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A Bayesian framework for adsorption energy prediction
on bimetallic alloy catalysts
Osman Mamun 1,2✉, Kirsten T. Winther1,2, Jacob R. Boes1,2 and Thomas Bligaard2,3✉

For high-throughput screening of materials for heterogeneous catalysis, scaling relations provides an efficient scheme to estimate
the chemisorption energies of hydrogenated species. However, conditioning on a single descriptor ignores the model uncertainty
and leads to suboptimal prediction of the chemisorption energy. In this article, we extend the single descriptor linear scaling
relation to a multi-descriptor linear regression models to leverage the correlation between adsorption energy of any two pair of
adsorbates. With a large dataset, we use Bayesian Information Criteria (BIC) as the model evidence to select the best linear
regression model. Furthermore, Gaussian Process Regression (GPR) based on the meaningful convolution of physical properties of
the metal-adsorbate complex can be used to predict the baseline residual of the selected model. This integrated Bayesian model
selection and Gaussian process regression, dubbed as residual learning, can achieve performance comparable to standard DFT error
(0.1 eV) for most adsorbate system. For sparse and small datasets, we propose an ad hoc Bayesian Model Averaging (BMA)
approach to make a robust prediction. With this Bayesian framework, we significantly reduce the model uncertainty and improve
the prediction accuracy. The possibilities of the framework for high-throughput catalytic materials exploration in a realistic setting is
illustrated using large and small sets of both dense and sparse simulated dataset generated from a public database of bimetallic
alloys available in Catalysis-Hub.org.
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INTRODUCTION
Mean-field microkinetic models—developed by combining elec-
tronic structure properties with macroscopic reaction parameters,
such as reaction temperature and pressure1,2—are used to obtain
fundamental insights into the reaction kinetics occurring on the
solid/gas interfaces. However, the success of such physics based
models is critically dependent upon reliable estimate of the
adsorption energetics of various elementary reactions3–6. In the
last decade, improvement in exchange-correlation functionals
made it possible to estimate adsorption energies with high
fidelity, which enabled computational catalysis modeling a
surrogate scheme to replace time-consuming experimental
methods7,8. However, the composition and structural space of
potentially active catalysts is vast, and machine-learning assisted
high-throughput computational screening is the most viable
systematic strategy to discover novel catalysts with superior
activity to replace existing catalysts.
A popular approach to high-throughput computational dis-

covery of heterogeneous catalytic materials is a descriptor based
approach9,10 where suitable descriptors, e.g., d–band center,
width, etc., is chosen to efficiently compute the chemisorption
energy of all the reaction intermediates without performing a full
DFT computation. To this end, Nørskov and Hammer, proposed a
simplified theory for adsorbate bonding on transition metal
surfaces based on the electronic interaction of adsorbate sp-band
with the metal d-band11–13. In their work, the d-band center were
identified as an excellent descriptor to predict the chemisorption
energies on transition metal surfaces. One of the major break-
through in computational catalysis and surface science research
came about when Abild-Pedersen and co-workers identified a
linear scaling relation to determine the adsorption energy relying

only on the adsorbate valency (sp–band of the adsorbate)
together with metallic d–band properties3. Due to these under-
lying mechanisms, linear scaling relationships are found between
the adsorption energy of similar species. For any molecular
fragment AHx, the adsorption energy is generally linearly
correlated with the adsorption energy of A, which can be
expressed mathematically as,

ΔEAHx ¼ γΔEA þ ξ (1)

This simple yet elegant model captures the important factors
that determines the adsorption strength of any hydrogenated
species given the adsorption energy of the central binding atoms.
For a dataset containing chemisorption energies of AHx on
elemental pure metals, the mean absolute error is reported to be
0.13 eV for the prediction of the most stable structures and 0.06 eV
when the site specificity is taken into account3. Based on the
extensive DFT calculation of nitrogen adsorption energies as a
descriptors for the ammonia synthesis reaction on several
monometallic transition catalysts, Nørskov and co-workers suc-
cessfully identified and later experimentally verified that CoMo
catalyst outperforms Ru catalysts by exhibiting optimal nitrogen
binding energy14.
Another potentially lucrative approach is data-driven computa-

