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Calculation and interpretation of classical turning surfaces
in solids
Aaron D. Kaplan 1, Stewart J. Clark 2✉, Kieron Burke 3✉ and John P. Perdew4✉

Classical turning surfaces of Kohn–Sham potentials separate classically allowed regions (CARs) from classically forbidden regions
(CFRs). They are useful for understanding many chemical properties of molecules but need not exist in solids, where the density
never decays to zero. At equilibrium geometries, we find that CFRs are absent in perfect metals, rare in covalent semiconductors at
equilibrium, but common in ionic and molecular crystals. In all materials, CFRs appear or grow as the internuclear distances are
uniformly expanded. They can also appear at a monovacancy in a metal. Calculations with several approximate density functionals
and codes confirm these behaviors. A classical picture of conduction suggests that CARs should be connected in metals, and
disconnected in wide-gap insulators, and is confirmed in the limits of extreme compression and expansion. Surprisingly, many
semiconductors have no CFR at equilibrium, a key finding for density functional construction. Nonetheless, a strong correlation with
insulating behavior can still be inferred. Moreover, equilibrium bond lengths for all cases can be estimated from the bond type and
the sum of the classical turning radii of the free atoms or ions.
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INTRODUCTION
Modern Kohn–Sham (KS) density functional theory (DFT)1 calcula-
tions produce a KS potential, vs(r), which, while not a physical
observable, has proven useful in providing physical and chemical
insight. Recently, the classical turning surfaces at the energy of the
highest occupied orbital of atoms and ions have provided
considerable insight into the nature of chemical bonding2. These
turning surfaces are roughly ellipsoidal for covalent bonds, have
seams for ionic bonds, and are bifurcated for van der Waals
dimers. But all finite systems have densities that decay to zero far
from the nuclei, whereas the interiors of real solids extended over
three dimensions do not. Thus, unlike molecules, solids have the
possibility of having no classical turning surfaces at all. Here we
augment existing codes to calculate classical turning surfaces for a
variety of extended solids.
We first find that equilibrium distances between nearest-

neighbor atoms or atomic ions in solids can be estimated from
the sum of the classical turning radii of the corresponding free
atoms or atomic ions and the bond type (metallic, covalent, ionic,
or van der Waals), much as found earlier for molecules. But of
greater interest is the nature of the turning surface itself in solids.
Physical intuition suggests that, in the limit of extreme compres-
sion, solids become metallic, while, in the less-physical limit of
extreme expansion, they become insulators. In the former case,
there are no classical turning surfaces, i.e., all space is classically
allowed for the most energetic electrons, while in the latter, all
atoms (or ions) are isolated spheres from which classical electrons
could not escape. Semiclassical reasoning suggests that solids that
are entirely classically allowed should be metallic, while a
significant volume of forbidden regions should accompany
greater inhibition of conduction, i.e., a nonzero gap. Thus we
might naively expect semiconductors with covalent bonds to have
classical turning surfaces.

We calculated many solids as a function of lattice parameter
using the local spin density approximation (LSDA) and the
Perdew–Burke–Ernzerhof (PBE) generalized gradient approxima-
tion (GGA)3, tracking the fraction of volume that is classically
forbidden. The results are shown in Fig. 1. The single most
important feature is that bulk metals at equilibrium have no
classically forbidden regions (CFRs). This is consistent with the
original views of Kohn and Sham when developing DFT1, and the
subsequent use of gradient expansions starting from slowly
varying densities. The next most important feature is surprising: at
equilibrium, covalent semiconductors also do not exhibit any
CFRs. This has two important consequences. First, this shows that
such systems differ fundamentally from their molecular cousins.
Covalent molecules do not have forbidden regions between
nuclei, but do in other directions. Covalent solids have none.
Second, this is consistent with the general behavior of density

functional approximations, such as GGAs versus (global) hybrids
and meta-GGAs. The exact exchange-correlation hole in most
metals is short-ranged4, is adequately described by the LSDA, and
more accurately described by GGAs5. In some cases (e.g., magnetic
properties of transition metals), GGAs better describe metals6,7

than meta-GGAs8,9 and hybrids10, which typically do better for
semiconductors11–13 and insulators12,13 presumably because
metals exhibit perfect screening, whereas semiconductors and
insulators do not.
But the heuristic suggested by semiclasscial physics is also not

entirely without merit. If we expand the volume of a semicon-
ductor by 40%, we found, in every case but one, the appearance
of a CFR. So semiclassical reasoning is sound, but not quite
quantitative. The one exception is diamond where, according to
our bonding characterization, the atomic densities are strongly
overlapped.
These observations are broad strokes, based on the simple

solids shown in Fig. 1. A theoretical background immediately
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follows this overview. Our analysis begins with a generalization of
the chemical bonding analysis to solids. We also examine several
other interesting effects, often by studying one specific case. We
show that insertion of a defect in Pt creates a CFR. An exploration
of the fraction of CFR volume created as a function of lattice
expansion reveals strong patterns running down columns of the
periodic table. Changes of crystalline phase in Al as well as
magnetic and crystalline phases in NiO are explored. As a
prototype of complexity, NiO does not fit neatly into the picture
of Fig. 1, regardless of phase. The Supplementary Information
contains additional figures and data.
The most basic properties of an ordered solid are its

conductivity14–16 and bonding17. The standard quantum mechan-
ical theory of conduction for ordered solids is that of Bloch bands,
with insulators having filled bands below finite gaps in the
eigenvalue spectrum17. The local bonding within a solid is often
determined qualitatively from the real-space charge density.
Consider a classical electron of energy ε moving in a one-

electron effective potential veff(r). If ε > veff(r) everywhere, the
classical electron will traverse the solid uninhibited, and the solid
should be metallic. But, if the only classically allowed regions
(CARs) are disjoint regions bound to atoms, the solid should be
strongly insulating. Unlike the classical electron, a quantum
electron can tunnel into the CFR, permitting small conductivity.
This work analyzes turning surface analogs in the framework of

