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A general and transferable deep learning framework
for predicting phase formation in materials
Shuo Feng 1, Huadong Fu 2✉, Huiyu Zhou3, Yuan Wu4, Zhaoping Lu 4 and Hongbiao Dong 1✉

Machine learning has been widely exploited in developing new materials. However, challenges still exist: small dataset is common
for most tasks; new datasets, special descriptors and specific models need to be built from scratch when facing a new task;
knowledge cannot be readily transferred between independent models. In this paper we propose a general and transferable deep
learning (GTDL) framework for predicting phase formation in materials. The proposed GTDL framework maps raw data to pseudo-
images with some special 2-D structure, e.g., periodic table, automatically extracts features and gains knowledge through
convolutional neural network, and then transfers knowledge by sharing features extractors between models. Application of the
GTDL framework in case studies on glass-forming ability and high-entropy alloys show that the GTDL framework for glass-forming
ability outperformed previous models and can correctly predicted the newly reported amorphous alloy systems; for high-entropy
alloys the GTDL framework can discriminate five types phases (BCC, FCC, HCP, amorphous, mixture) with accuracy and recall above
94% in fivefold cross-validation. In addition, periodic table knowledge embedded in data representations and knowledge shared
between models is beneficial for tasks with small dataset. This method can be easily applied to new materials development with
small dataset by reusing well-trained models for related materials.
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INTRODUCTION
Machine learning is a powerful tool which has become an
important complement to experiment, theory, and modeling1–6. It
has been widely used in materials research to mine
composition–processing–properties relationships: e.g., predicting
compound forming energy7–9, superconductors critical tempera-
ture10,11, alloy’s phases12–16, materials’ properties17–24. However,
many challenges exist when applying machine learning to new
materials development25–27. It is common that only small dataset
is available for a specific task. In materials science it is impossible
to assemble big datasets like that in internet and e-commerce,
though materials genome initiative28,29, high-throughput comput-
ing, and experiment have increased the speed of generating data
by dozens to hundreds of folds30,31.
With a set of suitable descriptors, conventional machine

learning can performance very well even with small dataset.
However, the optimal set of descriptors for a specific job in
material research is not out-of-shelf. It is selected by trails and
errors and adding new pertinent descriptors is always been
considered if models’ performance is not met requirement32.
Building new applicable descriptors entails deep understanding of
mechanisms, which is very challenging in developing new
materials. For example, Ward et al.7 first used 145 general-
purpose Magpie descriptors (descriptive statistics, e.g., average,
range, and variance of the constituent elements) in predicting
ternary amorphous ribbon alloys (AMRs). Later they used 210
descriptors (including 145 Magpie descriptors and new descriptors
derived from physical models and empirical rules developed by
amorphous alloys community, e.g., cluster packing efficiency and
formation enthalpy) in optimizing Zr-based bulk metallic glass
(BMG)33. Some descriptors derived from physical models and
empirical rules are sensitive to alloying and temperature;

obtaining precise values of them is difficult; using simplified
models to calculate them (e.g. utilize ideal solution model in
estimating alloy mixing enthalpy instead of Miedema model or
experimental results) might weaken the final machine learning
models’ performance.
How to fully exploit limited data, existing models, and domain

expertise is the key to efficiently applying machine learning in
materials research, and general and transferrable machine
learning frameworks are in urgent need. Transfer learning is a
special machine learning technique that enables models to
achieve high performance using small datasets through knowl-
edge sharing between modes in related domains34–36. Deep
learning is an end-to-end learning which combines automatic
feature extractors and conventional machine learning models as
regressors or classifiers into one model37. Deep learning has an
advantage over conventional machine learning in exploiting
transfer learning for its feature extractors can be easily reused in
related tasks.
Predicting the phases of a material, e.g., solid solution phases of