tional discovery of novel catalytic materials where rich and diverse
databases are used as a basis for efficient prediction of catalytic
properties of unknown materials. However, this approach is still in
its infancy, mainly due to the lack of well-curated databases that
satisfies the 3V′s (volume, variety, and veracity) of big data
pertinent to computational catalysis research15,16. In computa-
tional catalysis, these 3V′s can be ensured, (1) by compiling a
dataset with substantial data, (2) by including a wide array of
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materials and composition, and (3) by carefully monitoring the
computation and data collection process to preserve the data
integrity. Development of a database is a complex and assiduous
task that includes multitude of challenges, i.e., data generation,
verification, quality maintenance, data accessibility, reusability etc.
With the development of high-quality computer code and
database management system (DBMS), some rich databases have
emerged which are playing a crucial role for the high-throughput
materials exploration through materials informatics17–20. To
expedite catalysis informatics with such databases, we have
generated a database of chemisorption energies on a wide range
of catalytic surfaces, available at Catalysis-Hub.org21,22. Specifically,
we generated a dedicated database of chemisorption energies of
single-atom (such as C, H, N, O, and S) and multi-atoms (such as
CH, CH2, CH3, OH, NH, and SH) adsorbates on 2035 binary alloy
materials in their A1, L10, and L12 strukturbericht designation.
Having access to such a rich and diverse dataset for single-atom
adsorbate systems, one can ask: “Can we go beyond a single
descriptor linear scaling relation that will provide robust estima-
tion of chemisorption energies of multi-atoms systems, without
the need for running expensive quantum chemical computation?”
In this regard, machine-learning models such as Gaussian Process
and neural networks have emerged as powerful tools to make
efficient, fast, and reliable prediction in a fraction of time in
comparison to DFT/QC computation23–25. In a recent work by Xin
et al., an artificial neural network was trained based on an
extensive number of DFT calculations to compute the chemisorp-
tion energies on second generation core-shell alloy surfaces. In
their work, {100}-terminated Cu-based alloys were identified to be
highly active catalysts for CO2 electroreduction26. A similar
approach by Ulissi and co-workers identified previously over-
looked NiGa to be a highly active catalysts for CO2 reduction,
which suggests an exhaustive high-throughput study is the most
efficient approach to discover novel heterogeneous catalytic
materials for challenging chemical reactions23.
One can naturally envision a spectrum of mathematical models

where on one end we have a very simple one descriptor scaling
relation (pure physics based models) and on the other end we
have multidimensional nonlinear machine-learning models (pure
data-driven models). Following the “no free lunch theorem”27,
naturally the single descriptor model will be less accurate but very
fast to implement due to the small number of data points needed
to fit the scaling line, and the multidimensional nonlinear
machine-learning model will be more accurate but time consum-
ing, since an order of 102–104 data points is needed to fit the
model parameters. Despite considerable progress in generation of
machine-learning models and atomic position independent
descriptors (fingerprints) used for model training, the applicability
of machine-learning models is still limited, mainly due to the lack
of high-quality and structured data needed to train the model. On
the other hand, scaling relations where the data requirement is
not as intensive, are limited in their accuracy and generalizability,
rendering them unreliable for accurate high-throughput explora-
tion. Considering the sparsity and variety of the modern
databases, such as catalysis-hub.org, we have developed a scaling
relation-like multi-descriptor linear regression model by extracting
meaningful subset of data.
Given a set of adsorbed species (A, B, AHx, BHx, …) with

computed adsorption energies, we can apply a linear regression
model to express the chemisorption energy of one specimen in
terms of the others, using the remaining chemisorption energies
as predictors:

ΔEAHx ¼ β0 þ
X

i¼A;B;¼

βiΔEi (2)

given in terms of the linear coefficients (β0, βA, βB, etc.).
When data for several adsorbed species are available, different

models can be constructed by choosing different subsets of

adsorbate species as descriptors. When we have multiple
competing models and need to select the best subset of
descriptors to build the best linear regression model, there are
two important factors to consider: (1) The evidence problem: What
is the metric to use as evidence to favor one model over the
others? (2) The prediction problem: How accurate is the selected
model for the future prediction on unseen data28?
To tackle the evidence problem, we propose Bayesian informa-