KS DFT1, an exact-in-principle quantum theory of many electrons.
In KS DFT, the exact ground-state density and total energy are
given by an auxiliary system of non-interacting electrons subject
to an effective scalar potential vs(r). For consistency with previous
work2, we define the turning surface of the KS potential as the set
of points rc such that

vsðrcÞ ¼ εHO; (1)

with εHO the highest occupied orbital energy (or Fermi energy εF).
If εHO > vs(r) everywhere, there is no turning surface. (One could
also define a turning surface using the chemical potential

μ ≥ εHO
18, with equality only for metals, but Eq. (1) is used in all

previous work.)
Highly accurate approximations of the KS potential19,20 are

computationally tractable in atoms and molecules, but more
difficult in solids. The existing literature on KS turning surfaces
considers finite systems exclusively2,21–24. Replacing the core
regions by a pseudopotential, and explicitly excluding the core
regions from the analysis of the potential (as is done here), may
countervail the lack of core-region structure in approximate KS
potentials. Pronounced structures in the exact KS potential may
feature in the low-density interstices of stretched solids, well
inside CFRs.
Solids, as opposed to atoms and molecules, offer the possibility

of metallic bonds, no classical turning surface (as suggested for
metals by the cartoon of ref. 25), a sharp distinction between zero-
temperature electrical conduction and insulation, and physical
spontaneous symmetry-breaking (as in transition metal mon-
oxides). Analysis of the spin-sublattices requires a further
definition of the sublattice-, or spin-, CFRs

vs;σðrÞ ¼ εσ;HO; σ ¼"; # : (2)

The presence of a classical turning surface, as at a monovacancy in
a metal, is responsible for strong Friedel oscillations of the
electron density26. Moreover, quantum oscillations (shell structure)
in the density are observed in the CAR, while the density decays
exponentially within the CFR26.
This work presents calculations of turning surfaces for many

simple solids at the LSDA and GGA levels of exchange–correlation
approximations. Both usually yield close approximations to more
precise KS potentials in molecules (as both KS potential and εHO
are typically too shallow by about the same amount). However,
the bandgap of the exact KS potential does not match the
fundamental or physical gap18, and typically underestimates it.
The bandgaps of semilocal approximations like LSDA or GGAs are
typically close to the exact KS bandgap27–29, and thus under-
estimate the fundamental bandgap. Hybrid functionals and meta-
GGAs yield larger bandgaps when treated in a generalized KS
scheme30. To determine the turning surface of a hybrid functional
or meta-GGA, one would need to replace20 the non-multiplicative
potential operator of generalized KS theory with a
multiplicative one.
Semilocal approximations to the KS potential may deteriorate

under extreme expansive strains. The exact KS potential need not
be analytic nor smooth, as seen in the intershell regions of
atoms31 and stretched molecular bonds18,27,32. However, even if a
negative hydrostatic pressure could be achieved, extreme
expansion of the lattice is unphysical: the work needed to stretch
the lattice will eventually exceed the surface formation energy,
signaling a transition to isolated clusters.

RESULTS
Characterizing bonding in solids
It is often useful to identify the general chemical properties of
materials. Crystals are generally classified as metallic (conducting),
covalently bonded, ionically bonded, hydrogen bonded, or van
der Waals bonded (the latter four being insulating). However, it is
difficult to quantifiably distinguish between these classifications in
terms of the KS potential or density alone. The design of meta-
GGAs has led to an “iso-orbital indicator” α(r) that describes the
local chemical environment quantitatively9,33. α(r)→ 0 charac-
terizes one- and two-electron regions, α(r)→ 1 uniform densities,
and α(r)≫ 1 weak bonds.
It was shown in ref. 2 that the bond type roughly determines the

ratio

βAB ¼
sAB

RA þ RB
; (3)

Fig. 1 CFRs at equilibrium for a variety of metals and insulators.
Contrasting the amount of strain needed to induce a CFR for various
solids at smaller equilibrium volume per atom Veq, for PBE only.
For the complete figure, see Supplementary Fig. 4. Solids lying
above the gray line Vc= Veq have no CFR at equilibrium, and those
below the line have a CFR at equilibrium. The line Vc= 1.4 Veq better
separates metals and insulators; the only exceptions are diamond
and NiO. For clarity of the figure, only the rocksalt antiferromagnetic
(AFM) phase of NiO (green) is shown; other phases are
discussed later.
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with sAB the nearest-neighbor separation of ion sites A and B in a
solid or molecule and RA and RB are their corresponding classical
turning surface radii calculated for the isolated species2. As seen in
Table 1, the value of βAB is correlated with the bond-type of a
crystal. Note that, while RA and RB are spherical, sAB is determined
by the lattice geometry. βAB⪅ 0.8 generally indicates a solid with
dense covalent bonding or metallic bonding, and a lack of a CFR

at equilibrium. 0.8⪅ βAB⪅ 1.3 indicates an ionic crystal, and 1.3⪅
βAB indicates a van der Waals crystal, with a CFR at equilibrium in
both cases. Note that this classification differs from that in ref. 2

only in the upper bound for covalent bonding, which was 0.7 in
their work, and the lower ionic bound, which they took to be 0.9.
Equation (3) might be used to guess an initial geometry for a
novel material of given composition.
We note a few outliers: Sn and Pb as calculated in the diamond

structure, which have βAB < 0.8 and a CFR at equilibrium; and NiO
and Be, which have 0.8 < βAB < 1.3, but no CFRs at equilibrium. The
ground-state structures of Sn and Pb are not diamond cubic, thus
the presented lattices are not true equilibrium phases. As shown
later, lattice strains also induce CFRs. NiO and Be are discussed
further in later sections.
Graphite and MoS2 feature strong covalent in-plane bonds and

