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Ultra-flat twisted superlattices in 2D heterostructures
Márton Szendrő 1✉, Péter Süle1, Gergely Dobrik1 and Levente Tapasztó1

Moiré-superlattices are ubiquitous in 2D heterostructures, strongly influencing their electronic properties. They give rise to new
Dirac cones and are also at the origin of the superconductivity observed in magic-angle bilayer graphene. The modulation
amplitude (corrugation) is an important yet largely unexplored parameter in defining the properties of 2D superlattices. The
generally accepted view is that the corrugation monotonically decreases with increasing twist angle, while its effects on the
electronic structure diminish as the layers become progressively decoupled. Here we found by lattice relaxation of around 8000
different Moiré-superstructures using high scale Classical Molecular Simulations combined with analytical calculations, that even a
small amount of external strain can substantially change this picture, giving rise to more complex behavior of superlattice
corrugation as a function of twist angle. One of the most surprising findings is the emergence of an ultra-flat phase that can be
present for arbitrary small twist angle having a much lower corrugation level than the decoupled phase at large angles.
Furthermore, Moiré-phase maps evidence that the state with no external strain is located in the close vicinity of a triple Moiré-phase
boundary, implying that very small external strain variations can cause drastic changes in the realized superlattice morphology and
corrugation. This renders the practical realization of 2D heterostructures with large-area homogeneous superlattice morphology
highly challenging.
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INTRODUCTION
When 2D materials are layered on top of each other an
interference pattern called the Moiré-pattern is formed due to
the lattice mismatch and relative rotation between the layers. The
Morié-pattern acts as an additional external periodic potential,
which perturbs the electronic states of the layers leading to a large
variety of physical phenomena such as secondary Dirac cones1–4,
Hofstadter’s butterfly3–6, Brown-Zak oscillations7, valley polarized
currents8, Moiré-excitons9–13, and recently superconductive14, and
Mott-insulating states15. The corrugation stemming from the
Moiré-pattern is often neglected in theoretical calculations as the
periodic potential itself is sufficient to account for the main
aspects of these phenomena. However, the way 2D heterostruc-
tures relax strain through out-of-plane deformation can highly
influence the properties of such systems, enabling us to gain more
detailed insights into the origins and rich physics of these
phenomena. Experimental evidence for the out-of-plane deforma-
tion of a freestanding graphene/h-BN single layer 2D hetero-
structure has been provided by transmission electron microscopy
investigations16.
Corrugated Moiré-patterns have nonuniform strains which lead

to pseudo-magnetic fields and consequently an energy gap in the
graphene in the range of 20–60meV17,18. Heavily corrugated
Moiré in gr/Ru(0001) shows localized states close to the Fermi-
level19. It has been shown that lattice relaxation, (which leads to a
corrugated surface) is an important parameter to understand the
origin of the gap20,21 and flat-band formation22 in gr/h-BN
systems. The importance of the relaxation was also pointed out
for low angle twisted bilayer graphene (TBLG), where an energy
gap of up to 20meV opens at the superlattice subband edge18,23,
which is also found in experiments15,24 and is needed to fully
describe the Mott-physics of the system. Small-angle TBLG under
interlayer bias also shows topologically protected helical modes in
stacking boundaries25–27. Increasing the corrugation of the

stacking boundaries cause quantum-well-like gapped states to
abound, which give rise to robust conductance channels along the
corrugated boundaries28. There is also a quest to synthesize ultra-
flat graphene which is driven by the fact, that height fluctuations
can cause charge inhomogeneities in the graphene which
degrade its transport properties29,30. On crystalline atomically flat
surfaces the main height fluctuation arises from the height
modulation of the Moiré-pattern.
Despite the role of the Moiré-corrugation in a wide range of

phenomena it is still a largely unexplored field and is lacking a
comprehensive theoretical description. The commonly accepted
picture is that the corrugation is a monotonically decreasing
function of the twist angle. This is generally due to the decreasing
Moiré-wavelength with increasing twist angle. Moiré-hills with
smaller wavelength would have a higher aspect ratio, and
therefore a smaller radius of curvature, which would heavily
increase the elastic energy if the corrugation were not reduced to
compensate for this effect. Few theoretical calculations have been
developed to describe the amplitude modulation31–34, however,
the substrate was considered to be rigid and/or perfectly flat in
these works. These assumptions hinder some of the complex
behavior of the Moiré-corrugation as we will demonstrate in
this work.
We used high scale Classical Molecular Mechanics simulations

for relaxating approximately 8000 differently strained and twisted
Moiré-supercells. Our model systems were the twisted trilayer
graphene (T3LG) and twisted five-layer graphene (T5LG), both
consisting of Bernal stacked graphene layers with one rotated
layer on top. Such few-layer graphene structures turned out to be
ideal model systems for studying topographical phases of Moiré-
patterns. We show that by including strain in the system three
typical Moiré-topographies (Moiré-phases) can be present in 2D
heterostructures. The existence of various Moiré-phases enriches
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the corrugation physics causing that even small strain perturba-
tions lead to complex corrugation behavior.