tion criteria (BIC) as the model evidence to select the best model
that optimizes the bias-variance trade-off29,30, the approach
described in detail later in this manuscript. The second problem
arises from the model uncertainty due to the conditioning on data
that are poor representative of the underlying relation between
predictor and descriptors. Specifically, in the limit of only a handful
of data points to fit the model, choosing one model will lead to
high model uncertainty and in turn it will result in poor predictive
performance. To address the prediction problem in small datasets,
we propose Bayesian model averaging (BMA) to be a robust
solution where instead of choosing a single linear regression
model, we use a small set of the best models to come up with a
better prediction28,30,31. In this paper, we present and validate a
Bayesian model selection and averaging framework to find the
best multi-descriptor linear regression model to predict the
chemisorption energies of hydrogenated species on a vast set of
bimetallic alloy catalysts. Furthermore, we developed and
validated Gaussian Process based machine-learning models to
predict the residual of the best selected model—the difference
between the actual DFT energy and the energy predicted by the
best model as identified by our Bayesian model selection
approach—to further improve the chemisorption energy predic-
tion for large datasets. With the single- and multi-atom adsorption
data available in the Surface Reactions database of Catalysis-Hub.
org, our Bayesian framework integrated with residual-learning
approach will facilitate fast calculation of the catalytic properties
of vast set of bimetallic alloy materials which is a prerequisite for
high-throughput materials screening.

RESULTS AND DISCUSSION
Scaling relations
Inspired by the success of scaling relation for the prediction of
adsorption energies of hydrogenated species on pure elemental
transition metal surfaces3, we have used scaling relations for
adsorption energy prediction on bimetallic alloy surfaces to
predict the adsorption energy on a particular site based on the
descriptor energy on the same site. This way we ensure that our
scaling relations are capable of site-specific chemisorption energy
prediction. In Fig. 1, we illustrate the scaling relations for the
chemisorption energy prediction of hydrogenated species as a
function of the corresponding chemisorption energy of the central
bonded atom.
When applied to our bimetallic alloy dataset, linear scaling

shows excellent correlation between chemisorption energy of AHx

and central atom A, except for CH3 * vs. C *, which is quite evident
by the r2= 0.22 value reported in the scaling plots in Fig. 1. The
reason for such poor correlation in CH3 * vs. C * plot can be traced
back to the conservation of electron density around the central
atom. Being a highly saturated center, the top site is usually the
most stable adsorption site for CH3 *; in contrast, the hollow site is
often the most stable adsorption site for C * adsorption. In CH3 *
vs. C * plot, we see that all the red circles are below the scaling
lines indicating the top site is the preferred site for CH3 * while
green circles are skewed towards the left of the plot indicating the
hollow site is the preferred site for C * adsorption. As a result, the
one to one correspondence between adsorption sites is very weak
in this case, which, combined with the overall variance present in
the data, results in a very poor correlation coefficient for CH3 * vs.
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C * chemisorption energies. Our results show that the slope for
scaling plots in our bimetallic dataset is exactly as predicted by the
mathematical formula (Eq. (3)) with some aberration due to the
presence of non-d metallic alloy. Here, we note that the data
clusters present in the plots (shown within orange circle) are due
to the poor scaling correlation present within the non-d metallic
surface data.

γ ¼ xmax � x
xmax

(3)

Despite the excellent correlation, the root mean squared error
(RMSE) of prediction is quite high for the bimetallic alloy dataset,
ranging from 0.29 eV for CH prediction to 0.44 eV for CH3

adsorption energy prediction, which we deem not suitable for a
reliable high-throughput screening for novel catalytic materials.
Next, we discuss multi-descriptor linear regression model, as

opposed to single descriptor linear scaling relations, to improve
the chemisorption energy prediction.

Bayesian model selection
For any adsorbates in our dataset, we can use a combination of
available descriptors of varying length to make a multivariate
linear regression model; e.g., to predict ECH, we can use any
combination of the following 10 predictors—EC, EH, EN, ES, EO, ECH2 ,
ECH3 , ENH, and EOH. In the first step, we use all the possible
combinations of these descriptors to make linear models by
collecting the appropriate set of data from the database. Next, we
compute the model parameters and performance metrics, e.g.,
RMSE, BIC etc., and store them in a database. For our dataset, we
have 1-023

P10
i¼1

10Ci , where C is the combination operator) linear
regression models for each of the multi-atom adsorbate systems.
Here, we note that we use 5-fold cross validation for RMSE