weak out-of plane bonds. The strongly different LSDA and PBE Vc/
Veq values demonstrate the limitations of semilocal functionals in
describing weak bonds. We have not considered hydrogen
bonding—a type of weak bonding reserved for solid state
hydrates—as there are numerous phases of ice that would likely
exhibit a range of bonding34.
Table 1 shows that the turning surface of a solid at its

equilibrium geometry reflects its chemical bonding. CFRs arise
between neighboring atoms when the atomic CARs are not
overlapped (βAB > 1), making the local electron density relatively
low. Metallic bonds, and dense networks of covalent bonds, lack
turning surfaces and cannot be distinguished in Table 1 (although
the valence electron densities of covalent solids tend to be much
more inhomogeneous than those of simple metals; see Figs. 6-6
and 6-7 of ref. 35 for the densities of Si and Al). Ionic and van der
Waals bonds have classical turning surfaces whose shapes could
distinguish them, just as for molecules2.

Detailed studies
We define and report VUC as the volume per atom of the unit cell
(UC), which is independent of the choice of UC (primitive,
conventional, etc.). Similarly, we define the CFR fractional volume
as the portion of the UC volume, which is classically forbidden. The
“Methods” section describes how these quantities may be
extracted from standard plane-wave DFT codes used here, the
Vienna ab initio Simulation Package (VASP) and Castep.
As seen in Tables 1 and 2, the studied defect-free metals lack

CFRs at equilibrium. Table 1 and Fig. 2 show that substantial
expansive strains are needed to induce CFRs in metals. The fitting
method and fit parameters are described in the Supplementary
Information. From Tables 1 and 2 and Supplementary Table II, Vc/
Veq≳ 3 for metals, except for Pt where it is 1.7.
Note also that the LSDA and PBE curves in Fig. 2 and

Supplementary Fig. 6 for Al, Cu, and NaCl cross, whereas those
for elemental insulators do not. For the elemental insulators, the
difference between the LSDA and PBE curves is always of the
same sign.
The equilibrium CFRs of insulators, as in Tables 1 and 2, depend

upon the degree of insulation and the approximation used. Thus
not all covalent solids have CFRs at equilibrium. Figure 3 plots the
turning surface in Si at 30% expansion of the lattice parameter. In
the figure, both the CAR and CFR are simultaneously connected.
Supplementary Fig. 5 shows how CARs disconnect under strong
expansion. Crystalline NaCl, just like its molecular form2, also has
large PBE and LSDA CFRs. Because NaCl is a prototypical ionic
solid, ionic crystals and more weakly bound crystals will likely
exhibit CFRs at equilibrium.
Weakly interacting and van der Waals solids, like graphite and

Ne, have PBE CFRs at equilibrium. The small (1%) PBE CFR volume
in graphite (hexagonal C) at its experimental lattice constants
reflects the semimetallic nature of this material. The PBE CFR in
graphite lies between monolayers, as one might expect for few-

Table 1. Chemical bonding properties from atomic turning
surface radii.

Solid Struc. Vc/Veq βAB sAB (Å) Bond Bond type

C hex <1 0.478 1.424 C–C I.L. Cov.

C ds 1.778 0.519 1.547 C–C Cov.

C* ds 1.899 0.520 1.548 C–C Cov.

Al fcc 3.318 0.549 2.857 Al–Al Met.

Al* fcc 2.503 0.550 2.858 Al–Al Met.

Si* ds 1.262 0.551 2.367 Si–Si Cov.

Si ds 1.188 0.551 2.368 Si–Si Cov.

Li* bcc 6.022 0.553 2.976 Li–Li Met.

Ge ds 1.105 0.564 2.494 Ge–Ge Cov.

Ge* ds 1.150 0.565 2.498 Ge–Ge Cov.

Cu fcc 2.916 0.574 2.570 Cu–Cu Met.

Cu* fcc 3.033 0.574 2.571 Cu–Cu Met.

MoS2 MoS2 <1 0.587 2.413 Mo–S I.L. Cov.

Sn* ds 0.973 0.590 2.877 Sn–Sn Cov.

Na* bcc 3.782 0.628 3.653 Na–Na Met.

K* bcc 3.146 0.634 4.555 K–K Met.

Rb* bcc 2.801 0.646 4.963 Rb–Rb Met.

Ca* fcc 3.651 0.696 3.910 Ca–Ca Met.

Sr* fcc 3.347 0.700 4.314 Sr–Sr Met.

Mg* bcc 3.459 0.715 3.116 Mg–Mg Met.

NiO AFM zb 1.115 0.754 1.945 Ni+2
–O−2 Ion.

NiO Unp. rs 1.642 0.806 2.080 Ni+2
–O−2 Met.

NiO AFM rs 1.605 0.812 2.096 Ni+2
–O−2 Ion.

Be* bcc 2.290 0.832 2.978 Be–Be Met.

NaCl rs 0.625 1.249 2.849 Na+1
–Cl−1 Ion.

NaCl* rs 0.621 1.252 2.854 Na+1
–Cl−1 Ion.

