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High-throughput computational screening for two-
dimensional magnetic materials based on experimental
databases of three-dimensional compounds
Daniele Torelli1, Hadeel Moustafa1, Karsten W. Jacobsen 1 and Thomas Olsen 1✉

We perform a computational screening for two-dimensional (2D) magnetic materials based on experimental bulk compounds
present in the Inorganic Crystal Structure Database and Crystallography Open Database. A recently proposed geometric descriptor
is used to extract materials that are exfoliable into 2D derivatives and we find 85 ferromagnetic and 61 antiferromagnetic materials
for which we obtain magnetic exchange and anisotropy parameters using density functional theory. For the easy-axis
ferromagnetic insulators we calculate the Curie temperature based on a fit to classical Monte Carlo simulations of anisotropic
Heisenberg models. We find good agreement with the experimentally reported Curie temperatures of known 2D ferromagnets and
identify 10 potentially exfoliable 2D ferromagnets that have not been reported previously. In addition, we find 18 easy-axis
antiferromagnetic insulators with several compounds exhibiting very strong exchange coupling and magnetic anisotropy.
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INTRODUCTION
The discovery of two-dimensional (2D) ferromagnetism in 20171,2

has initiated a vast interest in the field. The origin of magnetic
order in 2D is fundamentally different from the spontaneously
broken continuous symmetry that is responsible for magnetism in
three-dimensional materials. In particular, the Mermin–Wagner
theorem states that a continuous symmetry cannot be broken at
finite temperatures in 2D and magnetic anisotropy therefore
becomes a crucial ingredient for magnetic order in 2D. The first
report on 2D ferromagnetism involved a monolayer of CrI3

1, which
has a strong easy-axis orthogonal to the plane and has a Curie
temperature of 45 K. In addition, few-layer structures of CrGeTe3
was reported to exhibit ferromagnetic order down to the bilayer
limit2. However, for the case of a monolayer of CrGeTe3 magnetic
order is lost due to the presence of an easy-plane, which
comprises a continuous symmetry that cannot be broken
spontaneously. Since then several materials have joined the
family of 2D magnets. Most notably, CrBr3

3, which have properties
very similar to CrI3 but with lower Curie temperatures of 34 K due
to smaller magnetic anisotropy, Fe3GeTe2, which is metallic and
has a Curie temperature of 130 K4, FePS3

5 which is antiferromag-
netic with an ordering temperature of 118 K, and VSe2 where
some evidence has been provided for ferromagnetic order at
room temperature6 although the presence of magnetism is being
debated7. In addition, several studies of magnetism in bilayers of
various 2D materials have demonstrated that interlayer magnetic
coupling can give rise to a plethora of new physical properties8–15.
Although the handful of known magnetic 2D materials have

been shown to exhibit a wide variety of interesting physics, there
is a dire need for discovering new materials with better stability at
ambient conditions and higher critical temperatures for magnetic
order. Such conditions are not only crucial for technological
applications of 2D magnets, but could also serve as a boost for the
experimental progress. In addition, the theoretical efforts in the
field are largely limited by the few materials that are available for
comparison between measurements and calculations.

An important step towards discovery of novel 2D materials were
taken by Mounet et al.16 where Density Functional Theory (DFT)
was applied to search for potentially exfoliable 2D materials in the
Inorganic Crystal Structure Database (ICSD) and the Crystal-
lography Open Database (COD). More than 1000 potential 2D
materials were identified and 56 of these were predicted to have a
magnetically ordered ground state. Another approach towards 2D
materials discovery were based on the Computational 2D
Materials Database (C2DB)17–19, which comprises more than
3700 2D materials that have been computationally scrutinized
based on lattice decoration of existing prototypes of 2D materials.
The C2DB presently contains 152 ferromagnets and 50 antiferro-
magnets that are predicted to be stable by DFT. In addition to
these high-throughput screening studies there are several reports
on particular 2D materials that are predicted to exhibit magnetic
order in the ground state by DFT20–27, as well as a compilation of
known van der Waals bonded magnetic materials that might serve
as a good starting point for discovering 2D magnets28.
Due to the Mermin–Wagner theorem a magnetically ordered

ground state does not necessarily imply magnetic order at finite
temperatures and the 2D magnets discovered by high-throughput
screening studies mentioned above may not represent materials
with observable magnetic properties. In three-dimensional bulk
compounds the critical temperature for magnetic order is set by
the magnetic exchange coupling between magnetic moments in
the compound and a rough estimate of critical temperatures can
be obtained from mean field theory29. In 2D materials, however,
this is no longer true since magnetic order cannot exist with
magnetic anisotropy and mean field theory is always bound to fail.
The critical temperature thus has to be evaluated from either
classical Monte Carlo simulations or renormalized spin-wave
theory of an anisotropic Heisenberg model derived from first
principles2,30–32. The former approach neglects quantum effects
whereas the latter approximates correlation effects at the mean
field level. It has recently been shown that the critical temperature
of anisotropic 2D Heisenberg models can be accurately fitted to
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an analytical expression that is easily evaluated for a given
material once the exchange and anisotropy parameters have been
computed31,33. This approach has been applied to the C2DB
resulting in the discovery of 11 new 2D ferromagnetic insulators
that are predicted to be stable34. In addition 26 (unstable)
ferromagnetic materials with Curie temperatures exceeding 400 K
have been identified from the C2DB35. However, it is far from
obvious that any of these materials can be synthesised in the lab
even if DFT predicts them to be stable since they are not derived
from experimentally known van der Waals bonded bulk
compounds.
In the present work we have performed a full computational

screening for magnetic 2D materials based on experimentally
known van der Waals bonded materials present in the ICSD and
COD. In contrast to previous high-throughput screening of these
databases we evaluate exchange and magnetic anisotropy
constants for all materials with a magnetic ground state and use
these to predict the Curie temperature from an expression fitted
to Monte Carlo simulation of the anisotropic Heisenberg model.

RESULTS
Heisenberg models
The magnetic properties of possible candidate 2D materials are
investigated using first principles Heisenberg models derived from
DFT2,30–32,36. In particular, if a 2D candidate material has a
magnetic ground state we model the magnetic properties by the
Hamiltonian

H ¼ � J
2

X

hiji
Si � Sj � λ

2

X

hiji
Szi S

z
j � A

X

i

ðSzi Þ2; (1)

where J is the nearest neighbor exchange coupling, λ is the
nearest neighbor anisotropic exchange coupling, A is the single-
ion anisotropy, and 〈ij〉 denotes sum over nearest neighbors. J
may be positive(negative) signifying a ferromagnetic (antiferro-
magnetic) ground state and we have assumed that the z-direction
is orthogonal to the atomic plane and that there is in-plane
magnetic isotropy. This model obviously does not exhaust the
possible magnetic interactions in a material37, but has previously
been shown to provide good estimates of the Curie temperature
of CrI3

30,31 and provides a good starting point for computational
screening studies.
The thermal properties can then be investigated from either

renormalized spin-wave calculations29–31,38,39 or classical Monte
Carlo simulations31,40, based on the model (1). Due to the
Mermin–Wagner theorem the magnetic anisotropy constants are
crucial for having magnetic order at finite temperatures and for
ferromagnetic compounds the amount of anisotropy can be
quantified by the spin-wave gap