Fig. 1 Chemisorption energies of CHx, OH, NH, and SH plotted against the chemisorption energies of C, O, N, and S, respectively. a CH *
vs C *, b CH2 * vs C *, c CH3 * vs C *, d OH * vs O *, e NH * vs N *, and f SH * vs S *. The chemisorption energies are computed as
Eads ¼ Eslabþads � Eslab � Ereference . Ereference for different adsorbates are listed in the Supplementary Table 1. Pure metals data are shown as filled
hexagonal while bimetallic alloy data are shown as open circle. Also red, blue, and green color is used to denote different site types, i.e., top,
bridge, and hollow sites, respectively. The orange circle indicates the cluster for non-d metallic alloy which displays a poor scaling correlation.
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computation, meaning we choose 80% random training data to fit
the model and the remaining 20% to evaluate the model, and we
repeat this procedure 20 times to ensure that the sample variance
is approximately close to the population variance. When many
models are initially considered, it is oftentimes found that few
models are equally good (in terms of RMSE values) but lead to
different model predictions for the quantities of interest. To
ensure robust model selection, we use BIC as the model evidence
and select the model with the minimum BIC value, as BIC selected
model ideally corresponds to the model which is a posteriori most
probable model with the data at hand30. Also, the presence of the
single descriptor linear scaling relation in our linear regression
collection ensures that BIC will choose the most parsimonious
quasi-true model when all the other descriptor has no correlation
with the target property or chemisorption energy. Another
important advantage of BIC for our particular model selection
problem is that it doesn’t require any prior information, i.e., it can
work equally well for models with non-informative priors. Since
the error of prediction of our models are normally distributed, the
Bayesian Information Criteria is computed using the following
formula,

BIC ¼ n ln
σ2

σ2
0

� �
þ k lnðnÞ (4)

where, n, σ, σ0, and k are number of data points, model variance,
reference variance (set to the best variance obtained from all the
models under consideration), and number of model parameters.
The Bayesian information criteria is developed based on the
assumption that all models have the same amount of data;
However, for our practical model selection approach, we stretch
this idea a little further and compute the modified Bayesian
Information Criteria (mBIC) as,

mBIC ¼ ln
σ2

σ2
0

� �
þ k lnðnÞ

n
(5)

normalized with respect to n, which permits us to compare
models with varying amount of data points. With mBIC as the
model selection metric, we do not need to compare different
competing models against a baseline model (as done in
hypothesis testing), rather we can compute the mBIC for each
model and take the one with the lowest mBIC.
With all the data points available in our database, we found the

best selected model to have performance RMSE of 0.11 eV, 0.13 eV,
0.15 eV, 0.20 eV, 0.09 eV, and 0.33 eV for CH, CH2, CH3, OH, NH, and
SH, respectively. In the Supplementary Fig. 1, we show the mBIC of
each model and the plane connecting the minimum mBIC′s are
the limit of our simple multi-descriptor model, which we dub the
“mBIC envelope”. Though the performance obtained is quite
impressive, it does not address the data sparsity issue commonly
encountered in modern databases. To select the best model under
the constraint that we have only limited data available, we obtain
the mBIC for different adsorbates fitted with 100 random data
points for each model, shown in Fig. 2. From the mBIC envelope
plots, we see the mBIC envelope is parabolic in shape, which is
typical model behavior as characterized by the bias-variance
trade-off. The mBIC provides us with a first evaluation of the
relative model performance—the evidence problem. However, it
ignores the model uncertainty—the prediction problem. To
understand the true merit of the model, we must assess the
model performance on unseen data. This is addressed in Fig. 3,
where we show the RMSE comparison plot for in-sample and out-
of-sample predictions. Interestingly, the best model selected,
indicated by the blue star in the figure, performs almost equally
well on the out-of-sample data as for the in-sample. This
demonstrates that the mBIC does indeed provide a meaningful
assessment of the model quality. This, with only 100 data points

for each model we can achieve significant performance as
evidenced by Fig. 3.
However, as we reduce the number of data points in our

synthetic dataset, the best model no longer performs the best for
out of sample prediction, suggesting the model uncertainty is
becoming a predominant factor governing the model perfor-
mance. In order to illustrate the reliability of the best selected
model as the number of data points is reduced, we perform the
simulation with varying amount of data for 10 runs and in the
Supplementary Table 2, we tabulate the statistics obtained from
this 10 runs. The table demonstrates that as the number of data
points used to train the model is reduced the model uncertainty
becomes significant, i.e., the difference between in sample RMSE
and out of sample RMSE is larger. In the next section, we discuss
Bayesian model averaging approach as a possible scheme to
estimate adsorption energies when the model uncertainty is
significant, and the best selected model no longer performs
satisfactorily.

