levels
are plotted for selected impurities in the 5 defect sites in (a) CdTe,
(b) CdSe, and (c) CdS. The entire HSE computational data has been
plotted in Fig. SI-16 to SI-20.
It is interesting to note from a comparison between Fig. 2 and

Fig. 5 that for a given set of impurities, the observed transition

Fig. 4 Trained predictive models. Parity plots for random forest regression models trained for (a) ΔH (Cd-rich), and (b) ΔH (X-rich). Pictured
are the training and test set points (the training set size is 90% of the dataset of CdTe, CdSe, and CdS points), and the CdTe0:5Se0:5 and
CdSe0:5S0:5 points. Similarly, parity plots are shown for models trained for ϵ(q1/q2) (at the PBE level of theory) using the dataset of 2286 points
(total CdTe+CdSe+CdS dataset), for (c) the training and test set points, and (d) the CdTe0:5Se0:5 and CdSe0:5S0:5 points.

Table 3. RMSE (in eV) for regression models trained for PBE ϵ(q1/q2),
using different methods and sets of features.

Dataset Regression method Elemental
properties

Unit cell
defect
properties

Elemental
+ unit cell
defect
properties

Training RFR 0.18 0.15 0.13

KRR 0.27 0.28 0.25

LASSO 0.45 0.42 0.40

Test RFR 0.34 0.33 0.30

KRR 0.36 0.35 0.31

LASSO 0.43 0.40 0.41

CdTe0:5Se0:5 RFR 0.35 0.33 0.30

KRR 0.36 0.30 0.34

LASSO 0.42 0.34 0.35

CdSe0:5S0:5 RFR 0.35 0.34 0.33

KRR 0.40 0.42 0.37

LASSO 0.49 0.46 0.44
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Fig. 5 HSE data and comparison with experiments. Charge transition levels (from +2/+1 to −1/−2) calculated at the HSE06 level of theory
for selected impurity atoms in different sites in (a) CdTe, (b) CdSe, and (c) CdS. In d, we present a comparison between experimentally
measured defect levels55–60 and the corresponding PBE and HSE computed values in this work. VCd refers to a Cd vacancy whereas V*Cd is the
Vanadium at Cd site impurity.
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levels might occur at different absolute positions but follow the
same qualitative trend. For instance, going from PbCd to CuCd to
RuCd to SeCd in CdSe, the +2/+1 impurity level first goes down
and then rises towards the CBM in both PBE and HSE. However,
RuCd and SeCd exhibit +2/+1 levels deeper in the band gap in HSE
than PBE. The same trend can be seen across the PBE and HSE
values of the +2/+1 and +1/0 levels for Pti, Gai, Lii, and Asi at the
neutral interstitial site in CdS. A plot between the PBE and HSE
ϵ(q1/q2) in Fig. SI-13 shows that there is a very high correlation
between the two; the HSE values lie between the y= x and the
y= x+ 1 lines. We also collected some experimentally measured
defect levels in CdTe from the literature55–60 and plotted a
comparison between experiments, PBE ϵ(q1/q2), and HSE ϵ(q1/q2),
for various defects in Fig. 5d. It can be seen that in general, there is
good correspondence between the three, with the exception of a
couple of cases where the HSE value is highly overestimated
(Cu and Sn interstitial defects). Based on these 15 data points, PBE
ϵ(q1/q2) shows an RMSE of 0.22 eV with respect to experiments,
whereas HSE ϵ(q1/q2) shows a higher RMSE of 0.35 eV. There could
be many reasons for this discrepancy, such as the requirement of a
different mixing parameter61, but is should be noted that the
RMSE for HSE ϵ(q1/q2) drops to 0.18 eV when Cui and Sni are
removed. While the PBE transition levels can be assumed to be
reliable, predictions at the HSE level of theory are certainly useful.
We applied the same descriptors as before to train regression