simple BCC/FCC/HCP structure, intermetallics of complex struc-
ture, metastable amorphous phases, and mixture of different
phases, is the basic tasks and fundamental challenges of materials
research. AMRs and BMGs extended materials from conventional
crystalline (CR) metallic materials to amorphous state materials38–42;
high-entropy alloys (HEAs), which are also known as multi-
principal element alloys (MPEAs) and concentrated solid solution
alloys, extended metallic materials from corner and edge regions
to the center regions of multi-component phase diagrams43–47.
Predicting them challenges our classical theory48. Researchers
have attempted to predict alloys’ glass-forming ability (GFA) and
HEAs’ phases by empirical thermo-physical parameters49–53,
CALPHAD method54,55, first-principles calculations56. Conventional
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machine learning was used in these tasks as well7,13–16,33.
However, developing new amorphous alloys and HEAs by design
is still quite challenging, for their mechanisms are still not clear
and data are much less than that of conventional materials, e.g.,
steels, aluminum alloys.
In this work, we propose a general and transferable deep

learning (GTDL) framework to predict phase formation in materials
with small dataset and unclear transformation mechanism. Case
studies on GTDL predictions with a medium-sized dataset
(containing 10000+ pieces of data) of GFA and a small dataset
(containing only 355 pieces of data) of HEAs demonstrate: GTDL
framework outperforms existing models based on manual
features, periodic table knowledge embedded in data representa-
tions helps to make predictions, and knowledge shared between
different models enable prediction with small dataset. The
proposed GDTL framework can be easily used in new materials
development with small datasets by exploiting trained deep
learning models on big dataset of related materials.

RESULTS
GTDL framework
The pipeline of this work and schematics for transfer learning, etc.
are shown in Fig. 1a. For deep learning accepts unstructured data,
e.g., image, audio, as input, we mapped raw data, e.g., chemistry
and processing parameters, to pseudo-images first using some
special two-dimensional (2-D) structures, Convolutional neural
networks (CNNs) were then utilized to automatically extract
features through their hierarchy structure and to make classifica-
tion/regression. The well-trained feature extractors, i.e., convolu-
tional layers were reused directly for new tasks with small dataset.
Here, we used a whole periodic table containing 108 elements for
composition mapping (periodic table representation, PTR). In
order to bring processing parameters into representation, we
mapped them to an unused area in the periodic table (see
Supplementary Fig. 1). An example of PTR for alloy

Fe73.5Cu1Nb3Si13.5B9 is given in Fig. 1a. We compared models
using different mappings without periodic table structure (see
Supplementary Figs 2 and 3), e.g., atom table representation10, to
prove the advantage of the embedded periodic table structure.
We also compared our models with conventional machine
learning models using manual feature engineering (see the full
list of the features in Supplementary Table 1) to validate the
convenience of automatic features engineering. The workflow of
conventional machine learning is also shown in Fig. 1a. A clear
advantage of deep learning framework over conventional
machine learning is it can automatically extract features and
transfer knowledge.
Many classical CNN structures for image recognition are

available now. However, we need to simplify and compress those
structures to reduce the risk of overfitting limited data in our tasks.
We tested some simplified classical CNNs, e.g., AlexNet57, VGG58,
GoogLeNet, and Inception module59. A VGG-like CNN which is
shown in Fig. 1b was used in our work due to its very compact
structure and strong power of feature extraction. Our VGG-like
CNN has 6274 trainable parameters, only 1% size of atom table
CNN10 (611,465 trainable parameters). Thus, it can reduce the risks
of overfitting effectively.

Predicting GFA using GDTL
The GFA of an alloy, i.e., the critical cooling rate below which the
alloy melt undergoes nucleation and growth and forms crystal
(CR), is a core problem in developing new amorphous alloys.
However, it is challenging to measure the critical cooling rate
experimentally. Researchers often simplify GFA into three levels:
BMG, AMR, and CR, which correspond to strong, weak, and no
GFA, respectively13. GFA of an alloy can be roughly evaluated
through melt-spun (its cooling rate is in the range of 106−105 K s−1)
and copper mold casting (its cooling rate is in the range of
102−1 K s−1): if an alloy forms a crystalline state under melt-spun,
it is labeled CR (no GFA); if it forms an amorphous state through
melt-spun but forms crystalline state under copper mold casting,

