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Machine learning method for tight-binding Hamiltonian
parameterization from ab-initio band structure
Zifeng Wang 1, Shizhuo Ye 1, Hao Wang1, Jin He 1, Qijun Huang1 and Sheng Chang 1✉

The tight-binding (TB) method is an ideal candidate for determining electronic and transport properties for a large-scale system. It
describes the system as real-space Hamiltonian matrices expressed on a manageable number of parameters, leading to
substantially lower computational costs than the ab-initio methods. Since the whole system is defined by the parameterization
scheme, the choice of the TB parameters decides the reliability of the TB calculations. The typical empirical TB method uses the TB
parameters directly from the existing parameter sets, which hardly reproduces the desired electronic structures quantitatively
without specific optimizations. It is thus not suitable for quantitative studies like the transport property calculations. The ab-initio TB
method derives the TB parameters from the ab-initio results through the transformation of basis functions, which achieves much
higher numerical accuracy. However, it assumes prior knowledge of the basis and may encompass truncation error. Here, a machine
learning method for TB Hamiltonian parameterization is proposed, within which a neural network (NN) is introduced with its
neurons acting as the TB matrix elements. This method can construct the empirical TB model that reproduces the given ab-initio
energy bands with predefined accuracy, which provides a fast and convenient way for TB model construction and gives insights
into machine learning applications in physical problems.
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INTRODUCTION
New materials with attractive properties are springing up, sparking
the exploration of their potential for electronics. During explora-
tion, it is necessary to determine the band structures and transport
properties of these systems. Fortunately, both of these factors can
be derived from the Hamiltonian of the system1–3.
For a realistic large-scale system, especially with limited

periodicity, the calculation of the corresponding Hamiltonian is
often intractable in a conventional ab-initio study. Additionally,
the resultant Hamiltonian usually has a large number of basis
functions, thus increasing the temporal complexity of transport
property calculations in which many matrix diagonalization
operations are involved. In this regard, the tight-binding (TB)
method becomes a practicable approach, describing a system as
real-space TB Hamiltonian matrices expressed on a manageable
number of parameters4,5 to reduce the subsequent computing
time. The choice of the TB parameters thus determines the
reliability of the TB calculations. Traditionally, considering the
amount of time required to obtain the reasonable TB parameters
on one’s own, the TB parameters are often obtained from the
published TB parameter sets to construct the empirical TB models
for the desired systems. However, these published empirical
parameters are usually obtained by fitting to the ab-initio results
of certain materials with fixed geometries and boundary condi-
tions. As a result, the TB models constructed from these
parameters can hardly reproduce the ab-initio band structures
of the materials with different geometries and boundary condi-
tions quantitatively, which becomes a source of the unreliability of
this typical empirical TB method in quantitative research. In recent
years, the reliability of the TB method has been greatly improved
by the introduction of several ab-initio TB methods, which are
based on the projection of the extended Bloch states obtained
from the ab-initio calculations onto a much smaller set of localized

orbitals6–10. Such methods drive the TB parameters directly from
the ab-initio results of the desired material systems without the
fitting process. The resulting ab-initio TB models are compatible
with the typical TB form and reproduce the selected ab-initio
energy bands with high accuracy. However, though successfully
adopted in numerical studies of a variety of materials and
devices11–15, these projection-based methods have their own
challenges.
First, these methods require full knowledge of the eigenener-

gies and eigenfunctions calculated from the ab-initio methods.
The corresponding time-consuming ab-initio calculations must be
performed before the TB Hamiltonian construction, which hinders
massive high-throughput investigations. Additionally, the abun-
dant experience is needed when selecting TB basis functions in
these methods. An accurate representation of the ab-initio bands
in the much smaller TB basis requires the good projectability16 of
the corresponding ab-initio Bloch states onto the finite Hilbert
space spanned by these TB basis functions. For methods based on
non-iterative projection schemes, such as the direct projection10

and Quasi-atomic orbitals9, the TB basis is predetermined as a
specific set of atomic or atomic-like orbitals, so the choice of the
ab-initio bands to be reproduced is limited to those with
satisfactory projectability on the specific Hilbert space considered.
Though improved by a series of studies16–18, such methods are
still not good at dealing with the projection of unoccupied states
far above the Fermi level unless increasing the richness of the
basis. For iterative methods such as the maximally localized
Wannier functions (MLWFs)19,20 approach and muffin-tin orbitals
of arbitrary order (NMTO)6 approach, any bundle of the ab-initio
bands can be selected for projection, whereas the TB basis
functions should be iteratively optimized to span a suitable Hilbert
space, which requires detailed knowledge of the underlying
system and sufficient time for trial-and-error procedures21. Finally,
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even well-projected orbitals may produce Hamiltonian matrix
elements associated with long-range neighbor interactions22.
Suppose the desired TB representation (like the nearest-
neighbor TB model) does not consider such long-range interac-
tions. In that case, these elements need to be truncated, and the
resulting TB representation will suffer a loss of accuracy7.
This work explores another way for TB Hamiltonian parameter-