models for the smaller dataset of HSE transition levels, but also
used the PBE ϵ(q1/q2) as additional descriptors. Similar to Fig. 3a,
the linear correlation coefficient plot in Fig. SI-21 shows that while
the HSE ϵ(q1/q2) levels have high correlation with certain unit cell
defect properties, the correlation between HSE and PBE ϵ(q1/q2) is
>0.95. In Fig. 6, we plotted the prediction RMSE as a function of
the training set size for the test and out-of-sample sets for RFR
models trained for HSE ϵ(q1/q2) using various combinations of
descriptors. Figure 6a, b show the errors using the usual three sets
of descriptors as before; the performances are nearly identical for
the test set across the three descriptor sets, while the unit cell
defect properties improve the performances for impurities in
CdTe0:5Se0:5 and CdSe0:5S0:5. Error saturation is not quite seen
when using more than 90% of the CdTe, CdSe, and CdS data for
training, which implies that more data is potentially required for
training accurate and generalizable models.
In Fig. 6c, d, we plotted the prediction RMSE for the test and

out-of-sample points, respectively, using descriptor sets that
include the PBE ϵ(q1/q2) values as an added dimension. It can
be seen that there is a drastic improvement in prediction
performances and both test and out-of-sample errors seem to
saturate around 0.24 eV. Further, we trained RFR models for HSE
ϵ(q1/q2) using only the PBE ϵ(q1/q2) value as sole descriptor, and
see that predictions are similar to the other three sets of
descriptors. In Fig. 6e–h, we present four different predictive
models; panels e, f, and g show RFR models trained using different
sets of descriptors, and it can be seen that the addition of PBE
values as descriptors significantly improves the performance. This
can also be seen from the RMSE values listed in Table 4–including
PBE ϵ(q1/q2) as a descriptor brings down the test and out-of-
sample RMSE to ~0.20 eV. We further applied a technique called
Delta-learning, wherein we train RFR models for the difference
between HSE and PBE transition levels (δ property= HSE ϵ(q1/q2)
− PBE ϵ(q1/q2)), and predict HSE ϵ(q1/q2) values by adding the
predicted δ property to PBE ϵ(q1/q2). It can be seen from Fig. 6(h)
that very low test (RMSE= 0.21 eV) and out-of-sample (RMSE=
0.22 eV) errors can be obtained for Delta-learning. Overall, it is
seen that the RFR model trained for HSE ϵ(q1/q2) using the
elemental properties+ unit cell defect properties + PBE ϵ(q1/q2)
as descriptors gives the lowest test set and out-of-sample errors,
and can be used for making predictions for the >90% of the
dataset yet to be computed. Predictive models trained for HSE

ϵ(q1/q2) using KRR and LASSO are presented in Fig. SI-22 for
comparison with RFR.

Screening of impurities for Fermi level tuning
Using predictions for the neutral state impurity formation enthalpy
ΔH, and every impurity transition level ϵ(q1/q2) from +3/+2 to −2/
−3, the Fermi level (EF ) and charge (q) dependent formation
enthalpy (Ef ) can be predicted for every possible impurity in Cd-rich
or anion-rich chemical potential conditions. For this analysis, we use
the machine-learned predictions at the PBE level of theory, since
that the formation enthalpies are known to be qualitatively reliable
and the transition levels match well with reported experiments, as
shown in Fig. 5d. In the absence of any external impurities, the
equilibrium Fermi level in a semiconductor is determined by its
dominant native point defects, such as vacancies or self-interstitial
defects. By comparing the machine-learned formation enthalpy of
any impurity with the computed energetics of dominant intrinsic
defects, we can estimate the probable change in the nature of
conductivity that would occur upon introduction of the impurity in
the semiconductor. In order to go through this process, we
simulated all possible vacancy (e.g., VCd, which refers to a Cd
vacancy), self-interstitial (e.g., Cdi or Sei) and anti-site defects (e.g.,
CdTe, SCd, etc.) in supercells of CdTe, CdSe, CdS, CdTe0:5Se0:5, and
CdSe0:5S0:5. The DFT computed Ef vs. EF plots for all possible intrinsic
defects in the 5 compounds are presented in Figs. SI-23 to SI-27.
The computed energetics of intrinsic defects reveal that while