Δ ¼ Að2S� 1Þ þ SNnnλ (2)

where S is the maximum eigenvalue of Szi and Nnn is the number
of nearest neighbors. This expression was calculated by assuming
out-of-plane magnetic order and in the present context a negative
spin-wave gap signals that the ground state favors in-plane
alignment of spins in the model (1) and implies that the
assumption leading to Eq. (2) breaks down. Nevertheless,
the sign of the spin-wave gap comprises an efficient descriptor
for the presence of magnetic order at finite temperatures in 2D,
since a positive value is equivalent to having a fully broken
rotational symmetry in spin-space.
For bipartite lattices with antiferromagnetic ordering (J < 0) the

spin-wave analysis based on Eq. (1) (with out-of-plane easy axis)
yields a spin-wave gap of

ΔAFM ¼ � SðJ þ λÞNnn � ð2S� 1ÞA½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
; (3)

with

γ ¼ SNnnJ
SNnnðJ þ λÞ � ð2S� 1ÞA : (4)

It is straightforward to show that ΔAFM is real and positive if (2S−
1)A > NnnSλ, real and negative if (2S− 1)A < NnnS(2J+ λ) and
imaginary otherwise. The latter case corresponds to favouring of
in-plane antiferromagnetic order and negative real values
correspond to favouring of ferromagnetic order (this may happen
if λ is a large positive number even if J < 0). ΔAFM thus only
represents the physical spin-wave gap in the case where it is
positive and real. However, in the case of an imaginary spin-wave
gap the norm of the gap may be used to quantify the strength of
confinement to the plane. In the case of non-bipartite lattices we
use the expression (3) as an approximate measure of the
anisotropy. More details on this can be found in the Methods
section.
In ref. 31 it was shown that the critical temperature for

ferromagnetic order (J > 0) can be accurately obtained by classical
Monte Carlo simulations of the model (1) and for S > 1/2 the result
can be fitted to the function

TC ¼ S2JT Ising
C

kB
f

Δ

Jð2S� 1Þ
� �

(5)

where

f ðxÞ ¼ tanh1=4
6
Nnn

log ð1þ cxÞ
� �

(6)

and c= 0.033. T Ising
C is the critical temperature of the correspond-

ing Ising model (in units of JS2/kB).
The expression (5) is readily evaluated for any 2D material with

a ferromagnetic ground state once the Heisenberg parameters J, λ,
and A have been determined. This can be accomplished with four
DFT calculations of ferromagnetic and antiferromagnetic spin
configurations including spin–orbit coupling. Specifically, for S ≠
1/2 the exchange and anisotropy constants are determined by34,41

A ¼ ΔEFMð1� NFM
NAFM

Þ þ ΔEAFMð1þ NFM
NAFM

Þ
ð2S� 1ÞS ; (7)

λ ¼ ΔEFM � ΔEAFM
NAFMS2

; (8)

J ¼ EkAFM � EkFM
NAFMS2ð1þ β=2SÞ ;

(9)

where ΔEFMðAFMÞ ¼ EkFMðAFMÞ � E?FMðAFMÞ are the energy differences
between in-plane and out-of-plane magnetization for ferromag-
netic (antiferromagnetic) spin configurations and NFM(AFM) is the
number of nearest neighbors with aligned (antialigned) spins in
the antiferromagnetic configuration. For bipartite magnetic
lattices (square and honeycomb) NFM= 0. However, several of
the candidate magnetic materials found below contain a
triangular lattice of transition metal atoms and in that case there
is no natural antiferromagnetic collinear structure to compare with
and we have chosen to extract the Heisenberg parameters using a
striped antiferromagnetic configurations with NFM= 2 and
NAFM= 4. Finally the factor of (1+ β/2S) in the denominator of
Eq. (9) accounts for quantum corrections to antiferromagnetic
states of the Heisenberg model where β is given by 0.202 and
0.158 for NAFM= 3 (honeycomb lattice) and NAFM= 4 (square and
triangular lattices), respectively41. For S= 1/2 we take A= 0 and λ
= ΔEFM/NS

2 for J > 0 and λ=−ΔEAFM/(NAFM− NFM)S
2 for J < 0.

More details on the energy mapping analysis is provided in
Methods below.
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Computational screening of COD and ICSD
The first step in the computational screening is to identify
potentially exfoliable 2D structures from the bulk materials
present in ICSD and COD. In ref. 16 this was accomplished by
identifying layered chemically bonded subunits followed by a
calculation of the exfoliation energy from van der Waals corrected
DFT. Here we will instead use a recently proposed purely
geometrical method that quantifies the amount of zero-
dimensional (0D), one-dimensional (1D), two-dimensional (2D),
and three-dimensional (3D) components present in a given
material42. The method thus assigns a 0D, 1D, 2D, and 3D score
to all materials and thus quantifies the 0D, 1D, 2D, and 3D
character. The scores are defined such that they sum to unity and

taking the 2D score >0.5 thus provides a conservative measure of
a material being (mostly) composed of 2D components that are
likely to be exfoliable.
The ICSD and COD databases combined count more than

500,000 materials, but removing corrupted or incomplete entries
and duplicates, reduces the number to 167,767 bulk materials42.
Of these, a subset of 4264 are predicted to have a 2D score higher
than 0.5 and these materials are the starting point of the present
study. We then perform a computational exfoliation by isolating
the 2D component and performing a full relaxation of the
resulting 2D material with DFT. We restrict ourselves to materials
that have a 2D component with less than five different elements
and less than a total of 20 atoms in the minimal unit cell.
Removing duplicates from the exfoliated materials then reduces
the number of candidate 2D materials to 651 compounds. We find
85 materials with a ferromagnetic ground state and 61 materials
with an antiferromagnetic ground state. A schematic illustration of
the workflow is shown in Fig. 1. The fraction of materials, which
are predicted to have a magnetic ground state is very close to that
found by a similar screening study of the C2DB.
We find a wide variety of structures hosting a magnetic ground

state. Several compounds are found to have the geometry of well-
known binary prototypes such as CrI3 and NiI2 (the 1T phase of
MoS2), but we also find several 2D materials with structures that
have not previously been reported. In Fig. 2 we display a few of
the most abundant magnetic prototypes as well as examples of
more complex structures.
For all of the magnetic materials we calculate the nearest

neighbor exchange coupling J, and the spin-wave gap Δ. The
results are shown in Fig. 3 and specific materials will be discussed
in detail below. The spin-wave gap is on the order of 0–4meV for
most materials whereas the exchange couplings fall in the range

Fig. 1 Workflow. Schematic workflow of the computational screening for 2D magnets performed in the present work.

Fig. 2 Material examples. Atomic structures of a few representative materials. For every structure a 2 × 2 repetition of the primitive unit cell
is shown.