ization, with machine learning (ML) techniques. This method uses
a fast scheme to fit the ab-initio energy bands by focusing directly
on adjusting the TB matrix elements. Specifically, a neural network
(NN) model is introduced to fill the preselected real-space TB
Hamiltonian matrices with the neurons by treating them as the
matrix elements. The values of these neurons, which determine
the TB matrices, will be flexibly updated to achieve a satisfactory
match between the produced TB bands and the ab-initio bands
during the training phase by a back-propagation algorithm23,24.
This method assigns an individual NN model to every desired
system for TB parametrization, which is affordable because of the
fast fitting scheme. The resulting one-to-one empirical TB model
can achieve better reliability on the chosen system, than the
typical empirical model constructed from TB parameter sets,
because of the concentration on the reproduction of the given
bands without considering the transferability to other systems.
Additionally, the matrix element adjustment scheme is free from
the issues mentioned above that bother the projection-based
methods. Within this method, the ab-initio band structure data of
the desired material are used as the only training data, and no
other input, such as atomic coordinate information or eigenfunc-
tion data, is needed. Therefore, the vast existing resources of band
structures in public databases can be used, bypassing the ab-initio
calculations. This approach implicitly defines the TB basis
functions by directly parameterizing the TB Hamiltonian matrices,
so no prior knowledge of the functions is involved. Furthermore,
this method can in advance exclude the matrix elements that
need to be truncated according to the desired TB model so that
the truncation error can be avoided. Most importantly, this
method is applicable to any material system with accessible and
reliable band structure data. In the following article, this method is
described in detail, and its merits are verified.

RESULTS
Parameterized TB Hamiltonian matrix
The empirical TB method works by writing the eigenstates of the
Hamiltonian Ĥ in a basis set of atomic or atomic-like orbitals, ϕij i,
and replacing the exact many-body Hamiltonian operator with a
parametrized Hamiltonian matrix H, which can then be used to
compute the desired electronic and transport properties of the
given system. Typically, the basis set is not explicitly constructed
but defined by the empirical parameters used to form H.
Generally, the parametrized TB Hamiltonian matrix H can be
written as follows:

H ¼ P
i
ϵini þ

P
i≠j

tijc
y
i cj ; (1)

where i and j run over the considered basis orbitals, ϵi denotes the
energy of the electron at site i, tij is the hopping energy between
the sites i and j, and cyi (cj) are the creation (annihilation) operator
of electrons at site i(j). Since these on-site and hopping terms are
usually obtained from the existing TB parameter sets, specific
optimizations have to be performed according to the studied
system at hand, or the numerical accuracy should be significantly
lower than the ab-initio calculations. We address these problems
with our tight-binding Hamiltonian construction neural network
(TBHCNN), which uses the neurons to represent the TB matrix
elements. The number and values of the neurons are adjusted
continuously during the training phase with the ab-initio bands as
references. After training, the neurons can be used to form the

parameterized TB Hamiltonian, which conforms to the matrix form
as Eq. (1) and at the same time reproduces the reference bands.

Workflow of the TBHCNN
Figure 1 schematically illustrates the workflow of using the
TBHCNN model for TB Hamiltonian parametrization, taking the
examples of a one-dimensional (1D) periodic system and a
uniform 1D non-periodic system.
For the periodic system, we first obtain its band structure data

by searching in the online database if possible or by performing
the ab-initio calculations on it, and then we select the energy
bands of interest as the training set. When preparing the ab-initio
calculations, although the unit cells of arbitrary sizes can be
chosen, we advocate keeping the unit cell as small as possible. As
the unit cell becomes larger, the corresponding first Brillouin zone
shrinks and the calculated band structure becomes gradually
dense energy levels25. It is hard to extract useful information from
such a heavily folded band structure26, and thus hard to
determine the selection of the energy bands as references. Also,
more computing time is required with a larger unit cell for the ab-
initio calculations. After selecting the unit cell and the ab-initio
energy bands as references, we then determine the interaction
range (i.e., the distances range in which two orbitals are
considered to have hopping terms) considered in the desired TB
model. Since our method does not assume the knowledge of the
atomic coordinate information, we determine the interaction
range by deciding on the real-space Hamiltonian matrices used in
the chosen unit cell representation. For example, we may just use
H0–1, H00, and H01, which denote the real-space Hamiltonian
matrices between the unit cell of the lattice vector R = 0 and the
cells of the lattice vector R = −1, 0, and 1, to construct the TB
model where the interactions beyond the nearest unit cells are
made negligible. Of course, other choices can be made on-
demand. Then, we initialize the TBHCNN model according to the
selected energy bands and real-space Hamiltonian matrices.
Specifically, the Hamiltonian matrix size will default to the number
of reference bands to ensure that the eventual TB model contains
enough bands, and the proper number of neurons will be added
to the TBHCNN model to fill in these matrices as their elements.
These neurons have the initial values sampled from a standard
normal distribution and will remain real numbers during training.
Note to ensure that H00 should maintain a symmetric form, and
the real-space Hamiltonian matrices with opposite lattice vectors
should transpose each other. Now, we get a randomly initialized
TB model. To obtain the TB band structure, ensure the
orthogonality of the TB basis and diagonalize the reciprocal-
space Hamiltonian,

