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Prediction of the Curie temperature considering the
dependence of the phonon free energy on magnetic states
Tomonori Tanaka 1✉ and Yoshihiro Gohda 1✉

Prediction of the Curie temperature is of significant importance for the design of ferromagnetic materials. One of the most widely
used methods to estimate the Curie temperature from first principles relies on a spin Hamiltonian, for example, the Heisenberg
Hamiltonian, and exchange coupling parameters obtained by first-principles calculations at zero temperature. Even though there
have been attempts to include the effects of magnetism on phonons, the influence of magnetism-dependent phonons on
magnetism has been disregarded in the theoretical estimation of the Curie temperature. Here, we propose a first-principles
thermodynamic approach to minimise the total free energy considering both the influences of magnetism on phonons and the
feedback effect from phonons to magnetism. By applying our scheme to body-centered cubic Fe, we find a significant reduction of
the Curie temperature due to the feedback effect. This result indicates the importance of the feedback effect for a quantitative
description of finite-temperature magnetism. In addition, we point out that the reduction in the theoretical Curie temperature arises
in a wide range of ferromagnetic materials that exhibit phonon softening due to magnetic disordering.
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INTRODUCTION
The Curie temperature (TC) is one of the essential properties of
ferromagnetic (FM) materials because it characterises their
applicability and performance1,2. The method of predicting TC is,
therefore, important not only for a fundamental understanding of
FM materials but also for designing materials to work in specific
temperature ranges. A typical technique for predicting TC is a
downfolding method from first-principles calculations to an
effective lattice model as below: First, exchange coupling
constants (Jij) are derived by applying Green’s function-based
methods3,4 or a frozen magnon approach5,6. Second, an effective
lattice model, such as the Heisenberg model, is built, and Jij is
assigned to the model. Finally, the model is solved analytically or
numerically, and TC is estimated. This technique is applied to a
broad range of materials, such as 3d transition metals4,7–11 and
rare-earth magnets12–17. Many studies have demonstrated that
this prediction technique has some predictive accuracy.
Such a technique does not usually include temperature effects

on magnetic interactions. Moreover, temperature-induced inter-
actions between magnetism and other excitations, such as
phonons, sometimes make an accurate prediction of TC difficult.
In a high-temperature range around TC, there are two types of
interactions between magnetism and phonons. One is the effect
of thermal atomic displacements on Jij

18–20: Changes in Jij
obviously modify TC. The other interaction is the effect of
magnetic disordering on phonon frequencies. Early studies by
Baltensperger and Helman21 and Baltensperger22 showed that the
phonon frequencies of magnetic compounds depend on the spin
order, and this type of interaction is still actively studied, mainly in
the context of strongly correlated systems, in metallic oxides.
Magnetism-dependent phonons were also found in relatively
simple FM materials, such as body-centered cubic (bcc) Fe and
Pd3Fe

23–25. These FM materials exhibit phonon softening phe-
nomena at elevated temperatures near TC, and several theoretical
studies have revealed that this phonon softening is due to
magnetic disordering25–32. Regarding the predictive accuracy for

TC, magnetism-dependent phonons, including the phonon soft-
ening, do not apparently seem to be related to TC. However, we
recognise that this interaction is closely related to TC from a
thermodynamic viewpoint.
Thermal equilibrium states at finite temperatures correspond to

the minimum of the total free energy at given conditions. This is
usually called as the minimum principle for the free energy. A
common procedure to study finite-temperature magnetism is
constructing a magnetic Hamiltonian and deriving thermody-
namic quantities, such as the magnetic energy and the
magnetisation. This series of procedures agrees with the
interpretation that equilibrium magnetic quantities are deter-
mined through the magnetic free energy only. This interpretation,
however, collapses for systems that exhibit strong phonon
softening due to magnetic disordering. The phonon frequencies
are directly related to the phonon free energy. Thus, the phonon
softening due to magnetic disordering means that magnetic
states affect the phonon free energy as well as the magnetic free
energy. As a result, equilibrium magnetic states should be
determined not only based on the magnetic free energy but also
on the phonon free energy, according to the minimum principle
for the free energy. We call this effect of phonons on equilibrium
magnetic states through the changes in the phonon free energy
as a thermodynamic feedback effect. This feedback effect
influences TC as a consequence of the change in the equilibrium
magnetic states. However, the significance of the feedback effect
on TC is unclear because the existence of this effect has been
overlooked.
In this article, we propose a thermodynamic formulation for