Fig. 3 Exchange vs. anisotropy. Exchange coupling J and spin-
wave gap Δ calculated for the magnetic 2D materials obtained from
computational screening of ICSD and COD.
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of 0–10meV for the insulators but can acquire somewhat larger
values for the metals. However, the energy mapping analysis is
somewhat ill-defined for metals, since the electronic structure may
change significantly when comparing energy differences between
ferromagnetic and antiferromagnetic configurations. In particular,
for insulators the spin per magnetic atom S is a well-defined
integer that can be extracted from the ferromagnetic ground state
without spin–orbit coupling. But for metals it is not clear what
value to use in the model (1). In addition, it is not clear to what
extend the Heisenberg model is suitable for a description of the
magnetic properties of metals. We thus restrict ourselves to
insulators in the following and then subsequently comment on
promising metallic compounds.

Insulating 2D ferromagnets
In Table 1 we display the calculated exchange coupling constants
and spin-wave gaps for ferromagnetic insulators with Δ > 0.
Assuming in-plane magnetic isotropy these are the only insulators
that will exhibit magnetic order at finite temperatures. For the
compounds with S ≠ 1/2 we calculate the Curie temperatures
according to Eq. (5).
It is reassuring that the well-known Ising type 2D ferromagnets

CrBr3
3 and CrI3

1 are reproduced by the screening. In addition,
CrClO, CrCl3, MnO2, CoCl2, and NiI2 have previously been predicted
to be ferromagnetic 2D insulators by DFT17,34,41. Multilayered
CrSiTe3 has been reported to exhibit a large magnetic anisotropy
in the direction perpendicular to the layers and a ferromagnetic
phase transition has been observed at 33 K43. In addition, strained
CrSiTe3 has very recently been predicted to comprise an ideal
candidate for a 2D Kitaev spin-liquid44.
We also find 10 2D ferromagnetic insulators that has not

previously been reported: CoCa2O3, CrHO2, Ni(ReO4)2, Co(ClO4)2,
MoPO5, VAgP2Se6, Mn2FeC6N6, MnNa2P2F3O7, Mn3Cd2O8, and
CuC4H4N2C2O2N4. Of particular interest is the compound CoCa2O3

(shown in Fig. 2), which is predicted to be ferromagnetic up to 57
K. However, it exhibits a rather small band gap of 40 meV, which

may imply that the electronic structure could be sensitive to the
choice of exchange-correlation functional. Such ambiguities have
indeed been reported for FeCl3 and FeBr3, which are both
predicted to be small-gap quantum anomalous Hall insulators by
PBE, but trivial insulators by PBE+U as well as other GGA
functionals18.
The largest exchange coupling constant in Table 1 is found for

MnNa2P2F3O7 (11 meV), which appears highly promising. How-
ever, we do not have a reliable estimate for the critical
temperature due to large in-plane anisotropy (only two nearest
neighbors per Mn atom), which renders the inclusion of second-
nearest neighbors crucial. A faithful estimation of the critical
temperature would thus require a full Monte Carlo simulation of
an extended Heisenberg model including in-plane anisotropy and
exchange couplings for the second-nearest neighbors. This is,
however, beyond the scope of the present screening study.
The materials NiRe2O8 (shown in Fig. 2) and CoCl2O8 are

interesting variants of the common CdI2 prototype (for example
NiI2 and MnO2) where the halide atom is replaced by units of ReO4

and ClO4, respectively. For 2D materials discovery based on
computational lattice decoration such compounds opens the
possibility of a wide range of new materials, since the number of
possible ligands in the CdI2 prototype is dramatically increased.
We also wish to mention the compound CuC6H4N6O2, which is

an example of a 2D metal-organic framework (MOF). It is
composed of a rectangular lattice of Cu atoms connected by
pyrazine (C4H4N2) and C2N4O2 units. Such 2D MOFs have recently
attracted an increasing amount of attention and it has been
shown that the quasi-2D MOF CrCl2(pyrazine)2 exhibits ferrimag-
netic order below 55 K45. Due to the spin-1/2 nature of the
magnetic lattice we cannot obtain a reliable estimate of the critical
temperature of this material. Moreover, the material have large in-
plane anisotropy and the second-nearest neighbors must play a
crucial role since the nearest neighbor approximation gives rise to
chains that cannot order themselves at finite temperatures.
Nevertheless the sizable value of the intrachain exchange
coupling (3.04 meV) could imply a critical temperature comparable
to that of CrI3.
It should be stressed that the results of a screening study like

the present one should be taken as a preliminary prediction. The
first principles description of magnetic insulators is challenging for
DFT since many of these exhibit strong correlation of the
Mott–Hubbard type and the calculated Heisenberg parameters
may be rather sensitive to the choice of functional32,34. We have
tested the inclusion of Hubbard corrections for three representa-
tive materials in Table 1 using the U-values tabulated in ref. 34. For
NiI2 it is well known that the magnetic anisotropy changes to in-
plane magnetic order upon inclusion of Hubbard corrections34,
which would render the material non-magnetic under the
assumption of in-plane anisotropy and nearest neighbor
exchange. In addition, we find that the exchange coupling is
reduced to 1.82 meV if a Hubbard correction is included on the Ni
d-orbitals. For CoCa2O3, the predicted critical temperature is
increased to 226 K if a Hubbard correction is applied to the Co d-
orbitals. Finally, for CrHO2 the critical temperature is largely
unaffected by Hubbard corrections and we find that the Curie
temperature changes to 48 K. It is, however, by no means clear
that DFT+U provides a better description of the electronic
structure in these cases and detailed benchmarking of the
functional dependence of exchange and anisotropy parameters
seems to be required in order to conclusively assess the
quantitative accuracy of the predictions.

Itinerant 2D ferromagnets
For metallic materials the prediction of thermodynamical proper-
ties is more challenging since it is not obvious that the Heisenberg
Hamiltonian (1) comprises a good starting point for the analysis.

Table 1. List of 2D ferromagnetic insulators (J > 0) with out-of-plane
easy axis (Δ > 0).

Formula S[ħ] Nnn J [meV] Δ [meV] TC [K]

NiI2 1.0 6 7.75 1.12 86

CoCa2O3 1.5 4 2.94 2.57 67

CrHO2 1.5 6 2.37 0.227 45

NiRe2O8 1.0 6 1.50 2.56 31

CrI3 1.5 3 1.94 1.10 28

CoCl2 1.5 6 1.85 0.0486 25

VAgP2Se6 1.0 6 2.14 0.200 21

CrBr3 1.5 3 1.84 0.276 19

MnO2 1.5 6 0.508 0.434 17

CrClO 1.5 6 1.04 0.0533 17

CrSiTe3 1.5 3 3.36 0.0170 15

CoCl2O8 1.5 6 0.244 0.622 10

CrCl3 1.5 3 1.29 0.0406 9.2

Mn2FeC6N6 2.5 3 0.102 0.155 4.4

MnNa2F3P2O7 1.0 2 11.0 0.182 0

CuC6H4N6O2 0.5 2 3.04 0.0288 0

MoPO5 0.5 4 0.577 0.187 –

Mn3Cd2O8 0.5 4 0.0625 0.470 –

The Curie temperature for materials with S ≠ 1/2 was calculated from
Eq. (5).
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Nevertheless, the exchange coupling J and spin-wave gap Δ still
provides rough measures of the magnetic interactions and
magnetic anisotropy, respectively. Alternatively, one could specify
the energy difference per magnetic atom in ferromagnetic and
antiferromagnetic configurations as well as the energy cost of
rotating the magnetic moments from the out-of-plane direction to
the atomic plane. However, for the sake of comparison we have
chosen to report the values of J and Δ resulting from the energy
mapping analysis although it comprises a rather naive approach
for metals. The value of S is obtained by rounding off the total
magnetic moment per atom to nearest half integer and we then
evaluate the critical temperature from Eq. (5), which is the
prediction obtained by assuming a Heisenberg model description
using the calculated parameters. The results are shown in Table 2
but it should be kept in mind that the exchange coupling
constants and predicted critical temperatures in this case only
provides a qualitative measure of the magnetic interactions.
Again, we rediscover a few materials (FeTe and VBrO) that were

