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Imaging mechanism for hyperspectral scanning probe
microscopy via Gaussian process modelling
Maxim Ziatdinov1,2, Dohyung Kim3, Sabine Neumayer 1, Rama K. Vasudevan1, Liam Collins1, Stephen Jesse1, Mahshid Ahmadi3 and
Sergei V. Kalinin1✉

We investigate the ability to reconstruct and derive spatial structure from sparsely sampled 3D piezoresponse force microcopy data,
captured using the band-excitation (BE) technique, via Gaussian Process (GP) methods. Even for weakly informative priors, GP
methods allow unambiguous determination of the characteristic length scales of the imaging process both in spatial and frequency
domains. We further show that BE data set tends to be oversampled in the spatial domains, with ~30% of original data set sufficient
for high-quality reconstruction, potentially enabling faster BE imaging. At the same time, reliable reconstruction along the
frequency domain requires the resonance peak to be within the measured band. This behavior suggests the optimal strategy for
the BE imaging on unknown samples. Finally, we discuss how GP can be used for automated experimentation in SPM, by
combining GP regression with non-rectangular scans.
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INTRODUCTION
Over the past three decades, scanning probe microscopy (SPM)
has emerged as a primary tool for characterization of structure
and functionality at the nanometer and atomic scales. Following
the initial demonstration of topographic imaging in contact
mode1, the intermittent and non-contact topographic imaging
modes, as well as SPM modes for electrical2, magnetic3,
mechanical4, and electromechanical imaging5,6 and spectroscopy7

followed. This rapid development of imaging modalities imple-
mented on these benchtop tools have opened the nanoworld for
exploration and was one of the key elements underpinning the
explosive growth of nanoscience, nanotechnology, and many
areas of fundamental and applied research8.
All SPM modes rely on the concept of the local probe

interacting with the sample surface. Scanning the probe allows
sequential measurements of materials response over a spatial grid,
giving rise to images or hyperspectral images, i.e., multidimen-
sional SPMs or SPM spectroscopic imaging modes. The data
acquisition process in SPM can hence be represented as the
combination of two elements—the SPM engine, or the excitation/
detection scheme, and the spectroscopic mode. The spectroscopic
modes define the sampling of the parameter space of interest at
each spatial location, for example, classical force–distance and
current–voltage curve mappings in atomic force microscopy9 and
scanning tunneling microscopy, and complex time and voltage
spectroscopies in piezoresponse force microscopy (PFM) and
electrochemical strain microscopy10–12. In modern SPMs, the
parameter space is usually sampled sequentially, albeit this
limitation is not rigid.
The SPM engine defines the response at a single point in the

parameter space, i.e., the nature of response at a single voxel.
Classical SPM engines typically employ a combination of
sinusoidal excitation and lock-in detection, e.g., as used in classical
amplitude detection SPM, or a combination of sinusoidal
excitation with the phase-locked loop detection in frequency

detection schemes. These two engines yield (multimodal) scalar
information, i.e., two response values per pixel. Examples of vector
detection engines are the band excitation (BE)13, exciting and
detecting multiple frequencies in parallel, and harmonic inter-
modulation methods14 that detect the mixing harmonics between
the two excitation signals. In both cases, the engine compresses
the data stream from the detector to a single parameter or a set of
parameters corresponding to response vector components.
Finally, more complex detection schemes such as G-mode
SPM15–17 are based on detection and storage of the full data
stream from the detector, obviating the data compression stage
during scanning, after which in-depth data analysis can be
performed. Both BE, and intermodulation and G-mode detection
were extended to a broad variety of SPM modes, including
topographic imaging, magnetic and electrostatic force imaging18,
PFM19, and is expected to be universally applicable to all
SPM modes.
The proliferation of BE, intermodulation, and G-Mode SPMs and

their nascent adoption by the commercial vendors necessitates
understanding basic image formation mechanisms in these
techniques. To date, most of such analyses were based on the
physics-based models, where the known (or postulated) physics of
the imaging process was used to transform the high-dimensional
data to a number of reduced, ideally material-specific (i.e.,
independent of imaging system), parameters. The examples of
such analysis include the simple harmonic oscillator (SHO) fit in
the BE methods20 or reconstruction of the intermodulation
harmonics in intermodulation atomic force microscopy14,21. Here
the measured resonance frequencies and force–distance curves
describing salient features of tip–surface interaction can then be
transformed into effective Young moduli.
At the same time, of interest is the amount of information