Xe* fcc 0.507 1.282 4.386 Xe–Xe vdW

MoS2 MoS2 <1 1.361 4.574 S–S O.L. vdW

C hex <1 1.363 4.061 C–C O.L. vdW

Kr* fcc 0.440 1.372 4.035 Kr–Kr vdW

Ar* fcc 0.411 1.441 3.717 Ar–Ar vdW

Ne* fcc 0.253 1.800 3.132 Ne–Ne vdW

Ne fcc 0.234 1.852 3.223 Ne–Ne vdW

He* fcc 0.138 2.419 3.000 He–He vdW

Classification of bonding in solids using PBE, ordered by increasing βAB of
Eq. (3) (roughly, by decreasing bond strength). An asterisk indicates a
Castep calculation, otherwise the result is from VASP. Vc is the critical
volume per atom at which a CFR appears. For those solids where fitting
was performed, a numeric value of Vc/Veq is given; if no fit was performed,
the appropriate inequality is given. In general, Vc/Veq > 1 indicates that a
solid has no CFR at equilibrium, and Vc/Veq < 1 indicates that it does. “I.L.”
corresponds to an in-layer bond, and "O.L.” to an out-of-layer bond. RA and
RB are the turning surface radii of the corresponding atoms or ions as
calculated in ref. 2. For Na+1Cl−1 (Ni+2O−2), the isolated monovalent
(divalent) ionic turning surface radii were used; neutral atomic radii were
used otherwise. The antiferromagnetic (AFM) NiO Vcs are identical for spin-
up and spin-down CFRs. For an analogous table using the LSDA, refer to
Supplementary Table I.
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layer graphene. The large PBE CFR volume in graphite, nearly 20%
of the equilibrium volume, is due to PBE’s underestimation of
intermediate-range van der Waals interactions between layers.
This fraction is reduced to 1% when the experimental cell volume
is used instead. The LSDA finds no CFR in graphite, likely due to
the LSDA’s overestimation of weak interactions. This trend also
manifests in MoS2: the LSDA underestimates the equilibrium c
lattice parameter, yielding no CFR. PBE vastly overestimates the c
parameter, yielding a substantial CFR. Note that the LSDA and PBE
are similarly accurate for the intra-layer thickness z (the distance
between neighboring layers of sulfur atoms).
Consider instead a monolayer of graphite or MoS2. For these,

the bulk equilibrium a and z lattice parameters were used. No CFR
exists within the monolayer region of graphene or monolayer
MoS2, for both the LSDA and PBE. Thus no in-layer CFR is present
in graphene or monolayer MoS2.
Barring diamond C, which has much stronger covalent bonding

than the other elements in the Carbon group, all narrow gap
insulators studied here have Vc/Veq≲ 1.4. As semilocal functionals
provide lower bounds to the bandgap—and in the case of Ge, find
zero bandgap—a semilocal calculation could recognize narrow
gap insulators by two properties: a nonzero bandgap and/or the
presence of a CFR when the UC is expanded within 40% of the
equilibrium volume. As most metals have Vc/Veq≳ 1.7 (Pt is the

edge case with Vc/Veq= 1.71), the expanded criterion could also
identify spin-unpolarized and antiferromagnetic (AFM) NiO as
non-metallic.
The classical radius of the free Ne atom is 0.87Å, in both PBE

(Ospadov et al., manuscript in preparation), and with a more
accurate KS potential2, with a volume of 2.76Å3. The experimental
lattice constant is 4.464Å36, corresponding to a cell volume per
atom of 22.24Å3. The CFR predicted by ref. 2 is then (22.24−
2.76)/22.24 ≈ 88% of the total cell volume, agreeing with the
values in Table 2. An Ne atom in solid Ne at the equilibrium lattice
constant is very similar to a free Ne atom.
We can compress the Ne lattice until the CFR vanishes, as seen

in Fig. 2. The Ne CFR is predicted to vanish at 0.62a for PBE. One
might expect the bandgap to shrink as the CFR collapses, but the
opposite is true. For the smallest lattice constant calculated here
(2.85Å), the band gap is roughly 18.57 eV, compared to a gap of
about 11.51 eV (11.45 eV) at the PBE equilibrium (experimental)
lattice constant, consistent with previous work that used PBE to
study phases of Ne under pressure37. Intuition suggests that the
Ne CFR should not be fully suppressed before the classical turning
surfaces between adjacent atoms just touch, at a nearest-neighbor
separation of 2(0.87)= 1.74Å, using the result from ref. 2. This is
substantially smaller than the nearest-neighbor spacing in crystal-
line Ne for which the PBE CFR is wiped out, 2:81=

ffiffiffi

2
p � 2:00Å.

Table 2. Turning surface properties of solids at equilibrium.

Solid (structure) εHO � vmax
s (eV) CFR fraction Veq (Å3/atom) Lattice const(s). (Å) Expt. lattice const(s).

(Å)

Al (fcc) 5.75 0% 16.48 4.04 4.0264

(5.94) (15.81) (3.98)

Cu (fcc) 5.56 0% 12.01 3.63 3.5964

(6.04) (10.94) (3.52)

Pt (fcc, bulk) 4.76 0% 15.61 3.97 3.9165

(5.04) (14.90) (3.90)

Pt monovacancy (fcc) −1.18 10.9% 15.39 3.95 3.91

(−1.00) (5.2%) (14.68) (3.89)

−1.29 12.1% 15.61 3.97 3.91

(−1.12) (6.4%) (14.90) (3.90)

C (ds) 5.59 (6.62) 0% 5.70 (5.52) 3.57 (3.53) 3.5564

Si (ds) 0.91 (1.44) 0% 20.44 (19.71) 5.47 (5.40) 5.4264

Ge (ds) 0.57 0% 23.89 5.76 5.6464

C (hex) Relaxed −3.06 (1.04) 18.5% (0%) 10.70 (8.61) 2.47 (2.45) (a), 8.12 (6.65) (c) 2.46 (a), 6.71 (c)66,67

Expt. −0.28 (0.92) 1.0% (0%) 8.81 2.46 (a), 6.71 (c) 2.46 (a), 6.71 (c)

Ne (fcc) Relaxed −14.44 (−9.23) 87.1% (78.1%) 23.67 (14.39) 4.56 (3.86) 4.4636

Expt. −14.20 (−10.90) 86.3% (86.3%) 22.24 4.46 4.46

NaCl (rs) Relaxed −3.38 (−2.05) 34.6% (17.7%) 23.11 (20.45) 5.70 (5.47) 5.5764

Expt. −3.06 (−2.30) 29.6% (22.4%) 21.59 5.57 5.57

MoS2 (P6/mmc or 2Hb) −4.24 (0.01) 22.3% (0%) 21.41 (16.99) 3.18 (3.12) (a), 14.62 (12.07) (c), 3.12
(3.11) (z)