Bayesian model averaging
Having a robust model selection criterion established for models
with significant data points, the question arises what should be
the best scheme to make prediction when model uncertainty is
significant. Here, we propose Bayesian model averaging (BMA) as
an excellent choice. BMA has two important advantage, (1) It
accounts for uncertainty in the model selection process, and (2) By
averaging over the models, BMA is somewhat robust to the model
uncertainty. BMA has been successfully applied to make reliable
inference to many statistical model classes, including linear
regression and generalized linear models31. Since mBIC can be
thought of as an estimator of the relative model performance, we
use the following formula for model averaging30:

Epred ¼
P

i exp � ΔmBICi
2

� �
EiP

i exp � ΔmBICi
2

� � (6)

thus, weighting each model prediction with the exponential of the
ΔmBICi, where ΔmBICi is the mBIC of model i w.r.t the mBIC of the
best model. With this averaging scheme, we ensure that model
contribution is proportional to the fitness of the models, as
characterized by the exponential of the negative ΔmBICi

2 value.
In Fig. 4, we plot the average out of sample RMSE for different

number of data points for 10 random synthetic dataset for
different amount of data used to train the model for both
Bayesian model selection and Bayesian model averaging
approach. Here, we note that BMA performs significantly well
with just a few data points, i.e., (≤50), surpassing the single
descriptor accuracy, and even for a large number of data points,
i.e., >50 data points, prediction accuracy is slightly better than the
BMS scheme. This analysis suggest that the BMA is a reliable
approach to estimating adsorption energy for small datasets.
Based on our simulation results described in the above two

sections, we now have a framework that: (1) Selects the best
model when the model uncertainty is not significant, e.g., >200
data points are used to train the model, and (2) Averages over the
all models when the model uncertainty interferes with the
prediction accuracy. In the next section, we simulate a case study
to show how to obtain reliable inference with this framework for
real dataset with varying amounts of data available to build the
models.

Prediction under varying amounts of data to fit the models
In our Bayesian model selection and model averaging discussion,
we used idealized datasets where we have equal amount of data
to build each model; more often than not, in a practical case
different models will have varying amounts of data available in the
database. To further illustrate the predictive power of our Bayesian

O. Mamun et al.

4

npj Computational Materials (2020)   177 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



model averaging approach, we simulate a dataset with varying
amount of data. Specifically, we used 80, 70, 60, 50, 40, 30, 25, 25,
20, and 20 random data points to build 1, 2, 3, 4, 5, 6, 7, 8, 9, and
10 descriptor models, respectively. Typically, simple one descriptor
models will have a lot of available data to train the models and the
data availability will decrease with increasing model complexity,
i.e., model parameters. To get significant statistics about the merit
of Bayesian model averaging approach, we built the models with
five different random sets of data points and the models are
tested on five different unseen datasets with 20 points each. The
mean RMSE in eV for all the different model runs are 0.11, 0.12,
0.11, 0.20, 0.10, and 0.35 for CH, CH2, CH3, OH, NH, and SH,
respectively, indicating Bayesian model averaging to be equally
powerful for building predictive models from datasets with
varying amounts of data. This combined model selection and
averaging framework is preferred over other conventional
sparsification approaches, e.g., LASSO, SISSO, greedy elimination,

etc., in cases where we only have a few data points for some
descriptors and a larger dataset for other descriptors. One of the
motivations behind developing this framework lies in the fact that
in computational catalysis we often face with situation where we
have lots of data for some adsorbates and only a small number of
data points for others. In order to apply conventional sparsification
approach to such cases, we would have to include only systems/
surfaces with all adsorption energies, thus not taking advantage of
all the information available.

Residual learning
So far, we have discussed the predictive capability of multivariate
linear regression models to improve the performance of
chemisorption energy prediction in respect to the predictive
capacity of scaling relations. Now, we present a Gaussian process
based machine-learning model to further improve the chemisorp-
tion energy prediction. Fingerprint generation is the most crucial

Fig. 2 Bayesian information criteria’s (BIC) are plotted against the number of parameters used for different multi-atoms adsorbates for a
synthetic dataset containing 100 data points for each model. a CH *, b CH2 *, c CH3 *, d OH *, e NH *, and f SH *. The red line connects the
minimum of each descriptors (BIC envelope). The blue star indicates the best model (with the lowest BIC value).
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component of machine-learning model generation workflow. One
of the prerequisites of our fingerprint generation scheme is that it
should not depend on the absolute coordinates of the atomic
structure, which are unknown a priori. In order to tackle this
constraint, we use the atomic connectivity to generate the
fingerprints, which does not depend on the atomic positions. In
this scheme, the fingerprints are generated based on the local
connectivity of the atoms and then summed together.