contained in the multidimensional data as determined from a
purely information theory viewpoint, as well as approaches to
compress and visualize it for exploratory data analysis. This
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information will provide both insight into the fundamentals of
imaging mechanisms and tip–surface interaction, can be corre-
lated with materials’ structure to yield insight into materials’
behaviors, and suggest strategies for automated experimentation.
Previously, hyperspectral data sets were explored using multi-
variate statistical methods such as principal component analysis22,
more complex methods such as non-negative matrix factorization
that allow for certain physics-based constraints23, or non-linear
autoencoders24. However, these methods are based exclusively on
the analysis of the spectral dimensions, whereas spatial correla-
tions are explicitly ignored. In other words, the endmembers of
spectral unmixing do not depend on the relative positions of the
spatial pixels. Correspondingly, analysis of spatial features in the
loading maps was used as a way to infer the understanding of the
system23. Alternatively, neural network-based algorithms were
suggested as an approach to identify the data based on labeled
examples25 or to extract the parameters of a theoretical
model26,27. However, in these cases as well analysis was essentially
single-pixel based.
Here we explore the imaging mechanisms in the BE PFM using

the Gaussian process (GP) regression28–32. This method allows
exploration of the data structure from purely information theory
perspective simultaneously in the spatial and parameter space. We
apply this Bayesian machine learning approach to determine the
characteristic length scale of the phenomena and information
content in the hyperspectral images and suggest the strategies for
automated experimentation based on exploiting sampling of
space where maximum uncertainty is predicted.

RESULTS AND DISCUSSION
BE PFM on BiFeO3 film
The BE PFM measurements were performed on an Asylum Cypher
microscope using an in-house built BE controller. The BE PFM is
based on exciting and monitoring the cantilever/sample response
within a continuous frequency band (instead of a single frequency
as used in a classical set-up) using parallel multifrequency
excitation and detection. This allows quantitative measurements

via decoupling the material response from the changes in
resonance frequency of the tip–surface junction.
As a model system, we use an epitaxial BiFeO3 thin film of 100-

nm thickness. The characteristic surface topography is shown in
Fig. 1a. The BE data can be fitted to a SHO model to extract
amplitude, phase, resonance frequency, and Q-factor maps as
shown in Fig. 1b–e. These images clearly indicate a ferroelectric
domain structure as expected for this material. Figure 1f shows the
zoomed-in amplitude image at the top left corner of Fig. 1b.

GP for reconstruction of BE PFM data
To explore the information distribution in the BE data set, we
employ the GP method31,32. GP generally refers to an indexed
collection of random variables, any finite number of which have a
joint Gaussian distribution. More simply, a GP is a distribution over
functions on a given domain and can be used for approximating
continuous nonlinear functions. GP can be completely specified in
terms of its mean function and covariance function (also referred
to as kernel function). A common application of GP in machine
learning is a GP regression analysis where one estimates an
unknown function given noisy observations y= (y(x1), …, y(xn))

T

of the function at a finite number of points X= {x1, …, xn}. The
marginal likelihood of the data is conditioned on the kernel
hyperparameter θ as following:

log p yjX; θð Þ / � 1
2
log Kθ þ σ2I
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�
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2
yT Kθ þ σ2I
� ��1
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where the first and second terms can be interpreted as the
hyperparameter learning and the data fit, respectively31. Here σ2 is
noise variance. Because the application of GP models to large data
sets is intractable, we adapt a sparse GP regression method for
constructing an approximation using a subset of observations
called inducing points33. The inducing points are optimized
together with kernel hyperparameters during model training.
Maximizing the number of inducing points generally yields more
accurate results, albeit at the cost of computation time and
memory.

Fig. 1 BE-PFM images in the BiFeO3 epitaxial film. a Topographic map. b BE-PFM amplitude, c phase, d resonance frequency, and e Q-factor
maps. f Zoomed-in amplitude image at the top left corner of b.
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It is important to know that the signature aspect of GP method
is that observations at different locations are assumed to be linked
via the kernel function, defining the connection between the
dissimilar locations. The kernel function can be either defined a
priori, i.e., from the known physics of the system or additional
information, or can be treated as a hyperparameter. In the latter
case, the functional form of the kernel is defined and the
corresponding parameters are determined as a part of the fitting
process. Here we note that the kernel parameters determined self-
consistently as a part of the regression process should provide
robust information on the image formation mechanism in the
technique and explore this proposition below.
To explore the applicability of the GP processing in BE, we first