3.16 (a), 12.29 (c), 3.17
(z)62

NiO Unp. (rs) 4.97 0% 9.00 4.16 4.1750

AFM (rs) 3.92 0% (↑), 0% (↓) 9.21 4.19

AFM (zb) 0.23 0% (↑), 0% (↓) 11.34 4.49

PBE and LSDA (parenthesized when different) values for the classically forbidden regions, equilibrium volume per atom, and lattice constants of select metals
and insulators. For the first set of Pt monovacancy results, the cell volume and ion positions were relaxed; for the second set, the volume was fixed to the bulk
value, and the ion positions were relaxed. Both sets of calculations used 31 ions in the supercell. For graphite, Ne, and NaCl, two sets of results are shown: the
first at a relaxed PBE geometry, and the second at the experimental equilibrium geometry. The percent volume is taken with respect to the unit cell (percent
volume per atom). Here “ds” refers to diamond structure, “hex” to simple hexagonal structure (with a four-point basis for graphite), “rs” to rock salt structure,
and “zb” to Zincblende structure. The layered structure of MoS2 is itself a prototype for dichalcogenide structure and is often referred to as the “MoS2
structure,” or by its polytype 2Hb

62, or by its space group P6/mmc63. The a and c parameters have the same meaning as in a simple hexagonal lattice, the z
parameter (sometimes called 2z) is the spacing between neighboring sulfur layers. No LSDA calculation was performed for the NiO phases nor for Ge. Spin-
unpolarized (Unp.) and antiferromagnetic (AFM) calculations for NiO are listed; the AFM rs state is the correct ground state.
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Thus, unexpectedly, the critical lattice constant in Ne makes the
nearest-neighbor distance noticeably greater than twice the
turning radius of the free atom.
As the lattice is compressed, two competing effects determine

the bandgap: the bands widen, reducing the gap; and the center
of the conduction band is shifted upwards with respect to the
center of the valence band, widening the gap. (For an example,
see the silicon density of states (DOS) at equilibrium and at a mild
expansion in Supplementary Fig. 1.) This leads to a nontrivial (non-

monotonic) dependence of the gap upon the lattice parameter.
Note also that certain crystalline phases of Na have been
experimentally observed to transition to an insulating state under
strong compression, consistent with predictions made by PBE38.

The defect case
A Pt supercell with a monovacancy defect harbors a small CFR,
and as seen in Fig. 4, the CFR encapsulates the center of the
vacancy perfectly. Relaxation of the supercell volume was
performed by two ways: direct minimization of the stress tensor,
and allowing ion positions to change within a fixed supercell
volume.
The vacancy defect formation energy can be recast as the

energy needed to create a curved surface within a solid39. The
localization of the CFR to the vacancy region is a clear
manifestation of this. Carling et al.40 found that the LSDA is more
accurate than GGAs for the Al monovacancy formation energy, in
line with earlier results41 for the jellium surface energy. They also
found a very low electron density near the center of the vacancy,
and large Friedel oscillations around it, consistent with a CFR near
the center. Large voids and exterior surfaces would also give rise

Fig. 2 The role of strain in shaping CFRs. Emergence of PBE CFRs
and their volume fractions as functions of the volume per atom in Al
(blue closed circles), Cu (yellow squares), Pt (green diamonds), C (red
point-up triangles), Ne (purple point-down triangles), NaCl (brown
Xs), Si (olive stars), and NiO (gray plus signs) as a function of the unit
cell volume. All lines are fits given in Supplementary Table II. As Al,
Cu, C, and Si have no CFR at their relaxed lattice parameters, each
lattice must be stretched to introduce a CFR. Conversely, Ne and
NaCl must be compressed to eliminate their CFRs; for completeness,
the full NaCl curve is presented here. The curve for spin-unpolarized
NiO is almost identical to that of NaCl (see also Supplementary Fig.
3). The LSDA curves are very similar, see Supplementary Fig. 6. For
PBE curves as calculated in Castep, see Supplementary Fig. 7.

Fig. 3 The KS turning surface of Si at mild expansion. The surface
shows the CAR (outside, green) and CFR (inside, yellow) for silicon at
1.30a, with a the equilibrium cubic lattice constant. Both regions are
simultaneously fully connected.

Fig. 4 Creation of a CFR by a monovacancy defect in Pt. a A
contour plot of εHO− vs(r) as calculated with PBE along the (1,–1,0)
plane (conventional cubic indices) in the Pt monovacancy supercell.
The CFR (purple) surrounds the defect, supporting the conjecture
that the formation of a defect is accompanied by the formation of
an internal curved surface. Regions within the PAW pseudopotential
core radii are only included here to make the image clearer. For an
analogous figure in Si, refer to Supplementary Fig. 2. b Logarithm of
the density log 10½nðrÞ� (blue) and εHO–vs(r) (orange) plotted along
the black line in a. The density decays exponentially as it crosses the
border of the CFR, marked by gray vertical lines.
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to extensive CFRs in any material. Their definition of the
monovacancy volume used the liquid drop model of jellium39

and will generally yield larger volumes than the corresponding
CFR volumes.