f ¼
X
i

X
j

PiPjδijðdij; dÞ (7)

In this equation, properties of atom i are multiplied to
properties of atom j, given they are d distance away where d
denotes the neighboring distance (e.g., 1 for 1st nearest neighbor
distance)32. In our fingerprinting scheme, we use d= 1 for the
connection of adsorbed atoms to slab atoms and d= 0, 1, 2
otherwise, thus eliminating the dependence of the absolute
atomic positions. This convolution of physical properties based on
the nearest neighbor distance can be seen as analogous to cluster

expansion. Starting from the nearest neighbor distance zero (no
interaction between adjacent atoms) we can sequentially include
more nearest neighbor interaction to improve our prediction
accuracy. Calculations also suggest similar trends, i.e., prediction
accuracy increases as more nearest neighbors are included in the
fingerprint vector. As for the physical properties used to generate
the fingerprints, we list them in the Supplementary Notes. In total,
10 physical properties were used for 3 nearest neighbor distance,
resulting in a fingerprint vector of length 30.
In the first stage we used all the data to develop a Bayesian

machine-learning regression models based on Gaussian Pro-
cesses33 to predict the chemisorption energies on bimetallic alloy
surfaces relying only on the fingerprints generated using the 2D
connectivity matrix, Cij ¼ δðdij; 1Þ. To train the Gaussian Process,
the Radial Basis Function (RBF) kernel is used together with a
white kernel to map the underlying correlations of the fingerprints
and target properties. We add the white kernel as a regularizer,
which accounts for noise by adding a constant to the diagonal
elements of the co-variance matrix to prevent over-fitting.

Fig. 3 Comparison of RMSE values for in sample and out of sample prediction for all models. The blue star indicates the best model (with
the lowest BIC value). a CH *, b CH2 *, c CH3 *, d OH *, e NH *, and f SH *. The points are color coded to show the number of parameters used in
that model.
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The hyperparameters of both kernel components are optimized
by maximizing the log marginal likelihood of the Gaussian Process
within the scikit–learn program package34. In Fig. 5, we show the
parity plots for the Gaussian Process prediction computed with
5-fold cross validation. In the Supplementary Figs. 2 and 3, we
provide the learning curves, and the distribution of residuals for all
the adsorbates. The RMSE for the testing set are 0.22, 0.41, 0.23,
0.24, 0.24, and 0.40 for CH, CH2, CH3, OH, NH, and SH, respectively.
Overall, our connectivity based fingerprints performs quite well for
all the datasets given, where standard DFT error is estimated to be
~0.10 eV. Mean predicted error and uncertainties are both
uniformly small, suggesting the model is robust to prediction.
We see excellent improvement of the machine-learning models
over the scaling relations, partly due to the better correlation of
convolution properties for the non–d metallic alloys and partly
due to the more flexible nature of the fitted function. Moreover,
CH2 and SH errors are larger than the scaling relations which is due
to the poor selection of prior for the Gaussian Process Regression.
In our Gaussian process, we used all the fingerprints generated;

however, it is oftentimes reported that only a subset of
fingerprints contributes to the prediction and the rest usually
add noise to the prediction, thus deteriorating machine-learning
model performance. Also, GP regression doesn’t scale well (~N3)
and require fingerprint reduction for efficient and fast computa-
tion. Here, LASSO CV is used to identify the important fingerprints
(see Supplementary Figs. 4–9) and used the subsets of fingerprints
in our subsequent analysis.
The success of a Gaussian Process relies largely on the prior

assigned to the process; however, in the absence of any physical
interpretation of the convolution properties with the target
properties, we employ a Nð0; σ2Þ prior distribution to the model.
If we consider that chemisorption energy is the sum of one linear
term and one nonlinear term, we can use the scaling relation or
multivariate linear regression model to predict the linear term and
machine-learning model to predict the nonlinear term (Eq. (8)).
One significant advantage of this method is that after subtracting
the linear term from the chemisorption energy, the remaining
nonlinear term can better be represented as a Gaussian
distribution with zero mean prior. This way we can also
significantly reduce the time and data points required to train
the model. To test our hypothesis, we formulate a workflow for a
residual-learning process wherein a Gaussian process based
machine-learning model is used to predict the residual chemi-
sorption energy of a system.