demonstrate its potential for reconstruction from partial data and
subsequently show how exploratory analysis using information
about maximum uncertainty as a guide for selecting the next
measurement point can be performed. We selected a 32 × 32 ×
102 subset of the original hyperspectral data (see Fig. 1f) in order
to reduce computational time/costs and to make it easier to
reproduce our results without a need to use high-performance
computing. Our GP analysis code tailored toward the analysis of
two- and three-dimensional (2D and 3D, respectively) image and
spectroscopic data is based on Pyro probabilistic programming
language32. We used a fixed number (1500) of inducing points
(determined based on the limits of graphics processing unit (GPU)
memory) for reconstruction of individual data sets, while for the
“sample exploration” problem the number of inducing points was
set to 5% of the overall data points. We also provide an executable
Jupyter notebook for reproducing the paper’s results (available at
https://colab.research.google.com/github/ziatdinovmax/GP/blob/
master/notebooks/GP_BEPFM.ipynb). The notebook can be exe-
cuted either using a standard Google Cloud Platform virtual
machine with NIVIDIA’s Tesla P100 GPU and 15 GB of RAM
(running the notebook one time from top to bottom costs ~2
USD) or in Google Colab with NVIDIA’s Tesla K80 GPU, which is
free of charge but may require significantly longer
computational times.
Here the original BE data set is considered to be the “known”

ground truth. A part of the data is removed, creating the artificial
data set. The GP regression is used to reconstruct the full data set,
and the reconstruction error is evaluated. This process is illustrated

in Fig. 2, showing the original data set as a response in the x, y,
and frequency space (Fig. 2a), the reduced data set (Fig. 2b), the
reconstructed data set (Fig. 2c), and the absolute error (Fig. 2d).
Here the “Matern52” kernel is used31. The reconstruction error
shown in Fig. 2d generally does not exceed ~20% despite the fact
that 70% of the data was eliminated.
To explore the robustness of this approach, we explore the

veracity of reconstruction for the various degrees of image
reduction. The 2D representation of the reconstruction of the BE
data set for the full data set and for the data sets with removal of
70%, 90%, and 99% of the original data is shown in Fig. 3. Even for
the data reduction by 90%, the reconstructed data sets maintain
the characteristic features of the response, including both the
general domain configuration and the behavior of the
amplitude–frequency curves. Note that GP process yields not
only estimated response values but also the confidence intervals
at the given point in the parameter space, thus allowing for the
formulation of optimal strategies for experiment automation, as
will be explored later. Overall, we conclude that the BE data are
strongly oversampled, and even without strong physics-specific
priors, the GP process allows reconstruction of data from partial
observations.
We further note that the key element of GP process is that it

yields the insight into the structure of the data via the kernel
parameters. Here we use the weakly informative 3D Matern kernel,
with the characteristic length scales determined as a part of
regression process. These length scales hence define the
characteristic resolution in the spatial and frequency domains
and do so in robust (with respect to noise) fashion. These
behaviors are illustrated in Fig. 4a–d for the full data set and for
the partially reduced data sets discussed in Fig. 3. Note that, for all
cases discussed in Fig. 3, the frequency length scale converges to
the similar value given by the width of the BE peak. For spatial
length scales, the analysis of the full data set allows to establish
characteristic spatial resolution as the kernel length scale. This
length scale in turn provides robust estimate of the characteristic
length scale of tip–surface interactions. We also showed
trajectories of inducing points for each case, which were selected
as a subset of the input data points by taking every nth point from
the original data set. Here n was adjusted such that the total
number of inducing points remained the same (1500, based on

Fig. 2 Illustration of GP application to 3D spectroscopic data set. Original image (ground truth) in a is corrupted by removing 70% of
observations (measured spectroscopic curves) as shown in b. The GP regression is then used to reconstruct the signal (c). The absolute error is
shown in d. Note that the absolute error may be misleading when the ratio of signals of interest does not change (see Fig. 3). The data set
dimensions are 32 × 32 × 102.
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GPU memory limits) for all 4 scenarios. Notice that most inducing
points in Fig. 4e–g stop their motion after ~500 stochastic
variational inference iterations and that for data set with 99% of
observations removed all the inducing points remain mostly at
their original location. While the inducing points do not have a
physical meaning, understanding their evolution during the
optimization process is important for applying GP models to
larger hyperspectral data sets and to the experiment automation.
We further explored the robustness of the reconstruction with

respect to the choice of the frequency range. In this case, the
high-quality reconstruction is possible when the local resonance
frequency is within the measurement range but start to

deteriorate rapidly once outside (Supplementary Figs. 1 and 2).
These observations suggest that introduction of GP in the imaging
workflow favors the mapping over large frequency ranges but at
the reduced spatial point densities. However, we expect that
incorporation of physics-based kernels containing the information
on the SHO model will allow to expand this approach further.

