
PERSPECTIVE OPEN

Off-the-shelf deep learning is not enough, and requires
parsimony, Bayesianity, and causality
Rama K. Vasudevan 1✉, Maxim Ziatdinov 2, Lukas Vlcek 3,4 and Sergei V. Kalinin 1✉

Deep neural networks (‘deep learning’) have emerged as a technology of choice to tackle problems in speech recognition,
computer vision, finance, etc. However, adoption of deep learning in physical domains brings substantial challenges stemming
from the correlative nature of deep learning methods compared to the causal, hypothesis driven nature of modern science. We
argue that the broad adoption of Bayesian methods incorporating prior knowledge, development of solutions with incorporated
physical constraints and parsimonious structural descriptors and generative models, and ultimately adoption of causal models,
offers a path forward for fundamental and applied research.
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INTRODUCTION
The spectacular growth of deep learning (DL) in the last decade
has fueled the rise of a wave of data science and artificial
intelligence (‘AI’) that has already had global impact across society.
The spectacular successes of deep learning in some traditionally
very difficult tasks in computer vision, natural language proces-
sing, machine translation, speech recognition, and gameplay has
piqued interest across all scientific communities1. Here, deep
learning refers to an approach that utilizes artificial neural
networks (which have been available for decades2 and have been
intermittently used for specific problems3,4) that are comprised of
numerous layers of stacked artificial neurons, and with oftentimes
millions of trainable parameters, usually to approximate some
highly complex nonlinear function. The networks are usually
trained using a backpropagation algorithm and stochastic
gradient descent to adjust the weights of the network to minimize
some objective function, and nowadays expressly run on graphical
or tensor processing units optimized for such calculations.
Depending on the specific architectures involved, deep neural

networks (DNN) can be used in tasks including classification,
regression (for instance, material property predictions based on a
material’s structure), as well as for unearthing correlations and
compressing data in large datasets. A simple example of a DNN
used in a materials science setting is shown in Fig. 1: in this case
this network has been ‘trained’ to automatically identify atoms
from noisy electron microscopy images. The network was trained
by ingesting large volumes of simulated electron microscopy
images where the atomic positions are known and therefore used
as the ‘labeled’ data. In this process the network’s parameters are
continually updated to minimize the discrepancy between the
predictions of the network and the ground truth (the positions of
the atoms). The network can then be fed an image that was not
part of the original training set to give the output of the atomic
coordinates present, thereby operating as an automatic atom
finder. In addition to simple image segmentation tasks, DNNs have
also seen success in the trickier task of “generative modeling,”
which refers to the ability to generate datapoints (samples) that
are not in the original dataset5.

The key distinction between traditional machine learning (ML)
and modern deep learning is that deep neural networks learn
representations (‘features’) of the data as part of the training
process, as opposed to being hand-crafted by domain experts,
which was the prevailing method prior to the DL revolution.
However, this also presents a problem: are the representations
learned by the existing DL methods useful for aiding in under-
standing of physics and materials science? Even from a computer
science perspective, DL, for all its successes, is surprisingly fragile
and highly susceptible to adversarial attacks6, in which input data
are slightly perturbed in subtle ways that slowly guide the
network to mis-classify the data with near 100% certainty7. A
recent example shows that a DL-trained classifier of objects can
mis-classify simple objects merely if they are displayed in specific
unseen poses8. How can we then ‘trust’ the predictions of DL-
based models, when they appear highly fragile and vulnerable?
Perhaps as a less exotic example, how do we know which network
architecture will give a correct, quantitative answer for a specific
problem, and how can we quantify uncertainties and systematic
and random errors in such an answer?

WHEN DOES ML WORK?
From the early days of machine learning, it was repeatedly noted
that ultimately ML and DL serve as universal interpolators, finding
correlations between large datasets in multidimensional spaces.
At the same time, the physical sciences are based on the notion of
hypothesis-driven science, often using observations from a set of
experiments to reveal correlations, explore causal relationships,
and ultimately unveil the underpinning physical laws. Thus, when
and how can ML and AI methods be used to explore physics?
We note that the pitfalls of the conventional correlative

modeling and their consequences are well explored9,10. The
classical examples include Simpson paradox11, where for example
it is possible that statistically, a certain drug can be beneficial for
humans in general, but detrimental for both males and females.
While in areas such as sociology, medicine, and economics the
approaches to deal with these issues are well developed, this is
generally not the case in the physical sciences. Notably, the use of
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complex machine learning models will not compensate for the
incorrect causative attribution and would rather make the
problem less obvious and more difficult to identify.
Here, we argue that the causal framework developed by Judea