ΔE ¼ ΔElinear þ ΔEnonlinear (8)

In Fig. 6, we illustrate the significant performance gain of the
residual learning using scaling relation as a basis over both scaling
relation and Gaussian Process Regression. The RMSE for the testing
set are 0.20, 0.33, 0.22, 0.16, 0.20, and 0.31 for CH, CH2, CH3, OH,
NH, and SH, respectively. For CH adsorption energy prediction,
residual learning improves the prediction accuracy by 0.04 eV in
comparison to machine learning only models. More interestingly,
the uncertainty of prediction is uniformly reduced for all the data
points leading to a higher confidence in the regression prediction.
Similarly, for CH2, OH, SH, and NH, we see similar 0.05 eV to 0.1 eV
improvement in the machine-learning prediction of chemisorp-
tion energies. In contrast, residual learning has a less perceptible
effect on the prediction performance of ECH3 , with sizable
scattering in the parity plot, which can be rationalized by the
poor scaling correlation coefficient observed in the CH3 * vs. C *
data. In light of our residual-learning prediction, it is our
observation that without a high degree of linearity, characterized
by the r-squared value, in the data between target energies and
descriptor energies, residual-learning models will still perform as
well as a pure Gaussian Process model, if not better. Another
significant advantage of residual-learning method over the
Gaussian Process only model is that it requires significantly fewer
DFT calculations to train, typically half (see Supplementary Figs. 2,
3, 10, and 11 for the learning curve and histogram of the residuals
for both the Gaussian process regression only model and residual-
learning model), which makes residual learning strictly superior for
an iterative framework to explore a well-defined enumerated
space exhaustively. Finally, the most important contribution of our
Gaussian Process model and residual-learning method is the use
of 2D connectivity matrix based fingerprints which allow us to
efficiently make prediction for different surface sites without the
need to specify the 3D atomic coordinate information. As a result,
with just ~400–500 data points we can accurately predict the
adsorption energies on all the unique surface sites of all the
2035 surfaces considered in this study, which means computa-
tional efforts required for exhaustive exploration can be reduced
by a factor ~40. Though this approach seems promising for low
index bi- or multi-metallic catalyst surfaces; however, application
of this approach to other complex catalysis phenomena, such as
low index single-atom catalysis, reaction condition effects, multi-
dentate adsorbates, etc., might be quite challenging and will
require design of new features in the Gaussian Process Regression
to capture those effects.
Next, we analyze the feasibility of such residual-learning

technique to improve the performance of Bayesian model

Fig. 4 Bayesian model selection (BMS) and Bayesian model averaging (BMA) performance plot. a BMS and b BMA. Mean RMSE in eV for 10
different runs are plotted against the number of data points used to train the model.
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selection approach. In our analysis, when all the data are
considered, we found the RMSE for the testing set prediction for
CH, CH2, CH3, OH, NH, and SH to be 0.09, 0.14, 0.13, 0.17, and 0.27
eV, respectively, in our residual-learning approach with Bayesian
model selection as the baseline model. For CH, CH3, OH, NH, and
SH, the performance gain of the residual learning with Bayesian
model selection is impressive. For CH2, the performance gain of
the residual learning is not as excellent as we would expect,
mainly due to the insufficient amount of training data available for
model generation. For the selected model, our database contains
only a limited amount of data for CH2. Only when we have
sufficient data available to train the model, we see significant
improvement (0.05–0.1 eV) of residual learning over the model
selection or other schemes. In Fig. 7, we summarize our results for
different schemes when all the data available are used to make
models. For all adsorbates, both Bayesian model selection and
residual learning with Bayesian model selection perform signifi-
cantly well in comparison to the other competing approaches.