Fig. 1 The workflow of our works. a The workflow of the proposed GTDL framework (in green solid arrows) and conventional machine
learning (in black dotted arrows) which does not have the ability of automatically extracting features and knowledge transfer. The schematics
for assembling dataset, data representation, machine learning, knowledge transfer, and an example of PTR (periodic table representation)
were given. MF, SNN, RF, SVM, and CNN denotes manual features, shallow neural network, random forest, supported vector machine, and
convolutional neural network, respectively. In GTDL framework, raw data are mapped to 2-D pseudo-images first, features are then extracted
automatically by convolutional layers, knowledge is transferred by sharing the well-trained feature extractors for new tasks with small dataset.
b The schematics for our VGG-like convolutional neural network.
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then it is labeled as AMR (weak GFA); if it forms amorphous state
under copper mold casting, it is classified as BMG (strong GFA).
In this work, we try to assemble a GFA dataset as large as

possible. Our dataset includes Sun’s binary alloys GFA dataset
(about 3000 entries)13, Ward’s ternary alloys GFA dataset (about
6000 entries)7, and BMG dataset (about 800 entries)33, and
Miracle’s GFA dataset (about 300 entries)60. In those datasets,
crystalline alloys data are in the minority, because AMRs and BMGs
are the focus of research, and crystalline alloys are commonly
discarded and unpublished as the failed experimental results. In
reality, the number of amorphous alloys is less than that of their
crystalline counterparts. To compensate for this weakness and
increase the variety of crystalline data in our dataset, we add 800+
pieces of conventional crystalline metallic materials data (includ-
ing steels, superalloys and Co, Al, Mg, Cu, Zn alloys, etc.) which is
extracted from https://www.makeitfrom.com/. Figure 2 shows the
statistics of elements distribution in our dataset (for detailed
statistics see Supplementary Figs. 5 and 6). Our dataset contains
97 elements in the periodic table, and many of these elements are
present simultaneously in entries of CRs, AMRs, and BMGs.
Considering that some AMRs in our dataset are actually BMGs
(due to incomplete record and experiment), we did not simply
treat it as a (CR/AMR/BMG) ternary classification problem. Instead,
a processing parameter (0 represents rapid solidification melt-
spun, and 100 represent copper mold casting of normal cooling
rate) was added into this problem to convert the ternary
classification problem into a (AM/CR) binary classification problem

(AM represents forming amorphous state, and CR represents
forming crystalline state). The size of our original dataset is 10,440,
and the size of dataset after conversion is 16,250.
Table 1 shows the average training and testing accuracies of

four shallow neural networks (SNNs) and three CNNs in 10-fold
cross-validation. SNN1 (using only 14 features derived from
empirical rules of BMGs community) and SNN4 (using 145
general-purpose Magpie descriptors7) show the lowest testing
accuracy of about 90%. They show a marginal difference in
accuracy with Ward’s random forest models (89.9% vs. 90%). SNN4
and Ward’s random forest model used 145 general-purpose
Magpie features, and SNN1 only used 14 features (including one
processing parameter, mixing entropy, the statistical information
of atomic radius, Pauling electronegativity, bulk modulus, and
work function). We found increasing features or even using the full
list of features (see Supplementary Table 1) did not improve
accuracy. SNN2 only used composition vector as input, but it
showed higher accuracy than SNN1 and SNN4. SNN3 used manual
features vector plus composition vector as input and it improved
the accuracy further. Due to our limited understanding of the
GFA’s physical mechanisms and lack of precise property data as
input (e.g., ideal solution model and Miedema model were used to
calculate alloy mixing entropy and mixing enthalpy, respectively),
improving the model accuracy by adding more pertinent features
is impracticable. All four SNNs show lower accuracies than three
CNNs. Besides CNNs’ accuracy advantage over SNNs, it is also
quite convenient to use CNNs, for they only need compositions

Fig. 2 Statistics of our glass-forming ability dataset. The occurrence numbers of elements in the dataset are given under periodic table
background. The blank squares, e.g., squares for noble gases, indicate the elements not in the dataset.

Table 1. Comparison of average accuracy among different models under 10-fold cross-validation.