Pearl and expanded by Scholkopf, Mooij, and others provides a
clear pathway towards answering these questions9,12,13. Generally,
ML methods provide a universal and extremely powerful frame-
work for analysis of physical problems when the causal chain is
clearly known. The use of neural networks for the analysis of
atomically resolved images14 is causally determined, since the
point-like objects observed in electron microscope at this level of
resolution can only be atoms. In comparison, these models will not
generalize for all images, since large collection of sphere-like
objects can also describe chain mail, cloth, meshes, structure of
certain minerals, etc. Similarly, the use of generative adversarial
networks for the analysis of the simulated 4D scanning transmis-
sion electron microscopy data (STEM), or classical back-
propagation networks to identify Ising model parameters based
on hysteresis loops15,16 is causally determined, since there is clear
causal relationship between the inputs and outputs. At the same
time, such trained networks can fail when applied to experimental
data, since the instrument parameters are a biasing factor. In some
cases, these can be accounted for by scaling and normalization,
but not so in others, where calibration factors are numerous and
the effect on the image is much more complex, and hence need
to be calibrated in advance. Parenthetically, the outstanding
success of DL learning methods as applied in the theoretical
domain owes to the fact that the causal links there are explicit.
At the same time, ML methods can be expected to fail, and

often fail, in cases where the causal links are uncertain. This
includes multiple variants, including the presence of confounding
factors that affect both (input) X and (output) Y, observational
biases, etc. (see Fig. 2). Correspondingly in these cases the ML
model, no matter how good, will fail to predict and generalize
since there are control factors outside of the model. For instance, if
a material property is predicted by ML models on the basis of only
local structure and global chemistry (and not local chemical
environments), this can easily lead to erroneous predictions in
cases where it is the local chemical environment driving the
changes in the first place. Then, the question is, does machine
learning here become useless? Interestingly, the answer is that is
still extremely useful – as long as the model is used in the
parameter space in which the confounding factors are constant
and observations are made with the same biases.
So, what are the other areas for ML in physics, beyond the

conditioned correlative models valid when the causal links are
known or defined? One class of the models is those that explore
the complexity of the dataset, either via manifold learning in
purely data spaces, or symbolic reconstructions, or extraction of
generative models. These models exploit the fact that physical

laws are generally parsimonious. As an example, consider the use
of neural networks with constraints placed on learned representa-
tions to answer a scientific hypothesis – that of a heliocentric solar
system17. As analyzed by Lin, Tegmark and Rolnick18, the success
of deep learning is inherently linked to the fact that most complex
systems, including those in physics, are hierarchical and are drawn
from a very small subset of all possible data distributions.

Learning meaningful representations: looking for simplicity
DL methods learn a representation of the inputs that is
advantageous to the task that is required to be performed, which
are sometimes referred to as ‘features.’ Are features learned by
such networks physically reasonable or at all meaningful for
materials scientists? After all, the predictions of a DNN may be
highly accurate, but might have little to no extrapolation ability.
This is because the features learned are the basis used for
predictions of the model, and physically non-meaningful features
can lead to highly inaccurate predictions for unseen data.
We argue that one method to aid the learning of better

representations of systems is to incorporate principles from
statistical physics. To be truly predictive, and not just interpolative,
DNNs need to carry an internal representation of the physical

Fig. 1 Deep neural network for analyzing atomically resolved data by performing a semantic image segmentation49,50 on the atomic
level. The network accomplishes two goals: (i) it removes noise and (ii) it separates different atomic species into different classes on the level
of individual image pixels. The input image is the scanning transmission electron microscopy image of disordered atomic lattice of 2D boron
nitride; the output is the atomic coordinates.

Fig. 2 Understanding causal links in the presence of confounding
effects and observational biases. a Correlation can be used to
analyze causative mechanisms only if there is a well-defined causal
link between the variables. In the presence of (b) confounders or (c)
observational bias analysis of correlations can result in fundamen-
tally incorrect conclusions. For example, the correlation of the level
of chocolate consumption and Nobel prize winning does not imply
that chocolate can be used to increase scientific visibility; rather the
same factors that enable higher consumption also lead to a higher
probability of winning51. d Example of exploring causative
mechanisms in physics. Observations will generate the correlation
between pressure and volume. The analysis of the functional
relationship between the two will yield the ideal gas law. With that,
note that the knowledge of functional relationship is insufficient to
analyze the causal mechanisms: does the pressure change cause
changes in volume, or vice-versa?
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system, which is ultimately given by its microstate probability
distribution or partition function. Measured properties are then
derived as specific projections (i.e., coarse-graining) of the
distribution. For example, for a 2D Ising model, the property of
note (magnetization) can be derived in this way19. The means to
implement this can vary; however, the core aim is to ensure that
the predictions are physically meaningful in terms of microstate
probabilities.
Moreover, one can employ regularization that is relevant for