previously predicted to be ferromagnetic from computational
screening of the C2DB. FeClO has recently been exfoliated to
bilayer nanoflakes and were shown to retain the antiferromag-
netic ordering known from the bulk material46. The discrepancy
with our prediction of ferromagnetic order could either be due to
an inaccurate description by PBE or due to the fact that the true
antiferromagnetic structure of bulk FeClO is strongly noncol-
linear47, which is not taken into account in the present simplistic
calculations.
We find a few materials with two nearest neighbors, implying a

strongly anisotropic in-plane magnetic lattice. For example,
VFC4O4(H2O)2 (shown in Fig. 2) is a MOF with hydrated alternating

linear chains of V and F atoms interconnected by cyclobutanete-
trone (C4O4) units. The intrachain exchange coupling is significant
(22.3 meV), but a reliable estimate of the critical temperature
requires inclusion of the interchain exchange, which is not
addressed in the present study. We also find a few materials with
nine nearest neighbors, which originates from a strongly buckled
lattice of magnetic atoms and the analysis based on nearest
neighbor interactions is expected to be insufficient in this case as
well. We observe that several materials have predicted exchange
couplings on the order of 10–50meV, which far exceeds the
values found for the insulators. But it should be emphasized that
the comparison is not necessarily fair since the electronic structure
of the antiferromagnetic state may be significantly different
compared to the ferromagnetic state. Such differences will lead to
large predictions for J that do not originate from magnetic
interactions. Nevertheless, Table 2 provides a promising starting
point for the discovery of 2D itinerant ferromagnets, but there is a
dire need for a better theoretical framework that can quantita-
tively deal with the thermodynamical properties of itinerant
magnetism in 2D.
We finally note that certain known itinerant 2D ferromagnets

(VSe2
6 and CrGeTe3

2) are not present in Tables 1 and 2 due to in-
plane magnetization, which results in a negative spin-wave gap in
the present study. For the case of CrGeTe3 this is in accordance
with the experimentally observed loss of magnetism in the
monolayer limit whereas for VSe2 the origin of magnetic order is
still unresolved7. In addition, we do not find the itinerant 2D
ferromagnet Fe3GeTe2

4, which cannot be found in a bulk parent
form in either the COD or ICSD.

Insulating 2D antiferromagnets
In the case of antiferromagnetic insulators we do not have a
quantitative estimate of the Néel temperature given the nearest
neighbor exchange coupling and spin-wave gap. However, it is
clear that an easy axis (positive spin-wave gap) is required to
escape the Mermin–Wagner theorem for materials with isotropic
in-plane magnetic lattices. Moreover, although the formula for the
critical temperature Eq. (5) was fitted to Monte Carlo simulations
we expect that a rather similar expression must be valid for the
Néel temperature of antiferromagnets. This is partly based on the
fact that mean field theory yields similar critical temperatures for
ferromagnetic and antiferromagnetic interactions in the nearest
neighbor model and we thus use the expression (5) as a rough
estimate of the critical temperatures for the antiferromagnet
candidates found in the present work. In Table 3 we thus display a
list of the antiferromagnetic insulators with positive spin-wave
gap. In addition to the exchange coupling and spin-wave gap we
also report the critical temperatures calculated from Eq. (5).
The most conspicuous result is the exchange coupling of VPS3,

which exceeds 0.1 eV. However, while the use of the energy
mapping analysis seems to be justified by the gapped anti-
ferromagnetic ground state, the ferromagnetic configuration
entering the analysis is metallic and may thus imply that the
energy difference is not solely due to magnetic interactions.
Nevertheless, the local magnetic moments in the ferromagnetic
and antiferromagnet states are almost identical, which indicates
that the large energy difference between the ferromagnetic and
antiferromagnetic states originates in magnetic interactions.
We also observe that the V and Mn halides are predicted to be

antiferromagnetic insulators with large exchange coupling con-
stants. However, these compounds exhibits the CdI2 prototype
where the magnetic atoms form a triangular lattice. In the present
study we have only considered collinear spin configurations, but
the true ground state of a triangular lattice with antiferromagnetic
nearest neighbor exchange has to exhibit a frustrated noncollinear
spin structure48. Second-nearest neighbors may complicate this
picture and the true ground state of these materials could have a

Table 2. List of 2D itinerant ferromagnets (J > 0 and EGap= 0) with
out-of plane easy axis (Δ > 0).

Formula S[ħ] Nnn J [meV] Δ [meV] TC [K]

FeTe 1.0 4 38.0 2.19 232

VCl3 1.0 3 42.0 0.679 134

CrGa2Se4 2.0 6 5.38 0.217 132

CrMoF6 1.0 4 7.84 23 126

NiV2Se4 1.0 6 24.0 0.153 122

FeCl2 2.0 6 4.84 0.0454 82

MnGeMg 1.0 4 11.1 0.956 75

FeBr2 2.0 6 3.24 0.0802 70

VBrO 1.0 6 6.64 0.478 62

CrGa2S4 2.0 6 1.88 0.0395 39

MnSiCa 1.0 4 3.63 0.587 29

FeTaTe3 1.0 2 48.5 1.49 0

CoS2C2N2 0.5 2 25.7 0.0765 0

VFC4H4O6 1.0 2 22.3 0.0215 0

FeCl3 0.5 3 45.7 4.27 –

ScCl 0.5 9 34.6 0.00238 –

FeBr3 0.5 3 29.1 1.94 –

VOBr2 0.5 4 22.7 0.336 –

VS2 0.5 6 11.4 0.00854 –

TiKS2 0.5 6 10.4 0.00248 –

NiLiP2S6 0.5 6 7.90 0.0930 –

FeClO 0.5 6 7.74 0.377 –

Fe2In2Se5 0.5 9 0.867 0.711 –

CoSe 0.5 4 0.247 0.0035 –

The Curie temperature for materials with S ≠ 1/2 was calculated from
Eq. (5).
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complicated structure. Moreover, it has previously been shown
that the Mn halides are predicted to be ferromagnetic with the
PBE+U functional, which underlines the importance of further
investigating the predictions of the present work with respect to
exchange-correlation functional, second-nearest neighbor
interactions etc.
In analogy with the ferromagnetic insulators NiRe2O8 and