treating the feedback effect from phonons to magnetism. This
formulation results in a simple optimisation problem for the total
free energy. The ingredients to solve this problem are evaluated
by first-principles phonon calculations and Monte Carlo simula-
tions based on the Heisenberg model. By applying the formulation
to bcc Fe, we demonstrate that TC of bcc Fe significantly decreases
by nearly 560 K. This result proves that the feedback effect is
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crucial for an accurate description of TC. Thus, it is rather a correct
tendency that the Heisenberg model with exchange couplings in
the paramagnetic (PM) disordered local moment (DLM) state
overestimates TC significantly. In addition, we found that the
significant decrease in TC of bcc Fe contains an important message
for the validation of the theory of finite-temperature magnetism:
an accurate theory ignoring the thermodynamic feedback effect
should rather overestimate the TC of bcc Fe. Our insight and
formulation will be foundations for a deeper quantitative under-
standing of finite-temperature magnetism from the viewpoint of
spin–lattice couplings.
The remainder of this paper is organised as follows. First, we

introduce a thermodynamic formulation for treating the thermo-
dynamic feedback effect. Our formulation based on the minimum
principle for the free energy is justified through the Legendre
transformation and results in a simple optimisation problem. Next,
we evaluate the magnetic entropy and the phonon free energy of
bcc Fe as functions of the magnetic energy. These functions are
needed to solve the optimisation problem. Finally, we evaluate the
equilibrium magnetic energy around TC by solving the optimisa-
tion problem. The shift in TC of bcc Fe is estimated from the results
of the equilibrium magnetic energy.

RESULTS
Thermodynamic formulation for magnetic materials
In conventional thermodynamic approaches for magnetic materi-
als, the phonon and magnetic contributions are adiabatically
decoupled. We start from this typical case for comparison with our
formulation. The fundamental relation is written as

EtotðSph; Smag; V ;M;NÞ � EphðSph; V ;NÞ þ EmagðSmag; V ;M;NÞ; (1)

where E is the internal energy (hereafter referred to as simply “the
energy”), S is the entropy, V is the volume, M is the total magnetic
moment and N is the number of atoms. In multi-component
systems, N is replaced with {N1, N2, . . . }. The subscripts tot, ph and
mag represent total, phonon and magnetic, respectively. Here, we
define the Gibbs free energy in an equilibrium state through the
Legendre transformation as

GðT ; p;H;NÞ ¼ min
S;V ;M

½EðS; V ;M;NÞ � TSþ pV � μ0HM�; (2)

where T represents the temperature, p the pressure, H the external
magnetic field and μ0 the vacuum permeability. The mathematical
notation minx½f ðxÞ� means finding the minimum value of the
function f(x) by changing the variable x. In the case of Eq. (2), the
minimisation is performed to minimise the function in the square
bracket with S, V and M as variables for given T, p and H. The total
Gibbs free energy, Gtot, in the adiabatically decoupled system is
derived by applying the Legendre transformation:

GtotðT ; p;H;NÞ
¼ min

Sph;Smag;V;M
½EphðSph; V ;NÞ � TSph þ EmagðSmag; V ;M;NÞ � TSmag þ pV � μ0HM� ;

(3)

¼ min
Eph ;Emag;V;M

½Eph � TSphðEph; V ;NÞ þ Emag � TSmagðEmag; V;M;NÞ þ pV � μ0HM�;

(4)

¼ min
Eph ;Emag;V

½Eph � TSphðEph; V ;NÞ þ Emag � TSmagðEmag; V ;H;NÞ þ pV � μ0HM�;

(5)