HTB kð Þ ¼ P
R
eik�RH0R; (2)

where R runs over the lattice vectors of the selected real-space
Hamiltonian matrices, for desired k vectors in the Brillouin zone to
obtain the band energies εTBn;k and the eigenvectors ψTB

n;k ,

HTB kð ÞψTB
n;k ¼ εTBn;kψ

TB
n;k; (3)

where n is the band index. The TB band structure can be obtained
by assembling all the band energies εTBn;k for all the k vectors
considered. The quality of the TB model can be evaluated by
comparing the TB bands with the chosen ab-initio bands. As a
measure of their mismatch, the mean squared error (MSE)
between the energy eigenvalues is adopted (in units of (eV)2):

ΔE ¼ 1
N

1
Nk

PN
i¼1

P
k
ðεTBi;k � εAbi;k Þ2; (4)

where Nk is the number of k-points sampled in the reference
bands. The procedure mentioned above is the forward pass, and
ΔE serves as the loss function Loss. In the backward pass, the
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derivative of the loss function with respect to the elements of the
real-space TB Hamiltonian H0R, denoted by H0R using standard
algorithmic differentiation terminology27, will be computed as

H0R ¼ P
k
eik�RΨkEkΨT

k; (5)

with

Ek ¼ diag ∂Loss
∂εTB1;k

; ∂Loss
∂εTB2;k

¼ ; ∂Loss
∂εTBN;k

� �
; (6)

and

Ψk ¼ ψTB
1;k;ψ

TB
2;k ¼ ;ψTB

n;k

� �
: (7)

Then, the matrix elements in the Hamiltonian can be updated
by using the gradient descent algorithm

H0R
nþ1 ¼ H0R

n � αH0R
n ; (8)

where α is the learning rate, and the subscripts of the matrices
represent the number of training steps in the TBHCNN.

Through the back-propagation process, the values of the
neurons are continuously adjusted to minimize the loss function,
leading to an improved match between the resultant TB bands
and the ab-initio references. The numerical threshold for the loss
function and the maximum number of training steps should be
predefined as the criteria for ending the training. Once the loss
function value touches down the preset threshold, the TBHCNN
will end the training, and its neurons will be used for TB
Hamiltonian parameterization, resulting in the TB model reprodu-
cing the reference bands with the MSE being the value of the
preset threshold. However, If the loss function value remains
higher than the preset threshold after the maximum number of
training steps, the TBHCNN will add extra neurons and increase
the basis size of the real-space Hamiltonian by a predefined
number to enlarge the basis set; then, the whole network will be
reinitialized, and a new round of training will begin. It can be seen
that the TBHCNN model is in fact a dynamic network with a
variable number of neurons. The additional bands induced by the
increase of basis will be put above or below the set of reference
bands and will not be used for loss function computation. These
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Fig. 1 Workflow of the TBHCNN. a The workflows of obtaining the TB model for a 1D periodic system and constructing the TB Hamiltonian
matrix for a uniform 1D non-periodic system. There are two additional steps for the latter, which are marked with the red arrows. b Structure
diagram of the TBHCNN model. The matrix elements layer in the TBHCNN will be initialized according to the number of the reference ab-initio
bands and the real-space TB Hamiltonian matrices considered in the desired TB model. The reference bands data are used as the training set,
of which the eigenenergies εAbi;k are encoded within the ab-initio bands layer for computing the loss function by comparing with the TB results
encoded in the tight-binding bands layer. The loss function value will be backpropagated to train the value of the neurons in the matrix
element layer, which will be used as the matrix elements to construct the considered real-space Hamiltonians. When the loss function cannot
touch down the predefined threshold, the TBHCNN model will add new neurons to the matrix element layer and reinitialize the whole layer to
start a new round of training.
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procedures will be repeated until a satisfactory agreement
between the produced TB bands and references is achieved. No
manual intervention is needed. We hasten to add that the
selection of the hyperparameters mentioned above should not be
strictly fixed but rather a choice on demand. The loss function
threshold should be determined according to the accuracy
desired; the setting of the maximum number of training steps
depends on the convergence of the loss function on the selected
reference bands; the neurons added, i.e., the basis functions
increased, should be chosen considering the tradeoff between the
training time and the basis size of the resulting Hamiltonian. A
large number may result in the TB model consisting of more basis
functions than is actually needed to reproduce the reference
bands, whereas a small number might lead to more training time.
For the uniform 1D system with limited periodicity, which