Model Data representation Input size Algorithms Average accuracy

Training Testing

Ward’s work7 Manual features vector generated by Magpie 145 Random forest – 90%

SNN1 Manual features vector+ processing parameter 13+ 1 SNN 89.8% 89.9%

SNN2 Composition vector+ processing parameter 73+ 1 SNN 93.2% 92.8%

SNN3 Manual features vector+ composition vector+ processing parameter 86+ 1 SNN 93.9% 93.5%

SNN4 Manual features vector generated by Magpie+ processing parameter 145+ 1 SNN 90.1% 90.0%

CNN1 Atom table representation 11 × 11 CNN 96.4% 95.0%

CNN2 Randomized periodic table representation 9 × 18 CNN 96.7% 94.9%

CNN3 Periodic table representation 9 × 18 CNN 96.4% 96.3%
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and processing parameters as input, and they automatically
extract features through convolutional layers. CNN3 which refers
to a CNN with PTR shows the highest testing accuracy of 96.3%.
The only difference among three CNNs is in that the data
representations of CNN1 and CNN2 did not have periodic table
structure. The advantage of CNN3 over CNN2 and CNN1 is not
evident (only 1.3% higher). However, we will demonstrate that
CNN3 has more obvious advantages over other models in
predicting unseen alloys, i.e., better generalization.
The Al–Ni–Zr ternary system has 296 entries (include 186 entries

from the Al–Ni–Zr ternary system, and 110 entries from Al–Ni,
Al–Zr, Ni–Zr binary systems) in our dataset and the distribution of
data points is relatively uniform in composition space, see Fig. 3a
the ground truth of the Al–Ni–Zr system. So, the Al–Ni–Zr system
is quite suitable to validate and compare models. Figure 3b–d
shows the GFA prediction of CNN3, SNN3, and CNN2.
CNN3 successfully predicted three amorphous composition areas,
and the shapes and boundaries of these areas are satisfied when
compared with the ground truth. Other models did not predict all
three areas. SNN3 did not predict the crystalline area between two
amorphous composition areas, i.e., the GFA of the area was
overestimated. CNN2 successfully predicted two amorphous
composition areas but missed the small amorphous composition
areas near Ni corner. All models correctly predicted the five BMGs
in ground truth and the predicted BMGs cover certain area (not
some discrete points) around the ground truth points. It is
reasonable, researchers commonly reported the optimal BMGs
only, and BMG candidates (especially before the appearance of
BMGs) are archived as AMRs data. This sparse and ununiform
distribution of BMG data points usually induces BMG data points
buried by surrounding densely distributed AMR data points and
omitted as a noise (see Fig. 3a). That is why we adjusted the
ternary classification into binary classification, i.e., ternary classi-
fication easily underestimates alloys’ GFA.

To validate predicting ability of models on unseen alloy
systems, we carried out a leave-one-system-out (LOSO, like the
leave-one-cluster-out cross-validation used by Meredig et al.61)
cross-validation on 160 ternary systems which has over 40 entries
in our dataset. In LOSO cross-validation for a ternary system
A–B–C, entries of A–B, A–C, B–C binary alloys and A–B–C ternary
alloys were hold out as testing dataset. Models were trained with
the remaining dataset. The average testing accuracies of SNN4,
CNN2, and CNN3 under LOSO cross-validation are shown in Table 2.
CNN3 outperforms CNN2 and SNN4 in predicting unseen alloy
systems by about 7%.
Table 2 also show the LOSO cross-validation results for the

Al–Ni–Zr system. Here, we used Al–Ni–Zr AMR results (5151
composition points in total, not the 296 Al–Ni–Zr entries in our
dataset) in Fig. 3b as ground truth to calculate prediction accuracy.
The predictions of CNN2 and CNN3 are shown in Fig. 4. We can
see CNN3 shows accuracy advantage over other CNNs and SNNs
by at least 12% when no Al–Ni–Zr data are in training dataset.
To further validate the generalization of the models, we

collected some newly reported BMG alloys and some specially

Fig. 3 Comparison of experimental data and predictions. a Experimental data points of Al–Ni–Zr ternary system in our dataset and the
predictions of b CNN3, c SNN3, and d CNN2.

Table 2. Comparison of models’ prediction accuracy on unseen alloy
systems.