physics, in that we ensure such physical representations are, and
must be expressed as only a small number of independent latent
variables, that is, be parsimonious17. For example, consider the
case of rotational symmetry. It is possible to incorporate this
feature directly into neural networks, such as variational auto-
encoders20, such that multiple rotational variants are all mapped
to the same latent space descriptors learned by the network, as
shown in Fig. 3 (image and associated code is available in
supplementary information). Here, the “building blocks” (latent
space vector) is sampled and plotted (Fig. 3b, c), essentially
highlighting what was ‘learned’ by the network. In the case of the
rotationally invariant variational autoencoder, multiple rotational
variants are all mapped to the same rotation, and the latent space
learns varies in terms of intensity and type of diffraction pattern,
whereas for the rotationally variant case rotations must be
encoded specifically in the latent space, leading to a more
complicated representation. Beyond incorporation of symmetry,
the actual type of loss function itself can be augmented as a form
of physics-based regularization (Fig. 4). For instance, instead of
regressing on mean squared error of inputs and outputs directly,
the loss can be computed in a space that more directly captures
the behavior of a thermodynamic system, i.e., the configuration
space. Instead of a mean squared error, the statistical distance
metric can be employed, which is related to distinguishability of
thermodynamic systems. Of course, the challenge here is in
determining the specific features, but again, this may be learned
(for example using generative adversarial networks or

autoencoders). We note as an aside here that the links between
neural networks and statistical physics, and the field of statistics
more generally, go back at least three decades21.

Adding context: Bayesian methods and prior knowledge
Another major class of models are the Bayesian models. While DL
requires large volumes of data and attempts to learn representa-
tions without the need for priors (beyond those encoded within
the architecture design, such as convolutions which introduce
spatial invariance), this is not the case for most physical problems.
Indeed, the question of most importance is how best to
incorporate prior knowledge of scientists within a data-driven
approach.
The natural approach for incorporation of the past knowledge

in the analysis is based on Bayesian methods, derived from the
celebrated Bayes formula:

p θijDð Þ ¼ p Djθið Þp θið Þ
p Dð Þ (1)

Here D represents the observed data, p(D|θi) is the likelihood
that the data can be generated by the theory, i.e., the model, i,
with parameters, θ. The prior knowledge is represented by p(θi).
Finally, p(D) is the denominator that defined the total space of
possible outcomes. Despite the elegance and transparency of
Bayesian approach, its adoption by many scientific communities
has been rather slow. First, evaluation of denominator in Eq. 1
requires very high dimensional integrals and become feasible for
experimentally relevant distributions only over the last decade.
Secondly, the choice of the priors represents an obvious issue.
Interestingly, in the physics field, domain knowledge is typically
abundant, necessitating translating of past domain knowledge
into the language of probability distribution functions. In a sense,
Bayes formula represents the synergy of experimental science as a
source of data, domain expertise as source of priors, theory as a
source of likelihoods, and high-performance computing necessary
to address the associated computational challenges.

Fig. 3 Utility of adding rotational invariances when forming reduced representations. a A simulated test image (size 500 × 500 px)
containing different lattice structures with arbitrary rotations. We aim to disentangle rotations of a structure from the actual structures
themselves. For this purpose, we begin by computing a sliding window 2D Fourier transform52 over the image, collecting hundreds of 2D
local Fourier transformed images. We then aim to encode this dataset using a variational autoencoder. Shown in (b), (c) are the latent space
visualizations for the encoder (b) without rotational invariance, and (c) with rotational invariance specifically built-in to the loss function. It is
easily observed that without rotational invariance, the latent space is forced to take into account rotations, decreasing the compactness of the
representation. The latent space in (c), however, is much simpler (parsimony).
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The adoption of Bayesian approaches allows us to system-
atically explore complex problems, fusing prior information from
other sources. For example, in a scientific image processing task,
can the neural network performance be improved based on
knowledge on which functional groups are possible for specific
materials class, and their relevant energies/probabilities? The
combination of a convolutional neural networks with graphical

models22 (e.g., Markov random field) may allow incorporating
prior knowledge about physiochemical properties of a system,
such as a probability of realization of certain lattice-impurity
configurations, into the decoding of experimental observations
(see Fig. 5). Deep learning models such as graph convolutional
neural networks now also allow predicting materials properties
directly from crystal lattice graphs23. However, this approach is

Fig. 5 A simplified schematic showing analysis of scientific image data using a combination of deep learning and graph modeling for
predicting materials (local) structure and properties. Knowledge can be injected at both the structural learning step, as well as the
translation from structure to physical properties.