Uncertainty-guided sample exploration
We finally demonstrate that GP regression can be used for guiding
the actual measurements. Here we start with just a few measured
points along each edge in the xy plane (~1% of all the
observations). A single exploration step consists of (i) performing

Fig. 3 Illustration of GP reconstruction on selected 2D data slices. Selected 2D representations corresponding to the application of GP
regression to original (full) data (a) and data corrupted by removing 70% (b), 90% (c), and 99% (d) of observations. In each panel, the top row
shows the input data (2D slices of hyperspectral data average over selected frequency range and spectroscopic curves extracted at A, B, and C
points) and the bottom row shows the model output (the same averaged slices and the reconstructed curves from the same locations as in
the input data). The vertical blue span in the plots indicate a slice used for 2D image plots (the same in all four panels). The spatial resolution
in all the images is ~9.76 nm/px. The full 3D data sets are available from the notebook at https://colab.research.google.com/github/
ziatdinovmax/GP/blob/master/notebooks/GP_BEPFM.ipynb.
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a GP regression, (ii) doing a single “measurement” in a point with
maximum uncertainty, and (iii) updating the previous input data
with the data points associated with this measurement. The GP
part of this process can be viewed as a “black box” that is
effectively separated from the BE PFM acquisition software. It
accepts the datacube of a fixed size containing the BE PFM
response values (the size is determined by the scan size and
frequency range) and the associated grid indices as the input and
outputs the indices of the next point to be measured based on the
GP uncertainty estimation. The points that are not yet measured
are represented as NaNs in the datacube and are updated with the
BE PFM response values once measured. The optimal frequency
range (the third dimension of the datacube) is selected based on a
prior knowledge of an operator and remains fixed during each
measurement cycle.
Here we demonstrate this approach using a “synthetic”

experiment, that is, we use the data from the actual but already
completed experiment, with 99% of all the observations removed,
which allows us to estimate the absolute error at each step. As one
can observe from Fig. 5a, the absolute error is rapidly decreasing
during the first ~30 exploration steps. The error is much higher

when the next measurement point is selected just randomly, as
demonstrated in Fig. 5b. We noticed that, if the edge points are
not “opened” in the beginning, the algorithm typically spends the
first ~10 iterations (for this particular data, dimensions) on
measuring the edges since this is where the kernel diverges
(and not because this is related to any sample properties) and
then moves to the regions deeper inside the field of view. The
selected inputs and outputs for this exploration range are shown
in Fig. 6. Interestingly, one can get a good understanding of the
sample domain structure already after 20–30 steps of such an
autonomous experiment, which suggests that this approach can
significantly reduce the data acquisition time. The remaining steps
are typically spent on “refining” the uncovered structures
(compare, for example, the third and the last column in Fig.
6b–d). The current approach can be improved by introducing a
“cost function” determining which objects are of real physical
interest (that, is “worth exploring”), in addition to a pure
uncertainty-based exploration.
To summarize, we have explored the applicability of the GP

regression with weakly informative priors for the analysis of the BE
PFM data. Here we explored the signal in the 3D (x, y, frequency)

Fig. 4 Evolution of GP parameters during training. Evolution of kernel length scales (a–d) and inducing points (e–h) during the stochastic
variational inference (SVI)-based model training for full data set (a, e), and data corrupted by removing 70% of observations (b, f), 90% of
observations (c, g), and 99% of observations (d, h). a The first two dimensions in a–d (dim 1 and dim 2) correspond to x and y coordinates,
whereas the third dimension (dim 3) corresponds to frequency. The kernel length scales define the spatial resolution of the technique
(assuming atomically thin domain wall width) in the spatial domain and the width of the resonance peak in the frequency domain.

Fig. 5 Simulation of the GP-guided experimental measurements. The data are real (experimental). a The integrated absolute error versus
exploration steps for measurements with (GP) and without (standard) GP regression-based reconstruction. b Comparison of the integrated
absolute error when the next measurement point is selected using the maximal uncertainty in GP reconstruction versus when the next
measurement point is selected randomly (for three different pseudo-random seeds). c Exploration path in xy coordinates for the first 60 steps.
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parameter space. Even for the weakly informative priors, the GP
approach allows to unambiguously determine the characteristic
length scales of the imaging process both in spatial and frequency
domains. We further show that BE data set tend to be
oversampled, with ~30% of original data set sufficient for high-
quality reconstruction.
We further note that this analysis points at strong potential of

GP for the development of the automated experiments, where the
measurement points are chosen based on the results of previous
measurements34–36. Here the Bayesian uncertainty along with the
target-driven criteria can be used for balancing of the exploratory
and exploitation activity. Furthermore, we believe that the analysis
can be strongly improved with the addition of physics-based
priors to reconstruction, where the kernel function incorporates
the partially known physics of material (e.g., atomically resolved
periodic features, sharp boundaries, Green’s function for known
geometric domain, etc.) or imaging process (resolution function).

DATA AVAILABILITY
Experimental data are available at https://doi.org/10.5281/zenodo.3667000.

CODE AVAILABILITY
The full code is available without restrictions at https://git.io/JePGr.
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