Alloy system SNN3 SNN4 CNN1 CNN2 CNN3

Leave-one system-out test on
160 ternary systems

– 76.5% – 77.3% 83.8%

Leave-one system-out test on
Al–Ni–Zr system

62.3% 63.5% 68.4% 66.4% 80.3%

Ir–Ni–Ta–(B), Mg–Cu–Yb, S-
bearing BMGs

17/28 9/28 18/28 23/28 27/28

RE6Fe72B22 5/13 8/13 7/13 8/13 10/13

Binary alloys outliers 8/18 16/18 13/18 13/18 16/18
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selected alloys that outside our dataset, e.g., high-temperature
Ir–Ni–Ta–(B) BMGs62, Mg–Cu–Yb BMGs63, sulfur-bearing BMGs64,
RE-bearing alloys RE6Fe72B22 (RE: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er)65, and 18 binary alloys outliers according to
empirical criteria66. Our dataset only has one ternary AMR data
point about Ir–Ni–Ta–(B) system and does not have any data
about Mg–Cu–Yb system and sulfur-bearing AMRs and BMGs. Rare
earth elements have close physical and chemical properties.
However, experimental results show the simple substitution of
rare earth elements causes the GFA variations of RE6Fe72B22 alloys.
Louzguine-Luzgin reported 18 binary alloys outliers which should
be good glass-formers according to empirical criteria, but they
cannot form an amorphous state even in rapid solidification. Table 2
shows that CNN3 with PTR plus automatic feature engineering
attained the highest prediction ability and SNN3 and SNN4 based
on manual feature engineering performed the worst. The
performances of CNN1 and CNN2, which use automatic feature
engineering but do not have periodic table structure in data
representation, are between SNN3 and CNN3. The detailed
comparisons are shown in Supplementary Tables 5 and 6. These
rigorous tests strongly verified CNN3 can be used to predict the
GFA in unassessed alloy systems.
Overall, when dataset is large enough (e.g. the Al–Ni–Zr system),

the benefit of adding periodic table structure (domain expertise)
to representation is not obvious. When data are insufficient or no
data are available, domain expertise is vital. Periodic table
structure plus CNN, like CNN3, brings the convenience of

automatic feature engineering and improves the generalization
by introducing background knowledge.

Transfer learning of HEAs with small dataset using GTDL
The well-trained deep learning models for GFA can be reused in
predictions of related materials e.g., HEAs. All previous machine
learning studies on HEAs used manual feature engineering plus
conventional machine learning models, e.g. supported vector
machine14 and SNN15. These models need sophisticated features
as input and can only distinguish BCC from FCC, or differentiate
intermetallics from solid solutions. Tasks like predicting HEAs of
HCP structure is rather difficult due to limited data. The two
machine learning tasks, i.e. predicting GFA and predicting phases
of HEAs, have different output domain (amorphous/crystalline
binary classification in GFA prediction and five phases labels in
HEAs prediction) and highly correlated (or overlapped) input
domain from the point of transfer learning: Figs 2 and 5b show
common elements in those alloys are similar; some amorphous
alloys are also HEAs; the descriptors developed in conventional
machine learning for GFA and HEAs can be shared7,13–16,33 (e.g.
atomic size difference, mixing enthalpy, mixing entropy, differ-
ence in Pauling electronegativities, and valence electron concen-
tration). So, we believe that the automatic feature extractors of the
well-trained CNNs, which have outperformed known manual
features in GFA prediction, will work in HEAs prediction too. Based
on the features, we built a high-performance model with a small
dataset which can discriminate five types of phases (BCC, FCC,
HCP, amorphous, mixture of multiple phases) in HEAs in one go.

Fig. 4 Predictions for Al–Ni–Zr ternary system by the re-trained models. a CNN2, b CNN3, using dataset in which data about Al–Ni, Al–Zr,
Ni–Zr binary alloys, and Al–Ni–Zr-containing multi-component alloys were removed.