CoCl2O8 the antiferromagnetic insulator CoRe2O8 comprises a
variant of the CdI2 prototype (represented by the V and Mn
halides in Table 3 where the halide atom has been replaced by
ReO4.
NiC2O4C2H8N2, constitutes an antiferromagnetic example of a

MOF with a rectangular lattice of Ni atoms connected by a
network of oxalate (C2O4) and ethylenediamine (C2H4(NH2)2) units.
Again, the material exhibits strong nearest neighbor interactions
(across oxalate units), but the second-nearest interactions
(mediated by ethylenediamine units) will play a crucial role in
determining the critical temperature, which is predicted to vanish
in the present study, being solely based on nearest neighbor
interactions.
Finally, we remark that MnBi2Te4 in 3D bulk form has recently

attracted significant attention as it has been demonstrated to
comprise the first example of a magnetic Z2 topological
insulator49,50. The bulk material consists of ferromagnetic layers
with antiferromagnetic interlayer coupling. In contrast we predict
that the individual layers exhibit antiferromagnetic order. Like the
case of the Mn halides the sign of the exchange coupling constant
changes upon inclusion of Hubbard corrections to the DFT
description. We have tested that PBE+U calculations yields
ferromagnetic ordering for U > 2.0 eV. In addition, we do not find
the Ising antiferromagnet FePS3

5, since PBE without Hubbard
corrections predicts this material to be non-magnetic in the
minimal unit cell. In order to check the sensitivity we have chosen
three representative materials in Table 3 and performed PBE+U
calculations with U-parameters taken from ref. 34. In the case of
VPS3, we find that the ground state remains antiferromagnetic but
the critical temperature is reduced to 210 K. For CoRe2O8 the

predicted critical temperature is increased to 202 and for VBr2 the
predicted critical temperature is decreased to 53 K. It thus appears
that the qualitative properties such out-of-plane easy axis and
antiferromagnetic order are maintained, but the values for
exchange and anisotropy constants may change by a factor of
two if Hubbard corrections are included.

Itinerant 2D antiferromagnets
For completeness we also display all the predicted antiferromag-
netic metals with Δ > 0 in Table 4. For S ≠ 1/2, we have provided
rough estimates of the critical temperatures based on Eq. (5), but
in this case it should be regarded as a simple descriptor
combining the effect of exchange and anisotropy rather than an
actual prediction for the critical temperature. Neither the energy
mapping analysis or the Heisenberg model is expected to
comprise good approximations for these materials. However,
DFT (with the PBE functional) certainly predicts that these
materials exhibit antiferromagnetic order at some finite tempera-
ture and Table 4 may provide a good starting point for further
investigation or prediction of itinerant antiferromagnetism in 2D.

Full list of materials with a magnetic ground state
We conclude by providing a full list of all calculated 2D materials
that exhibits a magnetic ground state. In Table 5 we list the
predicted ferromagnetic insulators containing two elements and
in Table 6 we list the ferromagnetic materials containing three,
four, or five elements. For all materials we provide the COD/ICSD
identifier for the bulk parent compound from which the 2D
material was derived. We also state the spin S, the number of
nearest neighbors Nnn, the exchange coupling J, the spin-wave
gap Δ, and Kohn–Sham band gap EGap. For materials with S ≠ 1/2
and Nnn ≠ 2 we have calculated an estimated critical temperature
from Eq. (5). In Table 7 we show all the antiferromagnetic
compounds found in the computational screening. In addition, we
found 11 materials (shown in Table 8) for which we were not able
to evaluate exchange coupling constants. This was either due to
problems converging the antiferromagnetic spin configuration
(converged to ferromagnetic state), more than two magnetic
atoms in the unit cell, or that the two magnetic atoms in the unit
cell form a vertical dimer. All of the materials are, however,
predicted to be magnetic and could comprise interesting
magnetic 2D materials that are exfoliable from 3D parent
compounds.

Table 3. List of 2D antiferromagnetic insulators (J < 0) with out-of-
plane easy axis (Δ > 0).

Formula S[ħ] Nnn J [meV] Δ [meV] TC [K]

VPS3 1.0 3 −108 0.58 261

VBr2 1.5 6 −6.89 1.42 158

ReAg2Cl6 1.5 6 −3.42 7.93 143

VCl2 1.5 6 −4.85 1.29 119

CoRe2O8 1.5 6 −2.22 6.39 98

CoPO4CH3 1.5 4 −2.03 3.94 56

CoSeH2O4 1.5 4 −2.00 1.15 41

MnBr2 2.5 6 −0.576 0.322 40

MnBi2Te4 2.5 6 −0.35 0.852 35

MnCl2 2.5 6 −0.639 0.111 33

MnSH2O4 2.5 4 −0.725 0.187 28

MnSb2F12 2.5 6 −0.292 0.251 22

NiC2O4C2H8N2 1.0 2 −16.9 1.92 0

NbF4 0.5 4 −90.0 7.94 –

VMoO5 0.5 4 −63.2 4.45 –

CuSiO3 0.5 2 −8.66 0.644 –

AgSnF6 0.5 2 −1.16 1.71 –

OsF5KMO 0.5 2 −0.421 0.395 –

The critical temperature for materials with S ≠ 1/2 was calculated from
Eq. (5).

Table 4. List of 2D itinerant antiferromagnets (J < 0) with out-of-plane
easy axis (Δ > 0).

Formula S[ħ] Nnn J [meV] Δ [meV] TC [K]

MnAl2S4 2.0 6 −18.0 4.67 702

MnGa2S4 2.0 6 −13.4 4.22 549

MnSnCa 2.0 4 −15.6 8.14 501

MnGeSr 1.5 4 −29.9 7.12 491

MnGeCa 1.5 4 −25.2 7.22 433

MnGeBa 2.0 4 −11.5 5.28 358

MnIn2Se4 2.5 6 −3.03 1.70 209

FeBrSr2O3 2.0 4 −0.153 0.614 8

MnSe2C6N4 1.0 2 −33.1 12.4 0

CrSe 0.5 4 −107 16.9 –

CoI2 0.5 6 −20.4 14.7 –

The critical temperature for materials with S ≠ 1/2 was calculated from
Eq. (5).
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DISCUSSION
We have performed a computational screening for 2D magnetic
materials based on 3D bulk materials present in the ICSD and
COD. We find a total of 85 ferromagnetic and 61 antiferromagnetic
materials, which are listed in Tables 1–8. The strength of magnetic
interactions in the materials have been quantified by the nearest
neighbor exchange coupling constants and the magnetic
anisotropy has been quantified by the spin-wave gap derived
from the anisotropic Heisenberg model (1). Due to the
Mermin–Wagner theorem only materials exhibiting an easy axis
(positive spin-wave gap) will give rise to magnetic order at finite
temperatures and these materials have been presented in Tables
1–4. For these we have also estimated the critical temperature for
magnetic order from an expression that were fitted to classical
Monte Carlo simulations of the anisotropic Heisenberg model.
The insulating materials are expected to be well described by

the Heisenberg model and for S ≠ 1/2 we have evaluated the
critical temperatures from an analytical expression fitted to
classical Monte Carlo simulations. However, for simplicity this
expression was based on a Heisenberg model with in-plane
isotropy and nearest neighbor interactions only. This may
introduce errors in the prediction of critical temperatures, but
for any given material the approach is easily generalized to
include other interactions and in-plane anisotropy, which will yield
more accurate predictions for critical temperatures. In this respect
the present approach to identify magnetic materials is rather

conservative, since all materials with an in-plane easy axis are
assumed to have an easy-plane and no magnetic order at finite
temperatures. But such materials could potentially exhibit
magnetic order due to in-plane anisotropy.
A more crucial challenge is related to the determination of