cannot be represented by a set of real-space Hamiltonian matrices
H0R labeled with lattice vector R but rather a whole real-space
Hamiltonian matrix containing all the considered on-site and
hopping terms, we present a simple TB Hamiltonian construction
scheme with the principal-layer (PL) approximation28. Compared
with the 1D periodic system, two additional steps are required
within the construction scheme. One is to select a fragment7 of
this system. The fragment should be a repeating structural unit of
the system. We then use the fragment as a unit cell of the
corresponding periodic system to obtain its band structure. For
the same reasons we stated above, the size of the fragment
should be as small as possible. Then we can obtain the TB model
of the corresponding periodic system using the same procedures
as we demonstrated above. There comes the other additional step
where the Hamiltonian matrix of the 1D non-periodic system is
constructed by the produced TB model. Using the PL approach,
we let the PL consist of one unit cell and make the TB model
consider the real-space Hamiltonian H0–1, H00, and H01 only. In this
case, the Hamiltonian of the desired 1D non-periodic system can
be constructed by these matrices as

H00 H01 0 0 0

H0�1 H00 H01 0 0

0 H0�1 H00 H01 0

0 0 H0�1 H00 . .
.

0 0 0 . .
. . .

.

0
BBBBBBB@

1
CCCCCCCA

Nf ´Nrð Þ ´ Nf ´Nrð Þ

; (9)

where Nf is the final size of the trained real-space Hamiltonian
matrices and Nr is the number of fragments required to rebuild
the 1D non-periodic system.
Theoretically, the TBHCNN applies to systems of any dimension.

The 1D models above are used as examples for the sake of
simplicity and brevity. To extend the above procedures to arbitrary
periodic systems, take into account the real-space Hamiltonian
matrices which describe the interactions along every periodic
direction. And these matrices can be used to construct TB
Hamiltonians of the corresponding uniform non-periodic systems
in the same way as stated above.
We must emphasize that, within the method presented above,

only the ab-initio energies are used for training the TBHCNN
without the involvement of any information of the basis functions
and atomic coordinate of the given system. Therefore, the method
in its current form cannot ensure the match of the symmetry
characters between the predicted TB bands and reference bands,
nor the resulting Hamiltonian elements could reflect the geome-
trical symmetries. These should be considered as the limitations of
the proposed method. However, we will show the validity of the
resulting TB Hamiltonian parameterization for transport property
calculations in the following text. We will also present a variation of
this method to deal with the limitations by introducing and

exploiting the additional information of geometry and the
symmetry of reference bands in later sections.
Additionally, the construction scheme that is shown in Eq. (9)

with the PL approximation is suitable for the presented uniform
system but would not apply to a general inhomogeneous system.
In this case, the common practices are to divide the inhomoge-
neous system into several homogeneous subsystems, and then to
perform the TB Hamiltonian parameterizations for these sub-
systems, respectively. And the proper stitching of these TB models
should be performed to construct the Hamiltonian of the whole
inhomogeneous system, which is also an important research
aspect where serval research findings have been published14,29

but would be out of the scope of this paper. Therefore, we do not
expand on the stitching schemes in detail but recommend the
cited references to the interested readers.

Application and validation of the proposed method
For novel material systems, the experience with and knowledge of
the basis functions are not sufficient, so relevant TB models are
rare, which severely hampers transport analyses with and
applications of these systems. For example, 2D-InSe nanosheet
is a prospective system since this typical III–VI semiconductor has
many attractive properties, such as high electron mobility30–32 and
good ohmic contact33. Few-layer and monolayer InSe nanosheets
have been successfully synthesized34, but there have been few
direct theoretical studies on quantum transport in 2D-Inse-based
devices for the above reason. Here, the simulation of an InSe
nanoribbon metal-oxide-semiconductor field-effect transistor
(MOSFET) is performed with the TB Hamiltonian generated by
the proposed ML method to illustrate the capacity of this method
to accurately and efficiently solve cutting-edge problems.
The device geometry is shown in Fig. 2. A 13-atom-wide InSe