the Cd vacancy, VCd, is the dominant acceptor type defect in each
compound, the Cd interstitial defect, Cdi(Te-site), is the dominant
donor type defect in CdTe, CdSe, and CdS, and Cd interstitial
defect, Cdi(Cd-site), is the dominant donor type defect in
CdTe0:5Se0:5 and CdSe0:5S0:5. It is also seen that the equilibrium
Fermi level (determined using charge neutrality conditions4) is
near the middle of the band gap for Cd-rich conditions in every
compound, which would lead to an intrinsic type of conductivity.
The equilibrium EF shifts towards the valence band upon going
from Cd-rich to anion-rich conditions, and in all cases renders the
conductivity moderately p-type. If an impurity creates a charged
defect that is more stable within the band gap than either the
dominant acceptor or donor type defect, it can pin the Fermi level
at a different location and change the conductivity. We predicted
the Ef values of every possible impurity in the 5 compounds as a
function of EF , and screened those impurities which would cause a
shift in the equilibrium EF . The complete list of all such
‘dominating impurities’ is provided in Tables SI-1 to SI-5. The
dominating defects under Cd-rich and Te-rich conditions and the
nature of conductivity are in agreement with reported literature62.
Given that both DFT and ML predictions of ΔH and ϵ(q1/q2) are

available for all 315 possible impurity-site combinations in CdTe,
we compare the Ef vs. EF plots for each impurity estimated from
both methods. Specifically, the evaluation of an impurity as
shifting or not shifting the equilibrium EF (alternatively, whether
the impurity dominates over the intrinsic defects or not) is used as
a metric to compare the DFT and ML predictions. We present such
a comparison in Table 5 in terms of the total number of false and
true positives or negatives predicted by ML for impurities in Cd-
rich and Te-rich chemical potential conditions. It is seen that the
false negatives and false positives amount to less than 5% of the
total impurities, which means that the ML approach has a >95%
probability of successful classification of an impurity as dominat-
ing or not. The true positives, which are the impurities predicted
to be dominating by both DFT and ML, amount to about 30 in
total for both Cd-rich and Te-rich conditions. The total number of
dominating impurities as predicted by ML for the 5 compounds
(and listed in Tables SI-3 to SI-7) in Cd-rich and anion-rich
conditions are presented in Table 6.
For a few selected ‘dominating’ impurities, we plotted the ML

predicted Ef as a function of EF in Fig. 7 for (a) CdTe, (b) CdSe, (c)
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Fig. 6 Predictive models trained on HSE data. Prediction RMSE plotted against the training set size for random forest regression models
trained for ϵ(q1/q2) (at the HBE level of theory), using different sets of features, for (a) the test set points, without using PBE, (b) the out-of-
sample points, without using PBE, (c) the test set point, using PBE as a descriptor, and (d) the out-of-sample points using PBE as a descriptor.
Further, parity plots are shown for predictive models trained using 90% of the CdTe+CdSe+CdS dataset as the training set, with performances
shown for the training, test and out-of-sample points, using the elemental and unit cell defect descriptors (e) without PBE and (f) with PBE, (g)
using just the PBE values as descriptor, and (h) using Delta learning. Uncertainties are not plotted in (e) because they are very high in general.
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CdS, (d) CdTe0:5Se0:5, and (e) CdSe0:5S0:5, for Cd-rich chemical
potential conditions. The formation energies of VCd and Cdi are
plotted (using dashed lines) as well to illustrate how each impurity
dominates and changes the equilibrium EF . Additional DFT
computations (wherever missing) were performed for these
selected dominating impurities; the DFT computed Ef is plotted

in each case using dotted lines, and it can be seen that there is a
very good match between the DFT and ML predicted lines.
Impurities such as NaCd, ZnCd, Fi, and CuCd create acceptor type
defects, whereas impurities like Mni, BiCd, ClSe, and Lii are donor
type. A common thread across the 5 compounds is low energy
defects created by Group I elements and certain transition metals
at the Cd-site, halogen atoms and Group V atoms at the X-site, and
F, Li, and Ag at the interstitial sites. Indeed, there is abundant
experimental literature on using a variety of dopants to change the
properties of CdTe, such as p-type doping using AsTe

63, SbTe
64, and

NaCd
65, and improved solar cell efficiency using halogen atoms66,

ZnCd doping67, and LiCd or Lii
68. In summary, ML has successfully

screened all the impurities that can potentially be introduced in
these Cd-chalcogenides to alter the conductivity type and
consequently the semiconductor’s optoelectronic properties.