Fig. 5 Statistics of the 355 HEAs in the dataset. a The numbers of binary to nonary HEAs and the proportions of different phases. b The
occurrence numbers of elements in the dataset are given under periodic table background. The blank squares, e.g., squares for noble gases,
signify the elements not in the dataset.
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Here, we used the dataset from Gao’s review on HEAs51 where
experimentally synthesized 355 HEAs data are collected. Therein,
41 samples have single BCC phase, 24 samples have single FCC
phase, 14 samples have single HCP phase, and 59 samples have
single amorphous phase. The remaining 217 samples with
multiple phases. Numbers of binary to nonary MPEAs and the
proportions of BCC, FCC, HCP, amorphous and multiple phases are
shown in Fig. 5a. Most of the samples consist of five or six
elements and the single-phase HEAs only account for a small
fraction. There are 50 elements in the dataset and their occurrence
frequencies are shown in Fig. 5b. Elements Fe, Ni, Cr, Co, and Al
occur in more than 190 samples, while Sc, Tc, Ga, Ge, and Tm only
occur once. It is rather difficult to build machine learning models
using such small dataset, with so many elements and unbalanced
data distribution.
In transfer learning from GFA to HEAs, the 2-D representations

of HEAs’ compositions were fed into the well-trained CNN1, CNN2,
CNN3, and the intermediate results (high-dimensional features
yielded from convolutional layers) of theses CNNs were extracted.
Then these features were used in new classifier (here we used
random forest for its good interpretability, and it need very little
hyperparameters optimization) as input. Stratified data division
strategy (to ensure training and testing dataset have similar data
distribution) and Sklearn package were used in training. Table 3
shows the average scores of our transfer learning models on HEAs
dataset under fivefold cross-validation. Our model without
resorting to any manual features engineering is capable of
distinguishing BCC, FCC, HCP, amorphous, and multiple-phase
mixture with fivefold cross-validation scores (average accuracy/
recall/precision/F1 on testing datasets) over 94% after training and
test. We should bear in mind that when labels’ distribution is
unbalanced like that of our HEAs data, achieving high recall, high
precision, and high accuracy at the same time is very difficult. We
can see model transferred from CNN3 has the highest scores
which indicates that PTR is also beneficial for transfer learning. Our
previous results and some research67 show that if dataset is not
big enough, domain knowledge is important for model’s
performance. Though raw data (alloy compositions) are the same
for CNN1, CNN2, and CNN3, the direct input (data representations)
for them and the information extracted by corresponding feature
extractors are different. Domain knowledge (periodic table
structure) was embedded in CNN3’s input and embodied in the
features extracted, while CNN1 and CNN2 do not have access to
this knowledge. The proposed transfer learning model is an
upgrade for conventional machine learning relying on manual
feature engineering and could serve as an effective guide for
designing new HEAs.

DISCUSSIONS
To explain why PTR and transfer learning is effective, we illustrated
the information that is automatically extracted from different
representations by CNNs. Visualizing the high-dimensional fea-
tures extracted by convolutional layers, i.e., the intermediate
results of CNNs, is a good way to explore the extracted features.
However, finding the visual and intuitive relationship between
elements from these high-dimensional features (see Supplemen-
tary Fig. 10) is still very challenging: dimensionality reduction is
necessary. Those high-dimensional features were compressed by

principal component analysis and the first two/four principal
components were visualized.
Figure 6a illustrates the knowledge of 108 elements extracted

by CNN with PTR and it shows apparent periodic trends: elements
from 18 groups, lanthanide (group 19), and actinides (group 20)
are clustered in different regions (marked with different colors);
group 1 to group 18 distribute along a semicircle in sequence;
elements from lanthanide and actinides distribute in two
semicircles with atomic number sequence; elements in one group
distributes from semicircle’s inside to outside according to
ascending atomic number. More than half the elements in
periodic table have limited data in our dataset, and halogens
(group 17), noble gases (group 18), etc. are absent in our dataset,
but the trends of them are consistent and reasonable. It indicates
the PTR transfers the knowledge of periodic table to the GFA
knowledge, i.e., background knowledge was absorbed by the
machine learning models. Figure 6b illustrates the knowledge
extracted by CNN from representation without periodic table
background: randomized periodic table structure embedded in
data representation was learned by model.
Periodic table has abundant physical and chemical knowledge