¼ min
Eph ;Emag

½Eph � TSphðEph; p;NÞ þ Emag � TSmagðEmag; p;H;NÞ þ pV � μ0HM�: (6)

Note that V and M in Eq. (6) are no longer parameters of the
minimisation but thermodynamic state functions in equilibrium. In
the transformation from Eqs. (3) to (4), we used the one-to-one
correspondence between E and S by fixing the thermodynamic
parameters, V, M and N. This correspondence is a property that

any thermodynamic system must satisfy. As an example, we can
find a one-to-one correspondence between the magnetic energy
and the magnetic entropy from Fig. 2b. By considering this
correspondence, we can choose either E or S as a variable for the
minimisation procedure. In this adiabatically decoupled system,
the equilibrium magnetic energy (Eeqmag) at T, p, H and N is
determined as

EeqmagðT ; p;H;NÞ ¼ argmin
Emag

Gad
magðT ; Emag; p;H;NÞ

h i
; (7)

where Gad
mag denotes the adiabatically decoupled magnetic free

energy defined as

Gad
magðT ; Emag; p;H;NÞ ¼ Emag � TSmagðEmag; p;H;NÞ þ pV � μ0HM;

(8)

and argminx ½f ðxÞ� denotes the value of the variable x at which the
function f(x) is minimised. Although we also refer to the
expression in Eq. (8) (and Eqs. (12) and (13) defined later) as
(magnetic or phonon) free energy hereafter, note that this is just a
shorthand notation: The usual definition of free energy refers to
the one after the minimisation procedure in Eq. (6) has been
performed. The blue part in Fig. 1 is an example of the procedure
in Eq. (7) for p = 0 and H = 0 conditions.
Next, we incorporate the dependence of the phonon free

energy on magnetic states. Körmann et al. treated the forces on
each atom as a function of the magnetic energy. As a result, the
phonon frequencies and, consequently, the phonon free energy
have a dependence on the magnetic energy (see “Methods”
section). Thermodynamically speaking, this treatment indicates
that the phonon internal energy depends not only on the phonon
entropy but also on the magnetic entropy and the total magnetic
moment. The fundamental relation can thus be written as

EtotðSph; Smag; V ;M;NÞ � EphðSph; Smag; V ;M;NÞ þ EmagðSmag; V;M;NÞ:
(9)

In principle, Emag is also dependent on Sph. This dependence can
be regarded as an influence of thermal atomic displacements on
magnetic quantities that determine finite-temperature properties.
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Fig. 1 Dependence of the free energies on the magnetic energy
for bcc Fe. The temperature is fixed at 1000 K. Within a common
framework using the Heisenberg model, the equilibrium magnetic
energy (Eeqmag) corresponds to the minimum of the magnetic free
energy, Gmag (blue line). In contrast, Eeqmag in our scheme corresponds
to the minimum of the total free energy, Gph + Gmag (orange line).
The origin of the phonon free energy (red line) is chosen to be the
value at the ferromagnetic (left-side) limit. Note that the usual
definition of free energy refers to the one after the minimisation
procedure in Eq. (6) or (11).
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If we want to incorporate this effect into the thermodynamic
formulation, we have to express the magnitude of the effect in
terms of a thermodynamic quantity, such as Sph. However, the
correspondence between the thermal displacements and Sph is
not obvious. Moreover, the magnitude of the effect of thermal
atomic displacements on TC is still under debate even in the case
of bcc Fe19,20,33. Thus, we focus only on the dependence of Eph on
Smag.
We apply the Legendre transformation as before:

GtotðT ; p;H;NÞ ¼ min
Sph;Smag ;V ;M

½EphðSph; Smag; V ;M;NÞ � TSph

þEmagðSmag; V ;M;NÞ � TSmag þ pV � μ0HM�;
(10)

¼ min
Emag

½GphðT ; Emag; p;H;NÞ þ GmagðT ; Emag; p;H;NÞ�; (11)

where

GmagðT ; Emag; p;H;NÞ ¼ Emag � TSmagðEmag; p;H;NÞ � μ0HM;

(12)