Summary
In this work, we showed that machine learning can be used to
train accurate predictive models of the formation enthalpy (ΔH)
and defect transition levels (ϵ(q1/q2)) of impurities in Cd-based
chalcogenides using DFT generated data. The choice of descrip-
tors is of vital importance; we see that combining elemental
properties of an impurity atom with energetic and electronic
information computed from a lower-cost unit cell defect calcula-
tion leads to the optimal set of features that serve as inputs to
random forest regression models. Predictive models thus trained
for ΔH and ϵ(q1/q2) using data generated for CdTe, CdSe, and CdS
at the PBE level of theory can accurately predict the impurity
properties of mixed anion compounds CdTe0:5Se0:5 and CdSe0:5S0:5,
demonstrating their out-of-sample predictive power. Models were
further trained and tested for a smaller dataset of ϵ(q1/q2) values
at the HSE level of theory, for which the use of PBE ϵ(q1/q2) as a
descriptor leads to significant improvement in prediction perfor-
mances. The trained models were used to make predictions for
the entire chemical space of impurities in the 5 compounds,
following which the formation enthalpy (Ef ) of every impurity was
obtained as a function of the Fermi level (EF ) in the band gap. The
Ef vs. EF behavior is used to determine whether an impurity can
shift the equilibrium EF in the semiconductor as determined by
the dominant intrinsic point defects, leading to a list of impurities

Table 4. RMSE (in eV) for regression models trained for HSE ϵ(q1/q2), using different methods and sets of features.

Dataset Regression method Elemental properties Unit cell defect properties Elemental+ unit cell defect
properties

Without PBE With PBE Without PBE With PBE Without PBE With PBE

Training RFR 0.31 0.10 0.28 0.10 0.28 0.10

KRR 0.47 0.29 0.40 0.28 0.48 0.28

LASSO 0.70 0.22 0.63 0.22 0.60 0.21

δ-learn (RFR) 0.14 0.10 0.13 0.10 0.14 0.09

Test RFR 0.61 0.23 0.63 0.24 0.62 0.24

KRR 0.61 0.28 0.57 0.29 0.58 0.30

LASSO 0.72 0.24 0.65 0.24 0.63 0.24

δ-learn (RFR) 0.28 0.20 0.28 0.22 0.27 0.21

CdTe0:5Se0:5 RFR 0.64 0.22 0.59 0.21 0.58 0.21

KRR 0.60 0.52 0.54 0.53 0.55 0.53

LASSO 0.71 0.17 0.54 0.17 0.55 0.16

δ-learn (RFR) 0.25 0.20 0.20 0.19 0.21 0.18

CdSe0:5S0:5 RFR 0.63 0.27 0.61 0.26 0.61 0.26

KRR 0.57 0.50 0.62 0.51 0.52 0.50

LASSO 0.71 0.23 0.60 0.22 0.61 0.22

δ-learn (RFR) 0.28 0.26 0.26 0.25 0.26 0.25

Table 5. A comparison between predictions by DFT and ML of
‘dominating impurities’ in CdTe.

Verdict Cd-rich Te-rich

Predicted % of total Predicted % of total

False positives 5 1.59 3 0.95

False negatives 10 3.17 6 1.90

True negatives 272 86.35 275 87.30

True positives 28 8.89 31 9.84

True positives refer to the cases that were predicted to be dominating by
both DFT and ML, and true negatives are the cases predicted to be non-
dominating by both. False positives were predicted to be dominating by
only ML whereas false negatives were predicted to be dominating by
only DFT.

Table 6. The total number of impurities predicted to be dominating
by ML for Cd-rich and anion-rich chemical potential conditions in the 5
CdX compounds.

CdX Cd-rich Te-rich

Predicted % of total Predicted % of total

CdTe 28 / 315 8.89 31 / 315 9.84

CdSe 24 / 315 7.62 18 / 315 5.71

CdS 15 / 315 4.76 21 / 315 6.67

CdTe0:5Se0:5 44 / 441 9.98 31 / 441 7.03

CdSe0:5S0:5 36 / 441 8.16 26 / 441 5.90
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in each compound that can dominate over the intrinsic defects
and change the nature of conductivity in the material. A
comparison of DFT and ML predictions shows that less than 5%
of the entire population of impurities in CdTe is classified as false
negative or false positive (in terms of its ‘dominating’ nature),
giving us confidence that this ML approach can be used for a
successful screening of stable and active impurity atoms in
preferred defect sites.
The combined DFT and ML approach demonstrated here can be