nanoribbon with a hydrogen-passivated boundary is sandwiched
between 2-nm-thick oxide layers with a relative dielectric constant
of 3.9. The length of the source and drain is 5 nm, and the channel
length is 10 nm. Both the source and the drain regions are doped
with a molar fraction of fully ionized donors of 5 × 10−3. The
channel region is undoped, and the double gates cover the whole
channel. The gates and oxide layers are not modeled atomically
but are introduced to change the potential of the channel region
and to act as the dielectric layers with a desired dielectric
permittivity, respectively. To eliminate the impact of the work
function values of different gate metals, we located the Fermi level
of the channel in the middle of the bandgap in the following
calculations.
To verify the merits of the proposed method, two TB models for

the periodic InSe nanoribbon using the TBHCNN model and the
MLWFs method, the most popular projection-based method, were
obtained. Their corresponding device Hamiltonians were con-
structed according to Eq. (9), considering the interactions between
adjacent unit cells only. During training, the TBHCNN model
added the proper number of neurons to increase the TB basis size
by 2 every 10000 training steps until that Loss ≤ 1.0 × 10−5 was
achieved, resulting in the TB model with a basis size of 18. And the

Fig. 2 Sketch of the simulated InSe nanoribbon-based transistor.
Only the InSe nanoribbon is modeled atomically, whereas the gate
metals and oxide layers are not introduced as entities but used to
change the gate voltage and provide the dielectric layers.
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MLWFs method obtained the TB model containing 208 basis
functions, taking into account the outermost s and p orbitals of
each In and Se atom in the unit cell, which is a common choice in
existing research on layered InSe materials35. In the following
sections, the two TB models are called the machine learning tight-
binding (MLTB) model and the Wannier tight-binding (WTB)
model, and the corresponding device Hamiltonians are called the
MLTB Hamiltonian and the WTB Hamiltonian, respectively. The
band structures of the two TB models were calculated and
compared with the ab-initio band structure, as shown in Fig. 3.
Only the 7 conduction bands and 7 valence bands around the
Fermi level with a 1 × 1 × 26 uniform k-points sampling along the
k-path from high symmetry points Γ (0, 0, 0) to X (0, 0, 1/2), which
reflect the key physical properties and notably influence the
determination of transport properties, were selected as references.
That is to say, there were 14 × 26 = 364 ab-initio energies as the
training data. There was little difference between these two TB
models in the reproduction of the ab-initio band structure; both of
them fit the selected ab-initio bands with high accuracy. However,
considering their respective TB basis sizes, the complexities of our
method and the MLWFs method were completely different. The
automated creation of the MLTB model was finished in 110 s
within our method. Figure 4 shows the convergence of the loss
function over the training time; the loss function value quickly
decreases before the predefined threshold is reached. The MLWFs
method required over 30 h to obtain the 208-orbital WTB model in
the same computing environment, even without considering the
time required to find the optimal parameter values, which in fact
took up much time. Furthermore, even with a smaller basis and
lower computational cost, the band structure generated by the
proposed MLTB model is more accurate (ΔE = 1.0 × 10−5) than
that derived from the WTB model (ΔE = 1.7 × 10−5).
In addition to the ab-initio band structure reproduction, the

transport properties of the InSe nanoribbon-based MOSFET were
also investigated. With the MLTB Hamiltonian and the WTB
Hamiltonian, the corresponding quantum transport properties
were obtained by self-consistently coupling the Schrodinger and
Poisson equations using the NanoTCAD ViDES software package36.
Figure 5 plots the IGS − VGS and IGS − VDS curves. Each pair of
curves under different voltage biases is almost the same in trends
while slightly different in values. Considering the widespread
acceptance of the reliability of the MLWFs method, the
consistency here reflects the excellent applicability of our method

to the device-performance level. Similar to the energy band
computation, the device simulation with the MLTB Hamiltonian
was more efficient than that with the WTB Hamiltonian.
Specifically, the above device simulation was finished within 1 h
using the MLTB Hamiltonian but more than 2 days with the WTB
Hamiltonian.
As can be seen from the applications above, unlike previous ML

methods introduced to handle the TB models37–46, our algorithm
does not require a large training set to make predictions. These
predictive methods are introduced in an attempt to build a
general mapping from the input data to the output data, using the
input–output pairs within the training set. The predictive power of
those methods will decrease when data considerably different
from the training data are considered; as a result, these methods
are not suitable for applications with limited datasets. Our
method, instead, provides a generic way to construct the one-
to-one TBHCNN model, which will be trained on the selected
energy bands of the desired system and apply exclusively to the
system. Hence, the required training set consists of the
corresponding ab-initio energy bands only. The TBHCNN model
here is introduced to represent the TB Hamiltonian elements
directly rather than to act as the inferred function for mapping an
external input to the Hamiltonian elements. Once a set of energy
bands need to be reproduced, we can use them as the training
data to initialize and train a TBHCNN model to obtain the TB
model specifically suitable for the system with such energy bands.
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We hope that our method provides insight into applying ML tools
to physical problems, especially when data-driven methods are
inaccessible.
To verify the generalization ability of the proposed method on