Heisenberg parameters from DFT. We have already seen that PBE
+U can modify the predictions significantly34 and even change
the sign of the exchange coupling. Is is, however, not obvious that
PBE+U will always provide a more accurate prediction compared
to PBE (or other exchange-correlation functional for that matter)
and benchmarking of such calculations is currently limited by the
scarceness of experimental observations.
For antiferromagnetic insulators, we expect that classical Monte

Carlo simulations combined with the energy mapping analysis will
provide an accurate framework for predicting critical tempera-
tures. In the present work we have simply used the expression (5)
as a crude descriptor and leave the Monte Carlo simulations for
antiferromagnets to future work. In general, the phase diagrams
for antiferromagnets will be more complicated compared to
ferromagnets48 and there may be several critical temperatures
associated with transitions between different magnetic phases.
The case of itinerant magnets are far more tricky to handle by

first principles methods. It is not expected that the applied energy
mapping analysis comprises a good approximation for metallic
materials and it is not even clear if the Heisenberg description and
associated Monte Carlo simulations is the proper framework for

Table 5. List of 2D materials with a ferromagnetic ground state (within the PBE approximation) containing two elements.

Stoichiometry ID S [ħ] Nnn J [meV] Δ [meV] EGap [eV] TC

ScCl 4343683 0.5 9 34.6 0.00238 0.00 –

VSe 162898 0.5 4 1.61 −0.0151 0.00 0

FeTe 44753 1.0 4 38.0 2.19 0.00 232

CoSe 162902 0.5 4 0.247 0.0035 0.00 –

YCl 4344519 0.5 9 5.29 −0.100 0.00 0

YI 151974 0.5 9 31.6 −0.330 0.00 0

ScO2 9009156 0.5 6 5.97 −0.017 0.73 0

TiCl3 29035 0.5 3 116 −0.0233 0.00 0

VS2 86519 0.5 6 11.4 0.00854 0.00 –

VSe2 1538289 0.5 6 22.4 −0.311 0.00 0

VI2 246907 1.5 6 0.332 −0.017 1.21 0

MnO2 9009111 1.5 6 0.508 0.434 1.13 17

FeCl2 9009128 2.0 6 4.84 0.0454 0.00 82

FeBr2 8101148 2.0 6 3.24 0.0802 0.00 70

CoO2 20566 0.5 6 16.5 −0.563 0.00 0

CoCl2 9008030 1.5 6 1.85 0.0486 0.36 25

CoBr2 9009099 1.5 6 1.20 −0.715 0.34 0

NiCl2 2310380 1.0 6 6.60 −0.00573 1.22 0

NiBr2 9009131 1.0 6 6.77 −0.0888 0.87 0

NiI2 9011538 1.0 6 7.75 1.12 0.43 86

CdO2 23415 1.0 6 71.0 −0.846 0.00 0

VCl3 1536707 1.0 3 42.0 0.679 0.00 134

CrCl3 1010575 1.5 3 1.29 0.0406 1.75 9.2

CrBr3 1010151 1.5 3 1.84 0.276 1.52 19

CrI3 251655 1.5 3 1.94 1.10 1.27 28

FeCl3 1535681 0.5 3 45.7 4.27 0.00 –

FeBr3 76421 0.5 3 29.1 1.94 0.00 –

ID denotes the unique ICSD/COD identifier (materials from ICSD have ID < 106) for the bulk parent material and J is the nearest neighbor exchange interaction
obtained from the energy mapping. EGap denotes the electronic (Kohn–Sham) band gap. Δ is the spin-wave gap obtained from the anisotropy constants and
positive values indicate an out-of-plane easy axis.
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Table 6. List of 2D materials with a ferromagnetic ground state (within the PBE approximation) containing more than two elements.