(see Supplementary Fig. 4). Atomic radius, Pauli electronegativity,
valence electrons density, and other physical chemistry properties
display periodic variations in periodic table. When developing new
amorphous alloys, periodic table is often used as a map. Similar
atom substitution and column substitution are common strategies
for improving GFA. The spatial information or elements’ relative
position information is difficult to be fully described by manual
features engineering. The solution is keeping the periodic table
structure in representation. Materials properties originated from
electrons’ behaviors. The periodic characteristic of element
properties in periodic table originated from electrons configura-
tion. The electron configuration of an element can be inferred
given its position in periodic table. The abscissa and ordinate of an
element in PTR correspond to group number (outer shell electrons
number) and its period number (the number of electron shells).
CNN exacts the spatial (or co-ordinates) information of pixels in 2-
D representation through convolutional layers. So, the knowledge
of each element’s group number, period number, and electronic
configuration in PTR can be transferred to the features that CNN
automatically extracted. Element properties (such as atomic radius
and Pauli electronegativity) are not explicitly provided in PTR.
However, the periodic characteristic of element properties in rows
(period) and columns (group) is embedded in PTR. The element
properties that CNN3 (PTR) learned from GFA dataset vary with
atomic number periodically (see Supplementary Fig. 11). In
contrast, the element properties learned by CNN2 (randomized
PTR) did not show periodic characteristic (see Supplementary
Fig. 12).
It explained why CNN3 shows better performance in predicting

new data than CNN1 and CNN2: we provided different expertise to
CNN1, CNN2, and CNN3; and domain knowledge is helpful for
machine learning models with small dataset67. Adding periodic
table structure into data representations affords models the ability
to infer useful information from the periodic table when direct
data are insufficient.
The features of 355 HEAs generated by GFA model are shown in

Fig. 7. We can see that alloys of the same phases tend to cluster in
the diagrams. Based on the first and second principal features, we

Table 3. The scores of transfer learning on high-entropy alloys dataset under fivefold cross-validation with three data representations.

Data representation Transfer from Accuracy Precision Recall F1 score

Periodic table representation CNN3 0.935 0.940 0.935 0.934

Randomized periodic table representation CNN2 0.854 0.837 0.854 0.831

Atom table representation CNN1 0.884 0.888 0.884 0.875
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can intuitively distinguished stable BCC, FCC, HCP, and multi-
phase alloys. Most alloys of metastable amorphous phases can be
discriminated from other alloys of stable phases by third and
fourth principal features visually. It indicates transfer learning from
GFA to HEA is successful and justifies the high scores of our model
for HEAs.
In sum, CNNs get domain knowledge (e.g., periodic table

knowledge) embedded in 2-D representation through learning.
Periodic table knowledge and PTR is beneficial for machine
learning models with small dataset. The feature extractor of CNN
for GFA can generate appropriate features for HEAs prediction
brings the success of transfer learning.

METHODS
Data representations
Raw data need to be converted into one-dimensional (1-D) vector of
features by manual feature engineering for conventional machine learning.
This is a process of refining information and adding expertise to data
representation. The performance of final models relies on the quality of
data representations. The 1-D vector of features (attributes/descriptors)
used as input for this work include (a) statistics information of components’
properties, e.g., the maximum/minimum/average atomic radius, Pauling
electronegativity, elemental bulk modulus, elemental work function,
melting point, etc.; (b) composition vector; (c) parameters derived from
empirical criteria, e.g., mixing entropy ΔSmix, mixing enthalpy ΔHmix, the

Fig. 6 Features analysis of the GFA prediction model after PCA. Projection of the feature vectors of 108 elements onto the plane spanned
by the first and second principal axes. The percentage represents the ratio of the variance on the principal axis direction. Elements are colored
according to their elemental groups. a Periodic table representation. b Randomized periodic table representation. The superscript 1–18 on
element symbol represents the element’s group number; superscript 19 and 20 represent lanthanide and actinides, respectively.
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atomic size difference ΔR, the electronegativity difference Δχ, valence
electron concentration VEC, etc.

ΔSmix ¼ �R
Xn

i¼1

ci lnci (1)

ΔHmix ¼
Xn

i¼1;i≠j

4ΔAB
mixcicj (2)

ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ci 1� ri
r

� �2
s

; r ¼
Xn

i¼1

ciri (3)

Δχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ci χ i � χð Þ2
s

; χ ¼
Xn

i¼1

ciχ i (4)