GphðT ; Emag; p;H;NÞ ¼ min
Eph

½Eph � TSphðEph; Emag; p;H;NÞ þ pV �:
(13)

The details on the above derivation is described in Supplementary
notes. Equation (11) is intuitive from a thermodynamic viewpoint:
The equilibrium magnetic energy (Eeqmag) is determined to minimise
the total free energy as

EeqmagðT ; p;H;NÞ ¼ argmin
Emag

GphðT ; Emag; p;H;NÞ þ GmagðT ; Emag; p;H;NÞ
� �

:

(14)

As a microscopic description of Eq. (14) by statistical mechanics,
an analytical formula for Gph can be provided within the harmonic
approximation, whereas Gmag expressed as Eq. (12) can be
evaluated by the Heisenberg model. The details are explained in
the next section. In the following sections, we apply this formalism
to bcc Fe for p = 0, H = 0 and fixed N conditions. In this condition,
Gad
mag in Eq. (8) and Gmag in Eq. (12) are equivalent; thus, we will use

the notation Gmag only. Accordingly, we omit the variables p, H
and N in the thermodynamic formulations hereafter.

The magnetic entropy and the phonon free energy
As an example, we demonstrate the significance of the
dependence of the phonon free energy on magnetic states for
bcc Fe. As a starting point, we evaluate the magnetic entropy and

the phonon free energy depending on the magnetic energy
(Smag(Emag) and Gph(T, Emag)), in order to solve the minimisation
problem in Eq. (14).
To obtain Smag(Emag), we carried out calculations using a

rescaled Monte Carlo method34 based on the Heisenberg model.
This method brings the thermodynamic quantities derived from
classical Monte Carlo simulations closer to those of quantum
Monte Carlo simulations. The exchange coupling constants (Jij) in
the Heisenberg model are derived from the PM DLM state3,35 (see
“Methods” section). The magnetic energy and entropy as functions
of the lattice-model temperature eT are shown in Fig. 2a. The
theoretical TC (1522 K) is higher than the experimental value
(1043 K). This overestimation has also been reported in the
previous studies3,20,36 using the DLM state. The overestimation has
been recognised as a disadvantage of the DLM state and will be
discussed later in conjunction with our results. As this magnetic
system does not show a first-order phase transition, a one-to-one
correspondence holds not only between Emag and Smag but
between them and eT ,
Emag $ eT $ Smag: (15)

This correspondence in the magnetic system is justified by the
monotonic behaviour of Emag and Smag with respect to eT (Fig. 2a).
We constructed the function Smag(Emag) by using this correspon-
dence (Fig. 2b).
Phonon frequencies depending on the magnetic energy (Gph(T,

Emag)) can be calculated using first-principles phonon calculations
and Monte Carlo simulations, following previous research29,37 (see
“Methods” section). Phonon dispersions and the phonon density
of states of bcc Fe dependent on the magnetic energy are shown
in Fig. 3. The dependence of the frequencies on the magnetic
energy is represented through the parameter α (see “Methods”
section). The calculated phonon dispersions in the FM (α = 1) and
PM DLM (α = 0) limits are consistent with the previous research29.
Once the phonon frequencies at various magnetic energies (i.e. at
various α) are calculated, the phonon free energy per atom for p =
0 and H = 0 can be evaluated from the analytical form38,

GphðT ; EmagÞ ¼ kBT
Nq

X
q;j

log 2 sinh
_ωqjðEmagÞ

2kBT

� �� �
; (16)

where kB represents the Boltzmann constant, ωqj(Emag) denotes
the phonon frequency of the jth branch at a wavenumber of q as
a function of Emag and Nq is the total number of q points. Note
that the more disordered the magnetic state, the lower the
phonon frequencies (Fig. 3). This indicates that the phonon free
energies of PM states are smaller than the value of the FM state
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because of the monotonicity of the phonon free energy in Eq. (16)
with respect to the phonon frequency. Consequently, PM states
are thermodynamically stabilised by the phonon softening effect.