different systems, extra simulations on 13-atom-wide graphene
nanoribbon (13-AGNR), 2D MoS2, and the devices based on these
two materials were performed. The simulation results showed that
our method could apply to different material systems and achieve
better ab-initio band structure reproduction than the MLWFs
method (Supplementary Note 1). Furthermore, to showcase the
capability of the TBHCNN model of being trained on previously
published data, we performed the TB Hamiltonian parameteriza-
tions for Si of the diamond structure and GaN of the wurtzite
structure using the band structure data from the online data set
Materials Project47 (Supplementary Note 2). Additionally, we
studied the impacts of the initialization of the TBHCNN model
and the k-point sampling used in the loss function on the quality
of the resulting TB Hamiltonian for bands reproduction and
transport property calculations. We found that, as long as the
training hyperparameters were fixed, different initializations of the
TBHCNN model would result in the TB models with different TB
parameters that could reproduce the reference bands with the
same accuracy. And the utilization of the device Hamiltonians
from these different TB models on device simulation obtained
very close results (Supplementary Note 3).

Two variations of the proposed method
Since the TBHCNN employed within our method can be
conveniently customized, our method has the potential to be
modified to meet the requirements of personalized analysis. Here,
we develop two variations of the proposed method, which extend
the applications of the TBHCNN to the fields outside the energy-
space transport property calculations.
Variation I is to optimize a given TB model by fine-tuning the

Hamiltonian elements. The basic version of our method focuses on
constructing an accurate TB Hamiltonian with a minimal basis for
the desired system to perform band structure and I–V curve
calculations. However, it can also be modified to optimize a given
TB model without breaking down the real-space Hamiltonian
matrix structures.
Real-space information and time-consuming searches for

optimal parameter values are not needed in Variation I by
initializing the values of the neurons in the TBHCNN based on the
matrix elements of the unoptimized TB model. Such a TB model
can be obtained from projection-based approaches or the existing
empirical TB parameter sets; both methods should retain the
symmetry characters of the atomic basis to some extent. Then, a
regularization term ΔR, which penalizes the deviation of the
Hamiltonian matrix elements from the original values, is added to

the loss function.

ΔR ¼ λ
P
i
ðVi � UiÞ2; (10)

where λ sets the magnitude of the penalty, for which the sum is
over all matrix elements of the real-space Hamiltonians involved;
Vi is the current value of the ith matrix element, and Ui is the value
of the corresponding element in the unoptimized TB model.
During training, the TBHCNN will hold the number of neurons but
adjust their values to obtain an improved description of the
selected ab-initio energy bands. By doing so, we can maintain the
initial form of the given TB model to a large extent while greatly
increase its accuracy for band reproduction. Variation I would also
be very suitable for truncating a given TB model to have a smaller
number of real-space Hamiltonian matrices while maintaining the
band reproduction accuracy. The loss of accuracy caused by the
truncated TB matrices, which describe the interactions in a longer
range than is needed, can be mitigated by adjusting the elements
of the TB matrices considered to implicitly include the impact of
the truncated interactions.
To test the validity of Variation I, a 2D phosphorene system was

tested. The sp TB model obtained by the MLWFs method was
employed as the initial template, which could ensure the
completeness of the TB basis48. However, as illustrated in the left
panel of Fig. 6a, the band structure obtained by this TB model
deviates substantially from the corresponding ab-initio band
structure. This sp TB model, deemed the WTB model here still,
consisted of the real-space Hamiltonian matrices describing the
interactions within a unit cell and between this unit cell with its 8
neighbor cells, as shown in Fig. 6b. This deviation indicated that
the hopping terms describing the interactions in a longer range
should be considered. Using the proposed variation, we con-
structed the optimized TB model on top of the WTB model, which
is deemed the MLTB model here. It can be seen that the MLTB
model succeeds in including the impact of longer-range interac-
tions by modifying the elements in considered Hamiltonian
matrices, as it reduced the MSE in-band energies from ΔE = 0.14 to
ΔE = 8.8 × 10−7 when reproducing the 8 bands around the Fermi
level. And the average absolute deviation per element of the 9
considered matrices was less than 0.04 eV. The difference matrices
between these matrices before and after the optimization are
plotted in Fig. 6c. It can be shown that Variation I has the potential
to optimize the given TB model in the desired basis of atomic
orbitals and maintain the symmetry characters of the basis to a
large extent.
Variation II can construct the Slater–Koster TB Hamiltonian for

the desired system from scratch by changing the mapping from
the neurons to Hamiltonian elements.
To achieve this goal, the values of neurons are no longer

assigned to the Hamiltonian elements directly. Instead, neurons
are now used as adjustable parameters to calculate the
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Fig. 5 Transfer characteristics of the InSe MOSFET. a Transfer characteristics of the device with the drain-source voltage VDS being 0.5, 0.3,
and 0.1 V. b Transfer characteristics of the device with the gate voltage VGS being −0.3, 0.0, and 0.3 V.