The periodic trends
Here we consider elemental solids beyond those emphasized in
Table 2. They are members of Groups 1 (alkali metals), 2 (alkaline
earth metals), 14 (Group IV or Carbon group), and 18 (noble gases).
The parameters of the fit functions can be found in Supplemen-
tary Tables IV–VII and the full strain curves in Supplementary Figs.
8–11. As seen in Fig. 1, the line Vc/Veq ≈ 1.4 generally distinguishes
metals and insulators.
Clear trends in the strain curves of elemental solids emerge as

one goes down a column of the periodic table in Table 3 (see also
Supplementary Tables IV–VII). In Fig. 5a, we plot the strain curves
as a function of VUC/Vc, for elemental insulators. The noble gases
all fall on one line, except for the lightest, He, while the Carbon
group elements fall on another, except for the lightest, C. Each
group has a unique, characteristic curve.
The alkali and alkaline-earth metals show similar but more

complex behavior, as shown in Fig. 5b. The green line is for the
heavier alkalis, the orange line is for the alkaline-earths. The lighter
two alkalis, Li and Na, are shown in blue and share a shape distinct
from the later alkalis. They follow the alkaline-earth curve closely,
except for a dip around 1.4 Vc. Moreover, Mg (in gray) is the odd
one out of the alkaline-earths, rather than Be. For small strains, Mg
behaves like all other alkaline-earths but, when greatly expanded,
behaves more like an alkali.
Naturally, within a column of the periodic table, the critical CFR

volume Vc increases with atomic number, as shown in the
Supplementary Information. Defining the volume of a free atom as
Vat ¼ 4πr3TS =3, with rTS the radius of the atom’s classical turning
surface2, then the ratios Vc/Vat are order 1 and seem to approach a
column-dependent large-Z limit, with Z the nuclear charge (see
Table 3 and Supplementary Tables IV–VII). The first ionization
energies of the atoms exhibit similar behavior42.

Phases of Aluminum
As the volume of the UC changes, the equilibrium crystal phase
may no longer be the ground-state phase, leading to a structural
phase transition. Semilocal functionals can find states of broken
symmetry of lower energy than symmetry-preserving states43. In
addition to varying crystalline phases, we may also account for

whether a spin-unpolarized phase or a symmetry-broken phase is
the true ground state.
For simplicity, we have selected a few cubic phases, face-

centered cubic (fcc), body-centered cubic (bcc), simple cubic (sc),
and diamond structure cubic (ds), in spin-unpolarized Al to probe
possible phase transitions. Using the stabilized jellium equation of
state (SJEOS)44 to fit the energy per formula unit as a function of
the UC volume, PBE predicts an energy crossover for fcc and ds Al
at a cubic lattice parameter a= 5.36Å, as can be seen in Fig. 6. By
following the CFR curve of lowest energy in Fig. 6, the change in
inflection in the fcc Al curve is removed. A bandgap in the DOS
does not accompany the crystalline phase transition. From the
SJEOS parameters, we find the equilibrium volume per atom to be
16.62Å3 for the fcc phase (−3.74 eV/formula unit) and 28.27Å3 for
the ds phase (−2.93 eV/formula unit). The critical transition
pressure from the fcc to the ds phase is −0.070 eV/Å3

(−11.25 GPa), as constructed from the common tangent of the
equations of state. A negative hydrostatic pressure is not
experimentally realizable.

Nickel monoxide
Transition metal monoxides are often poorly described by
semilocal density functionals, particularly LSDA and GGAs. The
spin-unpolarized state respects the full symmetry of the Hamilto-
nian, but calculations with approximate functionals often find a
broken-symmetry AFM state of lower energy. Spin-symmetry
breaking in a density-functional calculation is well known to

Table 3. Emergent periodic trends.

Solid (structure) Vc/Vat Solid (structure) Vc/Vat

Li (bcc) 1.50 Be (bcc) 1.94

Na (bcc) 1.37 Mg (bcc) 1.86

K (bcc) 1.18 Ca (fcc) 1.66

Rb (bcc) 1.11 Sr (fcc) 1.55

He (fcc) 2.63

C (ds) 0.78 Ne (fcc) 1.99

Si (ds) 0.62 Ar (fcc) 1.66

Ge (ds) 0.61 Kr (fcc) 1.54

Sn (ds) 0.59 Xe (fcc) 1.44

Comparison of the fitted critical volumes per atom Vc for the emergence of
a CFR and the CAR volume of isolated atoms for select elemental solids.
Vat ¼ 4πr3TS =3, where rTS is the turning surface radius of the corresponding
neutral atom as reported in ref. 2. Each group of the periodic table,
separated by solid lines, seems to approach a column-dependent limit for
Vc/Vat as the nuclear charge Z grows large.

Fig. 5 Periodic trends in CFR evolution under strain. Trends
among groups of elements emerge when plotting the CFR fraction
against the dimensionless VUC/Vc, where VUC is the volume per atom
and Vc is the fitted critical volume per atom. All data here were
calculated with PBE in Castep. a is for the insulators and b for the
metals.
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improve the binding energy curves of both H2 and LiH45, avoiding
spurious charge transfer in the dissociation limit. Spin-symmetry
breaking is possible only in spin DFT, while total DFT can only get
the right energies for such stretched systems with radical non-
locality. In solids, the subdivision of the lattice into spin-up and
spin-down sublattices effectively doubles its size and opens a
bandgap that would otherwise not be found in the spin-
unpolarized solution. The difficulty lower-level functionals have
in describing these seemingly simple materials has garnered their
title of “strongly correlated” materials. Many approximate theories
outside of DFT, particularly those of Anderson46,47 within the
Mott–Hubbard model Hamiltonian framework, have had success
in describing the properties of strongly correlated materials.
We present PBE-only calculations of both spin-unpolarized