Stoichiometry ID S [ħ] Nnn J [meV] Δ [meV] EGap [eV] TC

MnSiCa 1539705 1.0 4 3.63 0.587 0.00 29

MnGeMg 1539696 1.0 4 11.1 0.956 0.00 75

VClO 2106692 1.0 6 5.04 −0.0668 0.00 0

VBrO 1537583 1.0 6 6.64 0.478 0.00 62

CrClO 28318 1.5 6 1.04 0.0533 0.65 17

CrBrO 1534386 1.5 6 0.337 −0.0607 0.50 0

CrBrS 69659 1.5 6 6.03 −0.0884 0.46 0

FeFO 291415 0.5 6 6.24 −0.616 0.00 0

FeClO 2106381 0.5 6 7.74 0.377 0.00 –

YClO2 20449 0.5 2 126 −0.0153 0.00 0

VOBr2 24381 0.5 4 22.7 0.336 0.00 –

TiKS2 641335 0.5 6 10.4 0.00248 0.00 –

TiRbS2 77990 0.5 6 18.4 −0.00504 0.00 0

CrHO2 9012135 1.5 6 2.37 0.227 0.46 45

CrPSe3 626521 1.5 3 10.2 −0.0739 0.45 0

CrSiTe3 626810 1.5 3 3.36 0.0170 0.53 15

CrGeTe3 1543733 1.5 3 5.95 −0.370 0.36 0

FeTaTe3 2002027 1.0 2 48.5 1.49 0.00 0

MnSeO4 1527676 1.5 4 11.4 −0.401 0.02 0

MoPO5 36095 0.5 4 0.577 0.187 1.04 –

CrMoF6 50507 1.0 4 7.84 23 0.00 126

CoCa2O3 1531759 1.5 4 2.94 2.57 0.03 67

CrGa2S4 626052 2.0 6 1.88 0.0395 0.00 39

CrGa2Se4 2001932 2.0 6 5.38 0.217 0.00 132

NiV2Se4 1008112 1.0 6 24.0 0.153 0.00 122

CrTa2O6 1001053 1.0 4 8.08 −0.693 0.24 0

CuI2O6 4327 0.5 2 7.16 −0.0812 0.75 0

CuV2O6 21067 0.5 2 1.97 −0.968 0.19 0

SrTa2O7 154177 0.5 8 17.2 −3.17 0.00 0

NiRe2O8 51016 1.0 6 1.50 2.56 1.58 31

MnRe2O8 51014 0.5 6 1.35 −11.1 0.00 0

CoCl2O8 33288 1.5 6 0.244 0.622 0.72 10

NiCl2O8 33289 1.0 6 0.472 −0.155 1.54 0

Fe2In2Se5 155025 0.5 9 0.867 0.711 0.00 –

Mn3Cd2O8 1528776 0.5 4 0.0625 0.470 1.23 –

CdGaInS4 1538374 0.5 6 13.2 −0.0900 0.00 0

VAgP2Se6 1509506 1.0 6 2.14 0.200 0.34 21

CrCuP2S6 1000355 1.5 6 1.15 −0.0809 1.08 0

NiLiP2S6 1541091 0.5 6 7.90 0.0930 0.00 –

CoS2C2N2 4330304 0.5 2 25.7 0.0765 0.00 –

NiS2C2N2 31320 1.0 2 6.86 −0.0635 0.65 0

Mn2FeC6N6 417824 2.5 3 0.102 0.155 1.83 4.4

MnNa2F3P2O7 7022080 1.0 2 11.0 0.182 0.20 0

VFC4H4O6 2014296 1.0 2 22.3 0.0215 0.00 0

CoC4H8N2O4 4509074 0.5 2 5.43 −0.379 0.59 0

NiCl2C6H4N2 7227895 1.0 2 9.14 −0.505 0.85 0

CuC6H4N6O2 7018416 0.5 2 3.04 0.0288 0.80 –

ID denotes the unique ICSD/COD identifier (materials from ICSD have ID < 106) for the bulk parent material and J is the nearest neighbor exchange interaction
obtained from the energy mapping. EGap denotes the electronic (Kohn–Sham) band gap. Δ is the spin-wave gap obtained from the anisotropy constants and
positive values indicate an out-of-plane easy axis.
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Table 7. List of 2D materials with an antiferromagnetic ground state (within the PBE approximation).

Stoichiometry ID S [ħ] Nnn J [meV] Δ [meV] EGap [eV] TC

CrSe 162899 0.5 4 −107 16.9 0.00 –

MnSe 162900 0.5 4 −59.2 −10.5 0.00 0

FeSe 633480 0.5 4 −95.1 −17.2 0.00 0

TiBr2 1535971 1.0 6 −6.99 −3.07 0.00 0

VTe2 603582 0.5 6 −2.62 −2.54 0.00 0

VCl2 1528165 1.5 6 −4.85 1.29 1.36 119

VBr2 246906 1.5 6 −6.89 1.42 1.29 158

CrSe2 626718 1.0 6 −19.8 −5.33 0.00 0

MnCl2 9009130 2.5 6 −0.639 0.111 2.03 33

MnBr2 9009109 2.5 6 −0.576 0.322 1.84 40

MnI2 9009110 2.5 6 −0.590 −0.502 1.43 0

FeO2 9009104 1.0 6 −0.132 −0.297 0.00 0

FeO2* 9009154 1.0 6 −2.59 −2.93 0.00 0

CoI2 9009100 0.5 6 −20.4 14.7 0.00 –

RuCl3 20717 0.5 3 −0.0368 −3.01 0.00 0

VF4 1539645 0.5 4 −14.0 −2.42 0.79 0

NbF4 2241796 0.5 4 −90.0 7.94 0.26 –

RuF4 165398 1.0 4 −1.54 −3.87 0.75 0

MnGeCa 1539711 1.5 4 −25.2 7.22 0.00 433

MnGeSr 1539720 1.5 4 −29.9 7.12 0.00 491

MnGeBa 1539729 2.0 4 −11.5 5.28 0.00 358

MnSnCa 1539717 2.0 4 −15.6 8.14 0.00 501

VOCl2 24380 0.5 4 −38.3 −4.28 0.00 0

CuSiO3 89669 0.5 2 −8.66 0.644 0.59 –

VPS3 648076 1.0 3 −108 0.58 1.08 261

MnPS3 61391 2.0 3 −3.32 −3.36 0.27 0

MnPSe3 643239 2.5 3 −4.42 −5.95 0.96 0

NiPS3 657314 1.0 3 −32.4 −4.68 0.88 0

NiPSe3 646145 1.0 3 −31.8 −2.06 0.62 0

VMoO5 1535988 0.5 4 −63.2 4.45 0.92 –

AgSnF6 1509332 0.5 2 −1.16 1.71 0.61 –

CrNbF6 4030623 2.5 4 −4.15 −9.61 0.26 0

CuLi2O2 174134 0.5 2 −4.81 −1.25 0.44 0

MnGa2S4 634670 2.0 6 −13.4 4.22 0.00 549

MnAl2S4 608511 2.0 6 −18.0 4.67 0.00 702

MnIn2Se4 639980 2.5 6 −3.03 1.70 0.00 209

NiGa2S4 634901 1.0 6 −12.3 −2.76 0.15 0

MnBi2Te4 7210230 2.5 6 −0.35 0.852 0.71 35

ReAg2Cl6 4508861 1.5 6 −3.42 7.93 1.01 143

CoRe2O8 51015 1.5 6 −2.22 6.39 0.59 98

MnSb2F12 1535152 2.5 6 −0.292 0.251 1.95 22

Mn2Ga2S5 634664 2.5 9 −4.15 0 0.23 0

Fe2Ga2S5 631804 1.0 9 −0.00284 −0.364 0.00 0

MnSbClS2 151925 2.5 2 −4.02 −2.70 0.34 0

MnSbBrS2 1528449 2.5 2 −3.83 −2.66 0.10 0

MnSbBrSe2 1528451 2.5 2 −4.23 −3.18 0.30 0

MnSbISe2 2013470 2.5 2 −4.15 −4.83 0.00 0

FeMoClO4 1530888 2.5 4 −0.461 −3.13 1.36 0

FeWClO4 80798 2.5 4 −0.421 −3.33 1.56 0

MnMoTeO6 291413 2.5 4 −1.51 −1.32 1.59 0

FeBrSr2O3 7221295 2.0 4 −0.153 0.614 0.00 8

MnSH2O4 74810 2.5 4 −0.725 0.187 2.52 28

CoSeH2O4 408100 1.5 4 −2.00 1.15 0.65 41
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such systems. A much better approach would be to use Greens
function methods51,52 or frozen magnon calculations to access
JðqÞ � P

i J0ie
iq�R0i directly from which the magnon dispersion can

be evaluated directly. It may then be possible to estimate critical
temperatures based on renormalized spin-wave theory29 or spin
fluctuation theory53.
Despite the inaccuracies in the predicted critical temperatures

of the present work, all of the 146 reported magnetic materials
constitute interesting candidates for further scrutiny of 2D
magnetism. All materials are likely to be exfoliable from bulk
structures and contains magnetic correlation in some form. Even
the materials with an isotropic magnetic easy-plane that cannot
host strict long-range order according to the Mermin–Wagner
theorem, may be good candidates for studying
KosterLitz–Thouless physics54. Moreover, such materials exhibit
algebraic decay of correlations below the Kosterlitz–Thouless
transition, which may give rise to finite magnetization for
macroscopic flakes32,55.