Z. Wang et al.

6

npj Computational Materials (2021)    11 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Slater–Koster parameters, such as Vssσ, Vspσ, and Vppπ, to obtain the
matrix elements, using the two-center or three-center approxima-
tions proposed by Slater and Koster5. Variation II requires that the
reference bands be analyzed in advance for choosing the types of
atomic orbitals used for fitting the bands and thus for determining
the fitting formulae. And the atomic coordinate information of the
studied system needs to be obtained for providing the distance
information used in the fitting formulae. This form is like the
traditional methods for the determination of the Slater–Koster
parameters. However, the gradient descent algorithm makes this
method faster than the least-squares process used in traditional
methods. During training, the types and number of the basis
orbitals will be fixed, i.e., the fitting formulae and Hamiltonian
matrix size will be held. And the Slater–Koster parameters will be
optimized by adjusting the neuron values to better describe the
ab-initio bands.
Taking the 13-atom-wide armchair graphene nanoribbon (13-

AGNR) presented in Supplementary Note 1 as an example, we
considered the pz orbital of each C atom in the unit cell, and the
real-space Hamiltonian matrices H00, H0�1, and H01, which
describe the interactions within a unit cell and between the unit
cell with its 2 neighbor cells. With two-center approximations, the
hopping parameters are expressed as49:

Vppπ rij
� � ¼ α1r

�α2
ij exp �α3r

α4
ij

� �
; (11)

where rij is the distance between atom i and j, which can be read
directly from the real-space structure of the 13-AGNR, and α1, α2,
α3, and α4 are variable parameters, which will be represented by
four different neurons, respectively. Still, the loss function was the

mean squared error between the ab-initio energy eigenvalues and
the TB ones. After training, the optimal values of these parameters
were obtained, and the TB Hamiltonian matrices calculated by
these parameters were in the desired Slater–Koster form on the
basis of pz orbitals. Since much fewer neurons were used in
Variation II than in the basic TBHCNN method, the produced TB
Hamiltonian reproduced the ab-initio bands qualitatively. How-
ever, we advocate using Variation II for TB Hamiltonian
parameterization when the information of the geometry is
accessible, and the symmetry characters of reference bands are
known, for analyzing the properties on which the symmetry
characters have a significant impact. Variation II can be considered
as a complement to our basic method to deal with its limitations
on the match of the symmetry characters of the reference bands
and on the reflection of geometric symmetry of the given system.
Figure 7 plots the comparison between the TB models obtained

by using Variation II and the well-known empirical TB parameter-
ization for graphene systems, which employs a value of −2.7 eV as
the hopping parameter between the nearest-neighbor C atoms
and 0 eV for otherwise. The Hamiltonian matrices of these two TB
models have the same structures and slightly different matrix
elements, and their TB band structures have similar accuracy.
Figure 8 shows the charge distribution of the 13-AGNR-MOSFET,

which is presented in Supplementary Note 1. The device
simulations were performed with the device Hamiltonians
constructed by the produced TB model and a Wannier TB model
from the MLWFs method. The comparison between the simulation
results showed that the produced TB model could be used for
qualitatively accurate real-space transport analysis.
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DISCUSSION
In summary, we developed a generic method for TB Hamiltonian
parameterization from the ab-initio band structure with ML
algorithms. Our method’s validity was tested through the
calculations of the electronic structure of layered InSe and the
transport characteristics of the InSe-based MOSFET. In the
proposed case, our method surpassed the MLWFs method in
both efficiency and accuracy. As an approach for TB model
construction, the proposed method is free from prior knowledge
requirements and truncation error. Additionally, the introduction
of the one-to-one dynamic NN model can provide insights into
applying ML methods to practical problems when it is difficult or
even impossible to gather sufficient training data to build a
general ML model. Also, two variations of our method were
presented, which can to some extent deal with the mentioned
limitations of our basic method, showing the flexibility of the
proposed TBHCNN model. We believe our method cannot only
promote the development of materials and device research but
also help to improve the combination of ML techniques in the
physics, chemistry, and materials science research communities.