Total free energy minimisation
We are now able to proceed to the total free energy minimisation
in Eq. (14) using the functions Gph(T, Emag) and Smag(Emag).
Minimisation procedures are simple. First, we fix the temperature
at T. Second, we calculate the total free energy (Gph(T, Emag) +
Emag − TSmag(Emag)) with Emag as a variable. The variable range of
Emag is between the FM limit and the PM limit. Third, we find Emag

that corresponds to the minimum point of the total free energy (
Eeqmag). The orange part in Fig. 1 is an example of these steps at
1000 K. Finally, these steps are repeated for a temperature range
around TC. From Fig. 1, we also understand that the decrease in
the phonon free energy and the increase in the magnetic free
energy due to magnetic disordering are of the same order. The
equilibrium magnetic state is determined by the competition
between them and, consequently, the equilibrium magnetic
energy will also be different from the results when considering
only Gmag (Fig. 2a).
The equilibrium magnetic energies of bcc Fe obtained by two

different methods are shown in Fig. 4. One is the minimisation of
the total free energy, as expressed in Eq. (14); the other is the
minimisation of the magnetic free energy only, as expressed in Eq.
(7). Note that the latter method is equivalent to the Monte Carlo
simulation based on the Heisenberg model, that is, the blue lines
in Figs. 2a and 4 are the same. The equilibrium magnetic energies
obtained by the minimisation of the total free energy are larger
than those when considering only Gmag. This is, as mentioned
before, due to the stabilisation of PM states by the phonon
softening effect. The magnitude of the stabilisation indicates that
the phonon contribution is not negligible at all in the determina-
tion of equilibrium magnetic states around TC.
The stabilisation of PM states leads to a decrease in TC. As

shown in Fig. 4, as a result of the minimisation of the total free
energy, TC is lowered to 959 K when compared to the estimation
using Gmag only (1522 K). This represents a decrease of nearly
560 K. Notably, TC when considering both Gmag and Gph is much
closer to the experimental value (1043 K) than when considering
only Gmag, that is, TC in the Heisenberg model. Although TC =
959 K is lower than the experimental value, the anharmonicity of
phonons probably compensates for the deviation. Heine et al.31

investigated the phonon softening phenomenon in bcc Fe by
including the anharmonic effects. They showed that at 1043 K, a
temperature at which the anharmonicity is effective, the

differences between the frequencies of the FM and PM states
are reduced compared with those at 300 K. Thus, the difference in
the phonon free energies between the two magnetic states is also
reduced. This consequently makes the degree of the decrease in
TC smaller than the one found in our study. The underestimation
seen in our result is, therefore, qualitatively correct.
Our thermodynamic formulation as the minimisation of the

total free energy indicates that TC of bcc Fe decreases by the
stabilisation of PM states due to the phonon softening irrespective
of the microscopic description of magnetism. Therefore, an
accurate theory of finite-temperature magnetism that ignores
the thermodynamic feedback effect should overestimate TC of bcc
Fe. Note that this general statement is not limited to the
Heisenberg model. In this sense, it is appropriate that the PM
DLM state overestimates TC significantly3,20,36. There are typically
two representative reference magnetic states in the derivation of
Jij, the FM state and the PM DLM state. Even though the FM state
provides TC much closer to the experimental value4–6,8,11,39,40 than
the DLM state does, the agreement with TC when the thermo-
dynamic feedback effect is included implies that the PM DLM state
is better than the FM state for the derivation of Jij. It should be
noted, however, that the magnetic state at TC is characterised by
the absence of long-range order and the presence of short-range
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order at the same time, making a contrast with the PM and FM
limits.
We would like to emphasise the generality of the decrease in

the theoretical TC. The PM DLM state consists of randomly
oriented magnetic moments; thereby, the splitting of electronic
energy levels occurs due to the randomness in the ligand field
considering the exchange potential, that is, the exchange ligand
field41. The impact of the electronic energy splitting in the DLM
state is significant for highly symmetric (e.g. cubic) materials that
exhibit high degeneracy. This change in the electronic structure
by the magnetic disordering modifies phonon frequencies as well.
Therefore, a decrease in the theoretical TC due to the phonon
softening is likely to arise not only in bcc Fe but also in other FM
materials with high crystal symmetry.
Our thermodynamic formulation becomes complete if we