(Unp.) and AFM NiO in the rs and Zincblende (zb) structures.
Above the Néel temperature, the Unp. rs solution gives
qualitatively correct ground-state spin densities; however, no
gap is present in the Unp. rs DOS. The AFM rs (AF2) state is the
correct zero-temperature ground state48, and PBE finds a bandgap
in the DOS of approximately 0.9 eV at equilibrium. Both gaps are
severe underestimates of the fundamental gap, 3.7–4.3 eV49. (This
underestimation is reduced systematically at the GGA level within
the DFT+ U framework49.)
PBE also underestimates the equilibrium magnetic moment of

rs NiO as 1.35 μB per formula unit, in contrast to experimental
values in the range 1.64–1.90 μB per formula unit50. The oxygen
ion sites acquire no magnetization. In the zb phase, PBE finds the
magnetic moment to be 1.51 μB, with two formula units
contributing to the magnetic moment (two Ni sites with magnetic
moment 1.331 and 1.327 μB and two O sites with magnetic
moment 0.341 and 0.018 μB).
Reference 49 suggests that the AFM zb state with antiparallel

spins in bilayers along the [001] conventional cubic direction (the
AF5 configuration of ref. 48) is close in energy to the AF2-rs state
near equilibrium. We have also investigated the AF5-zb state for
completeness.

In Fig. 7, we plot the CFRs of AFM (AF2-rs and AF5-zb) and Unp.-
rs NiO. The spin-up and spin-down CFRs for AFM-rs and AFM-zb
NiO exhibit identical behavior. Moreover, the similarity of the Unp.
and AFM rs curves demonstrates that the crystalline structure
plays a large role in determining the size of the CFR under strain.

DISCUSSION
No bulk metal that we studied had a CFR at equilibrium, but
covalent semiconductors also lack CFRs at equilibrium. Thus the
fractional CFR volume at equilibrium cannot be used directly as an
indicator of conductivity. CFRs emerged in all narrow gap
insulators studied here (excluding C) when expanded by 40% of
the equilibrium volume. Thus a semilocal calculation can
recognize narrow gap insulators by either a nonzero gap (C or
Si) or an emergent CFR if Vc/Veq≲ 1.4 (Ge, where semilocal
functionals often find zero bandgap). However, the existence of a
CFR can be used as a theoretical tool in understanding the role of
semilocality in describing solids.
Since standard density-gradient expansions are derived for

slowly varying densities without CFRs, the absence of CFRs in
metals at equilibrium, along with the short range of the exact
exchange–correlation hole around an electron in a metal, suggest
that the local density and its low-order derivatives suffice for an
accurate approximation to the exchange–correlation energy of a
metal. This argument, but based on the hole alone, was made in
ref. 51 to explain why “de-orbitalization” of a meta-GGA can
improve52 the magnetic moment in solid Fe.
The lack of CFRs in narrow-gap insulators suggests that

semilocal functionals may still be accurate in predicting some,
but not all, of their material properties. This is evident in the
accuracy of LSDA and PBE in predicting the lattice geometry of Si,
diamond, and the in-plane covalent bonding of graphite.
However, a degree of nonlocality is needed to predict conductivity
and thermodynamic properties of insulators. Weakly bonded
materials like Ne and complex materials like NiO require an even
higher degree of nonlocality. A truly general purpose density
functional must balance the semilocality demanded by metals and

Fig. 6 Competing crystalline phases in Al and their CFRs. a CFR
evolution for different spin-unpolarized cubic crystalline phases of
Al, as calculated with PBE in VASP. b The fcc and ds phases become
degenerate near a= 5.36Å The fcc, bcc, and sc phases become
nearly degenerate in energy as a grows large. Note that absolute
energies do not have physical meaning in a pseudopotential
calculation, only differences in energies. The fcc, bcc and sc phases
were taken to contain one formula unit in the computational cell,
and the ds phase to contain two formula units in the
computational cell.

Fig. 7 CFRs of a few crystalline and magnetic phases in NiO. a
Spin CFRs and b relative energies of AFM NiO (AF2-rs and AF5-zb)
and CFR of Unp. NiO (rs) as a function of the cubic lattice constant,
as calculated with PBE in VASP. The spin-up and spin-down CFRs for
AFM-rs and AFM-zb NiO are identical. The Unp. rs phase of NiO was
taken to contain one formula unit in the computational cell, the
AFM rs (zb) phase to contain two (four) formula units in the
computational cell.
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the nonlocality needed to describe insulators, atoms, and
molecules.
Just as in a small molecule, the classical turning surface at

equilibrium in a periodic solid reflects the bonding type. There is
no classical turning surface for typical metallic bonds and for
dense networks of covalent bonds, but classical turning surfaces
of characteristic shapes appear for ionic, hydrogen, and van der
Waals bonds. Equation (3), with βAB determined by the bond type,
roughly predicts the equilibrium bond length between neighbor-
ing atoms A and B, and might be used to find an initial guess for
the geometry of a novel material. βAB falls in the same range for
metallic as for covalent bonds: both show a strong overlap of the
bonded atoms. CFRs in solids arise where neighboring atoms are
weakly overlapped, making the local electron density relatively
low; CFRs are absent when the atoms are strongly overlapped. βAB
⪅ 1 seems to imply no CFR for solids in equilibrium with only one
bond type, as shown in Table 1.
As a predictor of electrical insulation, the existence of a gap

between occupied and unoccupied states in the LSDA or GGA
band structure is much more reliable than the existence of a CFR.
A CFR is missing not only in metals but also in many covalently
bonded semiconductors and even in some AFM insulators like
NiO. The CFR in NiO is seemingly insensitive to the magnetic
phase. For the solids studied here, our calculations found no CFRs
for metals, large CFRs for wide-gap insulators, and the emergence
of CFRs when small-gap semiconductors are mildly expanded.
A monovacancy in a metal can induce a CFR, and an expansive