METHODS
Neural network training
The proposed ML algorithm and neural network architecture can be
conveniently achieved using mainstream ML platforms. In this work, we
choose the widely used TensorFlow50 framework, and employ its built-in
Adam optimizer51 to perform relevant automatic differentiation tasks with
an initial learning rate of α = 0.001.

Ab-initio band structure calculation details
The ab-initio band structure calculations on the InSe nanoribbon, the 2D
phosphorene, and the 13-AGNR, were carried out using the open-source
ab-initio package QUANTUM ESPRESSO52. The exchange and correlation
interactions between valence electrons are described by the Perdew
−Burke−Ernzerhof (PBE) functional within the generalized gradient
approximation (GGA)53. The ultrasoft pseudopotential is used. The kinetic
energy cutoff of the wave functions is 40 Ry, and the estimated energy
error is less than 1 × 10−6 Ry.
For the InSe nanoribbon, in the chosen unit cell, the vacuum space is

20 Å, to ensure the interaction between periodic images can be safely
avoided. The Brillouin zone is sampled with 1 × 1 × 10 and 1 × 1 × 200
Monkhorst–Pack54 k-points for the structure relaxation as well as self-
consistent calculations and for the band structure calculations,
respectively. The geometry is fully relaxed using the BFGS quasi-
newton algorithm, with the criteria being that all components of all
forces are smaller than 1 × 10−3 Ry/au, and the total energy changes are
<1 × 10−4 Ry.
For the 2D phosphorene, in the chosen unit cell, the vacuum space is

15 Å, to ensure the interaction between periodic images can be safely
avoided. The Brillouin zone is sampled with 1 × 10 × 10 Monkhorst–Pack k-
points for structure relaxation and self-consistent calculations. And 100 k-
points per k-path are sampled uniformly for the band structure
calculations on the three k-paths: from Γ (0, 0, 0) to X (0, 1/2, 0), from X
(0, 1/2, 0) to Y (0, 0, 1/2), and from Y (0, 0, 1/2) to Γ (0, 0, 0).
For the 13-AGNR, in the chosen unit cell, the vacuum space is 15 Å, to

ensure the interaction between periodic images can be safely avoided. The
Brillouin zone is sampled with 1 × 1 × 10 and 1 × 1 × 50 Monkhorst–Pack
k-points for the self-consistent calculations and the band structure
calculations, respectively.
Here, we declare that the utilization of the calculation methods within

the density functional theory (DFT) framework is not a strict request. When
the effective single-particle band structures derived from DFT are
qualitatively wrong, other more accurate methods for electronic structure
calculations (e.g., DFT’s many-body extensions like GW approximation)
may be considered in place of the DFT method for obtaining the band
structures. And It will not affect the existing framework of the proposed
method since the TBHCNN model does not require a specific source of the
energy band data.

MLWFs transformation details
The MLWFs method was implemented using Wannier90 software
package55.
For the InSe nanoribbon, the number of MLWFs is set to 208, which are

initialized to the outermost s and p orbitals of In and Se atoms within the
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Fig. 8 Comparison of the charge distributions of the 13-AGNR-
MOSFET using the WTB device Hamiltonian (above) and the
produced TB device Hamiltonian (below). The gate voltage VGS is
set to be 0 V, and the drain-source voltage VDS is set to be 0.2 V. The
gray balls represent C atoms, whereas H atoms on the edges are not
plotted.
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unit cell. The outer energy window is set to [−8 eV, 6 eV] and the inner
energy window is set to [−2.6 eV, 0.4 eV]. The transformation is performed
on top of the corresponding ab-initio calculation results with a 1 × 1 × 50
Monkhorst–Pack k-points sampling.
For the 2D phosphorene, the number of MLWFs is set to 16, which are

initialized to the outermost s and p orbitals of P atoms within the unit cell.
The outer energy window is set to [−11.5 eV, 6 eV] and the inner energy
window is set to [−2.0 eV, 0.0 eV]. The transformation is performed on top
of the corresponding ab-initio calculation results with a 1 × 10 × 10
Monkhorst–Pack k-points sampling.
For the 13-AGNR, the number of MLWFs is set to 26, which are initialized

to the pz orbitals of C atoms within the unit cell. The outer energy window
is set to [−15.0 eV, 9.0 eV] and the inner energy window is set to [−4.0 eV,
−2.0 eV]. The transformation is performed on top of the corresponding ab-
initio calculation results with a 1 × 1 × 50 Monkhorst–Pack k-points
sampling.

DATA AVAILABILITY
All the input files necessary to reproduce the ab-initio calculation results and
transport property results presented in this paper are available on https://github.
com/whu-maple/tbhcnn.

CODE AVAILABILITY
The codes developed in this paper are available on https://github.com/whu-maple/
tbhcnn.
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