Fig. 4 Adjusting loss functions to emphasize physically meaningful comparisons. A traditional autoencoder contains a loss function that
minimizes the mean-squared error between the input and output image or image batches. However, in learning representations for
thermodynamic systems, it may be preferable not to output the same image – but rather, to capture the essence of the image, i.e., the
statistical fluctuations of the configurations of species present. In such cases, the loss function can be appropriately modified, such as with a
statistical distance loss function that computes the distance between two systems based on the probability of observing different
configurations. Of course, the challenge here is that the configurations to compare should themselves be learned. That may be possible using
dual-network architectures, such as generative adversarial networks where one component determines the features that maximize
distinguishing of the two systems, while the other network aims to minimize the discrepancy.
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currently limited to ideal periodic systems. Predicting the local
property maps (e.g., distribution of local density of states) directly
from the experimental observations is a major challenge.
Other methods to leverage or couple physical models and

machine learning have been proposed. For instance, the ‘theory-
driven data science’ paradigm espoused by Karpatne et al.24

describe several such approaches, including pre-training of
networks with simulated data from physical models (so that
when trained on real-world data, the networks are more likely to
yield physically plausible results and can be used for deconvolu-
tion of experimental parameters15,16), and constrained optimiza-
tion, where solutions must obey constraints such as being valid
solutions to a partial differential equation. Determining the most
effective methods to encode these relationships within deep
neural networks remains an ongoing challenge, and invariably a
tension between the flexibility of the model and the ability to
learn physically meaningful relationships that underpin extrapola-
tion ability will exist.
Of course, in some instances it may be better to avoid prior

information entirely: for example, the AlphaZero25 program
mastered the games of Chess, Shogi, and Go starting from
random play and given no domain knowledge other than the
game rules, and yet achieved super-human performance in all
three. This can allow for strategies to emerge that humans may
not have envisioned26. We foresee the utility of these approaches
in particular to areas such as controlled materials synthesis, drug
discovery27, and other design spaces28.

Data and DL future
Finally, we explore the changes in scientific community and
infrastructure needed to make this deep learning transformation
possible. Most of the critical algorithmic developments for deep
learning, such as convolutional networks and back propagation,
occurred decades ago29. Rather, it was the availability of large,
labeled databases, and the ability to compute these huge volumes
to enable network training, that were key factors in the current
deep learning revolution30. As such, the development of open
source libraries of materials data is an instrumental part, and a
slew of recent reviews31–33 touch on the need and benefits of
these databases.
The adoption of machine learning tools, including basic

knowledge and relevant programming skills by the broad
scientific community is becoming a necessity. A related issue is
the availability and distribution of tested, well-documented codes.
While GitHub and Jupyter notebooks34 offer an effective means
for code sharing, development, and universal access, the incentive
system in fundamental science is heavily tilted towards publica-
tion as a primary measure of performance. Correspondingly,
increasing the visibility of code development and re-use, and
ideally integrating codes into scientific publications (e.g., see
ref. 35) becomes more important. Ultimately, data, code, and
workflow sharing will become the primary pathway for collabora-
tion and scientific knowledge dissemination, complementing, and
potentially surpassing archival publications.
Overall, the initial forays in machine learning across physical

science communities have demonstrated the power of these
methods in a variety of domains. But practical implementation will
require additional work on adjusting the tools to match the
problems presented in those areas. In our opinion, the integration
of human domain expertise and causal inference with deep
learning will be the crucial link to correctly harnessing and
exploiting the benefits that DL and ML can provide. Most
importantly, the merger of machine learning with classical
hypothesis driven science can bring ML beyond the current
correlative paradigms into larger fields of Bayesian and causal
learning and establish connections to the materials world via

automated experiment36–48 and open instrumental facilities, thus
giving rise to fundamentally different ways of scientific research.

DATA AVAILABILITY
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