incorporate the dependence of Emag on Sph. However, to our
knowledge, a consensus is yet to be reached regarding the degree
of its impact on finite-temperature magnetism and theoretical
framework for treating the effect. For example, a study combining
Jij calculations and molecular dynamics showed that TC of bcc Fe
decreased ~400 K due to thermal atomic displacements20. In
contrast, the decrease in TC of bcc Fe within the dynamical spin-
fluctuation theory incorporating the lattice vibration33 was one-
third of that obtained by the former approach. Thus, further
progress will be necessary to formulate the dependence of Emag

on Sph.

DISCUSSION
We have quantitatively evaluated the thermodynamic feedback
effect from phonons to magnetism on TC for bcc Fe. The phonon
softening due to magnetic disordering leads to the stabilisation of
the PM DLM states. As a result, TC of bcc Fe decreased by nearly
560 K from the value reached when ignoring the feedback effect,
that is, the value for the Heisenberg model. This implies that
overestimation of TC within the Heisenberg model with Jij in the
PM DLM state is a correct tendency. The large decrease in TC for
bcc Fe indicates the importance of the concept of the stabilisation
of PM states by the phonon softening. This concept holds not only
within the Heisenberg model but also for any theoretical
framework of finite-temperature magnetism. Therefore, we
suggest that an accurate theory ignoring the thermodynamic
feedback effect should overestimate TC for bcc Fe.
Finally, we mention the applicability of our thermodynamic

formulation. We focused on bcc Fe in this study, but our
formulation is not restricted to it: It is intriguing to apply the
formulation to other magnetic materials that exhibit magnetism-
dependent phonons. In addition, the core concept of the
formulation can be applied to not only the interaction between
phonons and magnetism but also other interacting excitation
phenomena. If a contribution (X) affects another contribution (Y)
and changes the free energy of Y, the thermal equilibrium state of
X is also affected through the minimum principle for the free
energy. In our study, X refers to magnetic states, and Y denotes
phonons. Therefore, the concept of our thermodynamic

formulation can be applied to other interacting excitations if
appropriate treatments using thermodynamic variables are
established to describe the interaction. The formulation will be
helpful for a quantitative description of the finite-temperature
properties of materials.

METHODS
First-principles phonon calculations
All phonon calculations were carried out within the harmonic approxima-
tion. To evaluate the phonon frequencies for an intermediate magnetic
ordering, we employed a force-averaging method29,37. In this method, the
atomic forces for an intermediate magnetic ordering are determined by
mixing the forces of the FM and PM DLM states. Following refs 29,37, the
force constants of an intermediate magnetic ordering can be written as

Φi�j � αΦFM
i�j þ ð1� αÞΦPM

i�j ; (17)

where Φi−j is the force constants between the pair of ith and jth atoms and
α is a mixing parameter. A solid expression of α using the magnetic energy
(Emag) can be written as29

α ¼ Emag � EPMmag

EFMmag � EPMmag

; (18)

where EPMmag (EFMmag) is the magnetic energy in the high (low) temperature
limit in the Heisenberg model. In the original paper29, the temperature
dependence of Emag is determined by Monte Carlo results only. Therefore,
α was treated as a function of the magnetic temperature in the spin–lattice
model (α ¼ αðeTÞ). This is equivalent to the equilibrium magnetic energy at
a temperature being determined to minimise the magnetic free energy,
not the total free energy. In contrast, in our study, α is not regarded as a
function of temperature but is interpreted as a function of the magnetic
energy (α = α(Emag)). This interpretation allows for the phonon free energy
to be regarded as a function of the magnetic energy (Gph = Gph(T, Emag)).
The temperature dependence of Emag is determined after the minimisation
of the total free energy in Eq. (14). This interpretation is the key for solving
the minimisation problem in the minimum principle for the free energy.
We also mention that the difference in the evaluation method for the
magnetic energy between the previous work29 and this study. The
magnetic energy in Eq. (18) was evaluated using quantum Monte Carlo
simulations in the previous work. In contrast, we employed the rescaled
Monte Carlo approach, which is a post-process method of classical Monte
Carlo simulations to reproduce the thermodynamic quantities of quantum
Monte Carlo simulations. A common point between both methods is that
they lead to the thermodynamic quantities reflecting the quantum effect.
The PM DLM state in the phonon calculations was mimicked by a special