In this article, we demonstrate a Bayesian framework for the
model selection and model averaging for efficient and robust
prediction of chemisorption energies of a few important multi-
atom mono-dentate adsorbates on a bimetallic alloy dataset with
the goal of novel catalytic materials discovery for hydrocarbon or
nitrogen containing chemical reaction processes, such as,
methanation, Fischer–Tropsch synthesis, and ammonia synthesis.
When we have access to a heterogeneous sparse dataset, our
analysis suggests Bayesian model averaging scheme—averaging
over models rather than taking the best model—to be a reliable
method to estimate the chemisorption energy. The model test
RMSE varies from 0.15–0.4 eV with only 20 data points used and
0.10–0.30 eV for 80 data points used to build the models (except
for SH). For a dense database, Bayesian model selection approach
is the best scheme to select a single best model to make future
prediction, provided we have sufficient data to build the models—
i.e., model uncertainty is not significant. Based on the analysis of
Bayesian model selection and averaging scheme, we conclude
that it is possible to build accurate machine-learning models just

Fig. 5 Parity plot showing the Gaussian Process predicted Chemisorption energies of AHx plotted against the DFT-computed
chemisorption energies for the testing set. a CH *, b CH2 *, c CH3 *, d OH *, e NH *, and f SH *. We show the uncertainty in the prediction
using a color bar shown in the right bar of each plot.

O. Mamun et al.

8

npj Computational Materials (2020)   177 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Fig. 6 Parity plot showing the residual learning using scaling relation model predicted Chemisorption energies of AHx plotted against
the DFT-computed chemisorption energies for the testing set. a CH *, b CH2 *, c CH3 *, d OH *, e NH *, and f SH *. We show the uncertainty in
the prediction using a color bar shown in the right bar of each plot.

Fig. 7 Root mean squared error (RMSE) in eV for the holdout test set for different methods. RMSE for scaling relations, Gaussian process
regression, residual learning with scaling relation as the baseline model, Bayesian model selection, and residual learning with Bayesian model
selection as the baseline model, respectively. We add a horizontal guiding line at 0.1 eV to show the error with respect to the commonly
accepted DFT error.
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by developing linear regression models from the meaningful
subsets of data. Furthermore, Gaussian process based regression
model can be used to further improve the model fidelity.
Specifically, we show that with only 2D connectivity information
we can build very accurate machine-learning model to predict the
residual of the linear models. We show that residual learning can
improve the overall predictive performance by 0.05–1.0 eV
depending on the adsorbates. This framework is particularly
aimed at making reliable estimate of chemical and physical
properties for computational materials design by leveraging
databases containing varying amount of data of different systems
such that the whole space of interest can be explored efficiently
and fast. By sharing our code and data through our cloud server,
we aim to accelerate the high-throughput exploration of catalytic
materials.

METHODS
We use a recently published dataset for the chemical adsorption of mono-
atomic and hydrogenated species on bimetallic alloy surfaces, publicly
available in the open-source computational database Catalysis-Hub.
org21,22. In Fig. 8, we show the 37 metals used in this study to enumerate
the 2035 surfaces (1332 L12 structures, 666 L10 structures-, and 37 A1
structures) along with the five adsorbate elements considered in this study.
All the first principles calculations for adsorption energy computation were
performed using the ASE35 interface to Quantum Espresso software
package36 with the BEEF-vdw exchange-correlation functional7. The
surfaces were cleaved as three layers fcc(111) structures for A1 and L12
metals and fcc(101) structures for L10 metals. The topmost layer was
relaxed while bottom two layers were kept fixed until the forces were
converged to 0.05 eV/Å in all directions of the relaxed atoms, including the
adsorbate. Structure generation, job submissions and data collections were
managed using a high-throughput framework available in the catalytic
research toolkit CatKit37. We use the automatic structure generation
submodule CatGen which automatically builds the slab from bulk structure,
then identifies all the unique surface sites available for surface adsorption,
and finally returns all the enumerated structure. In our CatKit enumeration,
we found 4,10, and 9 unique adsorption sites for A1, L12, and L10 surfaces,
respectively. Next, we use the CatFlow submodule, which provides an
interface to Fireworks38 to automatically submit and manage our
throughput computational workflow between users in various super-
computer facilities. After the jobs are finished, calculation details were
stored in a centralized MongoDB database for future data collection and
analysis. Later, we used a customized Python script to filter out the
reconstructed surfaces—i.e., horizontal sliding, or atom dissociation from
top layers, and to identify the final adsorption site after relaxation. The
database contains 8856, 5487, 7457, 5690, 7556, 1508, 1458, 1285, 1235,
1743-, and 1559 adsorption energies for H, C, N, O, S, CH, CH2, CH3, OH, SH,
and NH, respectively.

DATA AVAILABILITY
The datasets used to generate the results in this work are available at https://www.
catalysis-hub.org/publications/MamunHighT2019.

CODE AVAILABILITY
A code to implement the Bayesian framework is available at https://github.com/
mamunm/BayesianFramework.
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