applied to any number of semiconductor classes. For instance, III-V
semiconductors such as GaN, GaP, GaAlP, AlP, BP etc. are
interesting materials for photodiodes, solar cells, and in recent
times, have been studied for intermediate band photovoltaic
applications69–72. A quick screening of impurity atoms that can not
only change the equilibrium Fermi level, but also create energy
level(s) in the band gap, can be made possible using machine
learned models to predict impurity properties. Given the ubiquity
of the descriptors used here, this approach can, in theory, be
extended to include all possible pure and mixed compositions of
II–VI, III–V, and group IV semiconductors, many of which are
currently serving various optoelectronic applications. Further
extensions can be made in terms of impurity atoms by including
the lanthanides and actinides as well. There are also opportunities
in applying a wide variety of descriptors for further improvement
in ML performance, such as using Coulomb matrix representation,
radial distribution function, or electron density distribution. A true
‘semiconductor+impurity’ design framework will be complete
once the forward prediction model is combined with an inverse
model as well, wherein genetic algorithms or other optimization
techniques are used to devise suitable compositions which lead to
stable impurities with favorable energy levels in the band gap.

METHODS
DFT details
We used 2 ´ 2 ´ 2 supercells for any CdX compound, resulting in a
system with 64 atoms, to optimize the (fixed cell shape and size) geometry
using DFT in the neutral and charged states. The starting structures of
CdTe, CdSe, and CdS were obtained from the Materials Project52. Anion
ordered structures of CdTe0:5Se0:5 and CdSe0:5S0:5 were simulated starting
from the CdTe and CdSe structures, respectively; the effect of structure on
properties was examined by comparing band gaps and selected impurity
formation energies for the CdTe0:5Se0:5 and CdSe0:5S0:5 anion ordered
structure, special quasi-random (SQS) structure 49 and a random lower
energy structure in Table SI-1 and Fig. SI-30. We find that anion
environment has a small (�0.15 eV or smaller) effect on computed
quantities. The computed lattice constants of the 5 compounds are listed
in Table SI-1. DFT computations were performed using the Vienna ab-initio
Simulation Package (VASP) employing the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional and projector-augmented wave (PAW)
atom potentials. The kinetic energy cut-off for the planewave basis set was

400 eV, and all atoms were relaxed until forces on each were less than
0.05 eV/Å. Brillouin zone integration was performed using a 3 ´ 3 ´ 3
Monkhorst-Pack mesh. Further, HSE06 calculations were performed for a
smaller dataset using a 4 ´ 4 ´ 4 Monkhorst-Pack mesh. The following
equations are used to compute the formation enthalpy Ef of an impurity as
a function of the chemical potential μ and Fermi level EF , and any impurity
transition level, ϵ(q1/q2) :

Ef ðDq; EFÞ ¼ EðDqÞ � EðCdXÞ þ μþ qðEF þ EvbmÞ þ Ecorr (1)

ϵðq1=q2Þ ¼ Ef ðq1; EF ¼ 0Þ � Ef ðq2; EF ¼ 0Þ
q2 � q1

(2)

E(Dq) and E(CdX) refer to the total DFT energy of the defect containing
system in charge q and the bulk CdX compound, respectively. Evbm refers
to the valence band maximum of bulk CdX and Ecorr is the correction
energy necessary due to periodic interaction between charges14,53.

Regression techniques
RFR is based on ensemble learning through decision trees, where each tree
is built using bootstrap samples randomly drawn from the dataset. By
optimizing the number of trees and the number of necessary features, RFR
prepares a final predictive model as an ensemble, provides errors bars in
predictions based on standard deviation across individual trees, and
assigns a relative importance to the different features. KRR is a similarity
based regression algorithm where the output is expressed as a weighted
sum over Kernel functions, which are defined in terms of the Euclidean
distance between data points (which is a measure of the similarity). We use
a Gaussian kernel in this work, and the hyperparameters that are optimized
are the Kernel coefficients and the Gaussian width. LASSO is similar to
ridge regression but uses an L1 regularization, unlike KRR which uses L2
regularization. LASSO regression operates on the principle of shrinking the
coefficients of many features down to zero, and is thus very useful when
there are a large number of features. More details about random forest
regression, Kernel ridge regression, and LASSO regression can be obtained
from references32,34,35, respectively. Each technique was applied on the
DFT data using the python packages available in Scikit-learn (https://scikit-
learn.org/stable/).

DATA AVAILABILITY
DFT data and ML models are available from the corresponding author upon
reasonable request.
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