METHODS
Details on the energy mapping analysis
Here we provide the details of Eqs. (7)–(9) used to extract the Heisenberg
parameters from first principles. The energy mapping analysis is based on
ferromagnetic and antiferromagnetic configurations. We only consider
nearest neighbor interactions and the number of nearest neighbors in the
ferromagnetic configurations is denoted by Nnn. Only bipartite lattices

allow for antiferromagnetic configurations where all magnetic atoms have
antiparallel spin alignments with all nearest neighbors. For non-bipartite
lattices we thus consider frustrated configurations where each atom has
NFM nearest neighbors with parallel spin alignment and NAFM nearest
neighbors with antiparallel spin alignment. Assuming a classical Heisen-
berg description represented by the model (1), the ferromagnetic (FM) and
antiferromagnetic (AFM) DFT energies per magnetic atom with in-plane (∥)
and perpendicular spin configurations are written as

E?FM ¼ E0 � ðJ þ BÞS2Nnn

2
� AS2 (10)

EkFM ¼ E0 � JS2Nnn

2
(11)

E?AFM ¼ E0 þ ðJ þ BÞS2ðNAFM � NFMÞ
2

� AS2 (12)

EkAFM ¼ E0 þ JS2ðNAFM � NFMÞ
2

; (13)

where E0 represents a reference energy that is independent of the
magnetic configuration. The Heisenberg parameters can then be
calculated as

A ¼ ΔEFMð1� NFM
NAFM

Þ þ ΔEAFMð1þ NFM
NAFM

Þ
S2

; (14)

λ ¼ ΔEFM � ΔEAFM
NAFMS2

; (15)

J ¼ EkAFM � EkFM
NAFMS2

; (16)

where ΔEFMðAFMÞ ¼ EkFMðAFMÞ � E?FMðAFMÞ are the energy differences between
in-plane and out-of-plane magnetization for ferromagnetic (antiferromag-
netic) spin configurations.
However, we wish to base the energy mapping on the quantum

mechanical Heisenberg model, which is less trivial. If we start with the
sotropic Heisenberg model where spin–orbit coupling is neglected,
the ferromagnetic configuration with energy EFM corresponds to an
eigenstate with energy −JS2/2Nnn per magnetic atom, which is the same as
the classical Heisenberg model. However, the antiferromagnetic config-
uration does not correspond to a simple eigenstate of the Heisenberg
model. In particular, for bipartite lattices the Neel state where all sites host
spin that are eigenstates of Sz is not the eigenstate of lowest (highest)
energy of the Heisenberg Hamiltonian model with J < 0 (J > 0). Rather the
classical energy corresponds to the expectation value of the Heisenberg
Hamiltonian with respect to this state whereas the true ground state has
lower (higher energy) leading to an overestimation of J if the energy
mapping is based on the classical Heisenberg model. We have recently
shown how to include quantum corrections to J for bipartite lattices using
a correlated state, which has an energy in close proximity to the true
antiferromagnetic ground state41. We note that the magnetic moments
obtained with DFT support the fact that the DFT energy of the
antiferromagnetic configuration represents a proper eigenstate of the

Table 7 continued

Stoichiometry ID S [ħ] Nnn J [meV] Δ [meV] EGap [eV] TC

VAgP2S6 1509505 1.0 2 −1.75 −1.38 0.17 0

CuPtC3N4 1534876 1.5 9 −0.0457 0 1.68 0

MnSe2C6N4 7112837 1.0 2 −33.1 12.4 0.00 0

Fe2Br2Sr3O5 1529142 2.0 5 −29.4 −8.62 0.00 0

OsF5KMO 166586 0.5 2 −0.421 2.88 0.91 –

CoPO4CH3 1528341 1.5 4 −2.03 3.94 0.74 56

CoCl2C4H4N2 7218183 0.5 2 −23.2 −2.83 0.47 0

NiC2O4C2H8N2 4509073 1.0 2 −16.9 1.92 1.80 0

ID denotes the unique ICSD/COD identifier (materials from ICSD have ID < 106) for the bulk parent material and J is the nearest neighbor exchange interaction
obtained from the energy mapping. EGap denotes the electronic (Kohn–Sham) band gap. Δ is the spin-wave gap obtained from the anisotropy constants and
positive values indicate an out-of-plane easy axis.

Table 8. List of 2D ferromagnetic compounds, which did not allow for
a simple estimation of a nearest neighbor exchange coupling
constant.

Formula ID Comment

TiBr3 1535636 AFM configuration unstable

Ta2SrO7 154177 AFM configuration unstable

YClO2 20449 AFM configuration unstable

V2LiO5 88640 No simple AFM configurations

V2H2O5 260368 No simple AFM configurations

Ta2BaO7 1526608 No simple AFM configurations

Ni2As2O7 2104863 Vertical dimer

CoSb2Br2O3 418858 Vertical dimer

Nb3Cl8 408645 Trimer

Nb3Br8 1539108 Trimer

Nb3I8 1539109 Trimer
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Heisenberg model rather than the classical state. The result is the factor of
(1+ β/2S) in Eq. (9).
Including spin–orbit coupling and magnetic anisotropy in the energy

mapping complicates the picture since only one of the states EkFM, E
?
FM

represents an eigenstate of the anisotropic Heisenberg model. On the DFT
side this is reflected by the fact that only one of these configurations
would be obtainable as a self-consistent solution and we have to calculate
these energies by including spin–orbit coupling non-self-consistently. We
thus retain the classical expression for the anisotropy constants, but
include the quantum correction for the exchange constants. Is is, however,
clear that the single-ion anisotropy term becomes a constant for any
system with S= 1/2. In that case A does not have any physical significance

and it cannot influence the values of EkFMðAFMÞ and E?FMðAFMÞ . We thus take
A= 0 and λ= ΔEFM/NS

2 for J > 0 and λ=−ΔEAFM/(NAFM− NFM)S
2 for J < 0 in

the case of S= 1/2. In principle, the two choices for λ should be equivalent
and we have tested that they yield nearly the same value for a few spin-1/2
insulators, but in order to obtain full consistency with the spin-wave gap
we use different expressions depending on the sign of J. In addition for S ≠
1/2 the classical analysis leads to an inconsistency since the spin-wave gap
(Eq. (2)) is not guaranteed to yield the same sign as −ΔEFM. This can be
fixed by taking 2S → (2S− 1)S in Eq. (14), which leads to Eq. (7). Finally, the
antiferromagnetic spin-wave gap (Eq. (3)) was derived for bipartite lattices
and it is not possible to derive a gap for non-bipartite lattices in a collinear
spin configuration, since such a state will not represent the true ground
state and thus lead to an instability in the gap. However, we will apply
the expression naively to non-bipartite lattices as well but taking
Nnn → NAFM− NFM to ensure that the sign of the gap corresponds to the
sign of −ΔEAFM.

Computational details
All DFT calculations were performed with the electronic structure package
GPAW56,57 including non-self-consistent spin–orbit coupling58 and the
Perdew–Burke–Ernzerhof59 (PBE) functional.

DATA AVAILABILITY
Most of the data generated in the present project is presented in the article. All the
software used are open source and the specific scripts for running calculations can be
acquired by contacting the corresponding author.
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