quasirandom structure (SQS)42 on the spin configuration (up and
down)26,43 as obtained from the ATAT package44. The force constants
were calculated by the finite-displacement approach45 with random
displacements of 0.01Å to all atoms. The use of the SQS for phonon
calculations is based on the approximation that the atoms in the PM DLM
state feel an averaged potential in various spin configurations. An SQS on
the spin configuration contains various local spin configurations. Therefore,
the force constants of the averaged potential can be realised by the force
constants determined by sampled displacement and force data sets from
the SQS. We used a 3 × 3 × 3 cubic supercell (54 atoms) for the force
calculations for both FM and PM conditions. The employed lattice constant
a = 2.86Å was derived by combining the relaxed lattice constant and
experimental lattice expansion ratio at T = 1043 K46. Although this
determination procedure of lattice constants probably gives some pressure
even in the framework of the quasiharmonic approximation, we assume its
effect is minor, and so we fixed the volume. First-principles calculations
were based on density functional theory within the projector augmented-
wave method47, as implemented in the VASP code48,49. For the exchange-
correlation functional, the generalised gradient approximation para-
metrised by Perdew, Burke and Ernzerhof50 was used. The cutoff energy
of 360 eV and a 6 × 6 × 6 k-point grid were used for the supercell for the
force calculations. The derivation of the force constants and the
calculations of the phonon free energy were performed by using the
ALAMODE code51.

Table 1. Calculated exchange coupling constants (Jij) of bcc Fe for the
paramagnetic DLM state.

Nearest neighbour Jij (meV)

First 27.18

Second 2.62

Third 1.33

Fourth 0.21

Fifth −1.37
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Calculations of exchange coupling constants
Exchange coupling constants, Jij, in the Monte Carlo simulations were
derived with the magnetic force theorem4 and the
Korringa–Kohn–Rostoker (KKR) Green’s function method along with the
coherent potential approximation (CPA)52,53, implemented in the AkaiKKR
code (http://kkr.issp.u-tokyo.ac.jp/jp/)53. The exchange-correlation func-
tional was treated within the local density approximation54. The lattice
constant was set to be the same as in the phonon calculations. PM DLM
state3,35 was employed as a reference magnetic state in the derivation of
Jij. The calculated Jij values are listed in Table 1.

Monte Carlo simulations
To evaluate the magnetic entropy as a function of the magnetic energy, we
employed the rescaled Monte Carlo method34 that reproduces the
quantum specific heat from the classical specific heat. The specific heat
to be rescaled is obtained by classical Monte Carlo simulations for the
Heisenberg model,

H ¼ �2
X
ði;jÞ

Jijei � ej ; (19)

where Jij denotes the exchange coupling constant and ei is the unit vector
on site i. We included up to the third nearest-neighbour pairs as interacting
shells. Classical Monte Carlo simulations were performed using the ALPS
code55. The magnetic energy and entropy were derived by integrating the
specific heat. The spin quantum number s = 1.07 for the DLM condition as
calculated by KKR-CPA was used in the rescaled Monte Carlo method. The
Monte Carlo simulations were carried out using 16 × 16 × 16 sites and
involve 300,000 steps for equilibration and 2,700,000 steps for averaging.
The temperature grid of 0.1 mRy was used in the range near TC; otherwise,
we used the grid of 0.2 mRy. Note that the entropy in the rescaled Monte
Carlo method does not go to zero at T → 0. Thus, this method is not
suitable for describing thermodynamic quantities in a low-temperature
range. Our thermodynamic formulation, however, needs only the result at
a temperature range around TC. Thus, the shortcoming does not matter in
this study.
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