strain in any material can induce a CFR or increase its volume. In
both cases, the CFR emerges in a region of relatively large density
depletion, such as the interstice of stretched Si. In any solid, the
fractional CFR volume (the volume of the CFR relative to a chosen
cell volume) is sensitive to the crystalline phase, nearest-neighbor
separation, and magnetic phase. Those wider-gap insulators with
a CFR at equilibrium can be compressed until the CFR vanishes.
Layered materials may have a CFR at equilibrium, at least when a
density functional approximation overestimates the interlayer
spacing sufficiently, as PBE does for MoS2. Our analysis of strain
has been limited to homogeneous strains of cubic lattices.
Applying unequal expansive strains along the high symmetry
directions of the lattice would likely yield quite different CFR
curves than those shown here. In materials with structures more
complicated than cubic, unequal strains would likely reflect
properties of the bonding along the direction of the strain, in
the vein of our bonding analysis for layered materials. However, as
the possibilities for this are myriad, we defer this to future study.
CFRs are also characteristic of perfect ionic and molecular

crystals at equilibrium. Our analysis supports the conclusion that
rare gas atoms in the crystalline phase are nearly free. Ionic
crystals can have large CFRs at equilibrium (as in NaCl but not
NiO). We showed that graphite and MoS2, where intermediate-
range van der Waals interactions dominate between monolayers,
have CFRs located solely between monolayers and that their
corresponding monolayers have no in-plane CFR. Our work
demonstrates that weakly bound solids tend to have prominent
CFRs. Hydrogen-bonded crystals like ice, while not tested here,
can be expected to have substantial CFR volume fractions, as
suggested by Fig. 8 for the water dimer in ref. 2.

METHODS
Computational details
All calculations were performed with either the VASP53–56, or the Castep
code57,58, or both. All GGA calculations used the PBE GGA3, and all LSDA
calculations used the Perdew–Zunger parameterization of the uniform
electron gas correlation energy59. The calculations in VASP were performed
with a cutoff energy of 800 eV, a Γ-centered mesh of spacing 0.08Å−1,
energy convergence of 10−6 eV, and stress convergence at 10−3 eV/Å. To
determine equilibrium geometries in VASP, for metals, first-order

Methfessel–Paxton smearing with parameter of 0.2 was used, and for
insulators, the Blöchl tetrahedron method was used. VASP’s internal
methods were used to determine the relaxed cell volume.
All calculations were spin-unpolarized, except those for AFM NiO. For

AFM NiO, the relaxed volume was determined by fitting to the SJEOS44.
Convergence was aided using a linear magnetization–density mixing
scheme (AMIX= 0.2, AMIX_MAG= 0.8, BMIX= BMIX_MAG= 0.0001). From
ref. 48, the ground state of AFM NiO has antiparallel spins along the [111]
direction of the conventional cubic cell (AF2 ordering, a four-ion basis),
which was used here. Magnetic initialization of ±2 μB was given for the Ni
atoms and 0 μB for the O atoms.
Approximate bandgaps were calculated from the DOS, on the default

resolution for VASP (300 total sampling points). Increasing the resolution of
the DOS to 3000 sampling points gave changes at most of 0.05 eV only
near equilibrium for Si. For Ge, no change in the DOS gap could be
discerned.
In Castep, a density-mixing algorithm was used to reach self-consistency,

and geometries were determined with a BFGS
(Broyden–Fletcher–Goldfarb–Shanno) energy minimization scheme with
the finite basis set corrected for stress60. After relaxation, a calculation at
the equilibrium volume using the Blöchl tetrahedron method was
performed to accurately determine the DOS. Accurate61 PAW on-the-fly
pseudopotentials were used throughout. Supplementary Tables VIII–LIII
present all raw data.
For monolayers, a 45 × 45 × 1 k-point grid was used in conjunction with

the Blöchl tetrahedron method. All other parameters remain the same
from bulk calculations. The c direction was padded with 30Å of vacuum
region to reduce interactions between image monolayers.
In density functional plane-wave codes, the densities and potentials are

stored on a uniform grid R, the dimensions of which are determined by the
size of the UC and the plane-wave cutoff energy. Acceptable convergence
of the total energy relies on suitable convergence of the potentials and
densities on this grid. The values of vs(R) are obtained from this grid. In
core regions, the true potential is much deeper than the pseudopotential,
so these are classically allowed. Thus the PAW pseudopotential core
regions were excluded from the CFR. (Frozen-core pseudopotentials were
used in both VASP and Castep.)
The self-consistent electronic eigenstates give εHO (the Fermi energy εF

in a metal), and the regions where εHO− vs(R) < 0 define the CFR. We
assign equal volume to each point relative to the UC, as the real-space
mesh is uniform. To find the volume of a CFR relative to a given cell
volume, we need to average over a UC or repeat-unit of the periodic
crystal. But such a UC must in some cases contain more than one atom. For
ease of comparison, we define and report VUC as the volume per atom of
the UC, which for a given material is of course independent of the choice
of UC (primitive, conventional, etc.). Similarly, we define NUC as the number
of mesh points per atom of the UC. Then the volume of any mesh point is
VUC/NUC. If there are NCFR points at which εHO− vs(r) < 0, the volume per
atom of the CFR is

VCFR ¼ VUCNCFR=NUC: (4)

The dimensionless “fractional volume” of the CFR, which was used
throughout, is defined as

v � VCFR=VUC ¼ NCFR=NUC; (5)

the number of real-space mesh points within the CFR relative to the total
number of mesh points in the UC.
As the fractional CFR volume v→ 0, our method requires ever finer real-

and reciprocal-space meshes to resolve v. This need is limited by the
resolution determined by the plane-wave cutoff energy. Our data for v≪ 1
will necessarily be more noisy than for larger values of v. Despite this, we
show a posteriori that reasonable fits to v(VUC) may be found.
Each code uses differently generated pseudopotentials with different

optimal basis set cutoff energies (and hence pseudopotential grid sizes,
etc.), different energy minimization schemes, and different Brillouin zone
integration methods. To ensure that our method is not dependent upon
the numerical methods of a particular code, we have verified that the
Castep and VASP results are consistent.
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