VEC ¼
Xn

i¼1

ci VECð Þi (5)

where ci is the atomic fraction of the ith component; ΔAB
mix is the mixing

enthalpy of alloy A–B; ri is the Miracle’s atomic radius of the ith component;
χ i is the electronegativity of the ith component; r is the average atoms
radius of the components in the alloy; χ is the average electronegativity of
the components in the alloy; ðVECÞi is the valence electron concentration
of the ith component; VEC is the average valence electron concentration of
the components in the alloy. The ri were taken from Miracle’s paper68; ΔAB

mix
were taken from Takeuchi’s paper69; Pauling electronegativity, elemental
bulk modulus, elemental work function, etc. were taken from Guo’s
paper52.
A schematic diagram for our PTR for alloy composition and preparation

process used in CNN3 is shown in Supplementary Fig. 1. PTR mimics digital
images. Alloy composition and preparation processes are mapped to a 2-D
pseudo-image of 9 pixels × 18 pixels (162 pixels in total). Each square
represents a pixel. The 108 blue squares correspond to 108 elements in the
periodic table, e.g., the first pixel/square in the first row is used to store the
atomic percentage of element hydrogen in an alloy. The 54 gray squares
are the unused area in the periodic table. The alloy composition (in atomic
percentage) is mapped to the corresponding blue squares, and the
preparation process (0 represents melt-spun and 100 represents copper
mold casting) is mapped to a gray square (we arbitrarily chose the ninth
pixel/square in the first row in this work). The rest pixels/squares are set to
0. The randomized PTR used in CNN2 is almost the same with PTR except
108 elements were randomly placed in the periodical table area (see
Supplementary Fig. 2). The atom table representation used in CNN1 are
square images of 11 × 11 pixels, elements are placed in an atom table from
left to right and from top to bottom according to the atomic number of
elements (see Supplementary Fig. 3). The preparation process is mapped
to the last pixel in the atom table and the rest unused pixels are set to 0.

CNN structure
A VGG-like CNN was used in automatically extracting features and making
classification. The structure of our VGG-like CNNs (see its schematics in
Fig. 1b) is as follows: the size of convolutional filters was 3 × 3 for all the
three convolutional layers, and the stride was set at 1. The channel number
in convolutional layer doubles from 8 to 16 to 32. Padding was used for the
input of convolutional layers by adding zeros around the border, i.e., a
zero-padding of one, to preserve as much information as possible. The
most common type of convolution with a ReLU filter was used, and the
value of each filter was learned during the training process. The CNN
consists of two parts. One part is the feature extractor involving the first
three pairs of convolutional layers, pooling layers, and ReLU (Rectified
Linear Unit) layers which have a nonlinear activation function f(x)=max(0,
x). The other part is the classifier with one full connection layer and one
softmax classification layer. The details of the VGG-like CNN are shown in
Supplementary Table 4 and Supplementary Fig. 7. Due to the limit of
dataset size and small input images, our CNNs have much fewer layers,
channels, and trainable parameters (about 6000) than the well-known
VGG-16 (ref. 58) (about 133 million).

Training details
In prediction of GFA, all models were created and tested using the Keras
with Tensorflow as its backend. The full list of manual features used in
SNNs is shown in Supplementary Table 1. All possible combinations of
manual features were tested, and the optimal combination which achieved
the best accuracy was chosen. Hyperparameters, e.g., neuron number,
were also optimized. SNNs of 20 neurons in the hidden layer were used in
this work. In the training phase, the output of the SNN and CNN fitted the
ground truth, and the categorical cross-entropy was used as the loss
function to evaluate the fitness. The training epoch was set to 2000 (loss
values almost remain unchanged), and 10-fold cross-validation (the dataset
was split into 10 parts, each time 1 part was hold out as testing dataset, the
remaining parts were used in training models, no validation dataset and
early stop was used in training, 10 models were created after cross-
validation) was used to evaluate the training/testing accuracy. In prediction
of new alloys’ GFA, the results of a committee consisted of 10 models were
utilized.

DATA AVAILABILITY
The dataset used to generate the results in this work are available at https://github.
com/sf254/glass-froming-ability-prediction.

CODE AVAILABILITY
The codes pertaining to the current work are available at https://github.com/sf254/
glass-froming-ability-prediction.

Fig. 7 The high-entropy alloys’ first four principal features generated by glass-forming ability model. Alloys are colored according to their
phases. The percentage represents the ratio of the variance on the principal axis direction.
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