RESULTS AND DISCUSSION
Moiré-phases and topographical phase transitions
To asses the effect of external strain on the Moiré-corrugation we
performed lattice relaxations with differently strained and twisted
T3LG and T5LG heterostructures. We used the T3LG structure for
the more computation-intensive calculations. Twisted few-layer
graphene structures proved to be suitable model systems due to
the following reasons: (i) we could use DFT validated force fields
for these systems (see Supplementary Fig. 2), (ii) it also captures
the asymmetry characteristic of 2D layer/substrate systems as
opposed to bilayer graphene, (iii) every Moiré-phase is reachable
for reasonable strains in a wide range of twist angles (as we will
show later).
We applied homogeneous biaxial strain δ independently to the

overlayer (δo) i.e., the top layer and to the substrate (δs) i.e., the
remaining layers. Firstly, we calculated the Moiré-corrugation of
relaxed T5LG superstructures as a function of twist angle in the
range of α= 2∘–16∘ for three distinct strain configurations (see Fig. 1).
The most striking finding is that the strain crucially influences the

behavior of the corrugation curves. In the first case (Fig. 1 a) the
overlayer was compressed by δo=−0.65% but the substrate was
left strain-free δs= 0%. The corrugation curve of the overlayer
shows the expected monotonically decreasing behavior. In the
second case (Fig. 1b) the overlayer was stretched by δo=+0.45%,
still leaving the substrate with no external strain. The overlayer
corrugation is no longer monotonically decreasing in the whole α
range, rather it tends to vanish at around 4∘, then increasing
between 4∘–7∘ before reaching again the decreasing tendency
characteristic to large twist angles. As for the third case (Fig. 1c)
both the substrate and the overlayer were stretched by a small
amount of δo=+0.05%, δs=+0.05%, which leads to a curve
having a plateau in the interval of 0∘–4∘ and then monotonically
decreasing in the rest.
The significant differences of the corrugation curves triggered

by very mild strain levels hint an intriguing underlying mechanism
to be revealed. Also for a particular α= 4∘, δo=+0.45%, δs= 0%
parameter set an ultra-flat state surprisingly appears in the
overlayer. In order to get a better insight, we investigated in
details the resulting topographies. We found that during rotation,
not only the periodicity and corrugation but also the morphology
of the Moiré-superlattice can change. Such Moiré-phase transi-
tions are marked by vertical dashed lines in Fig. 1. Sometimes
these phase transitions do not manifest themselves in corrugation
change (Fig. 1a), while in other cases the corrugation can
drastically alter around them (Fig. 1 b). The corresponding
topographies of the top three layers of the phases are depicted
in bubbles in Fig. 1.
In 2D heterostructures, corrugation can develop in both upper

and lower layers. The Moiré-amplitude in the substrate can be in
phase with the overlayer amplitude (bending modes), or in anti-
phase (breathing mode). There are two bending modes (convex,
nanomesh) and one breathing (chain), which we call together
Moiré-phases. In the convex-phase the AA regions of the Moiré-
pattern are forming protrusions, while the remaining two AB/BA
stackings are depressions (Fig. 1a). The nanomesh-phase is the
inverse of this: the AA regions are depressions and AB/BA
stackings are the protrusions (Fig. 1b). In the convex and
nanomesh phases, both the overlayer and the substrate has the
same type of topography (bending-modes). However, the third
phase, the chain-phase (Fig. 1a, b, c) is qualitatively different as the
overlayer and the substrate are closely mirror images of each
other having a convex topography in the overlayer and a concave
in the substrate (breathing mode).

Moiré-phase maps, criticality, ultra-flat states
The results above clearly reveal that for different α, δo, δs
parameters different Moiré-phase realizations occur, and even
ultra-flat states can emerge near some of the phase transitions. To
capture all the Moiré-phases emerging in our system, as well as
the conditions necessary for the realization of ultra-flat states, the
whole (α, δo, δs) phase space has to be studied by examining the
resulting topographies and corrugations for each point in this
space. Therefore we created phase-maps of the Moiré-phases in
the space of (δo, δs) for four different twist angles α= 1.1∘, 2.5∘,
4.0∘, 8.2∘. The sampling of the whole phase-space needs a large
number of superstructure relaxations, therefore we used the fewer
layer T3LG structure for this task instead of the T5LG. For each
phase-map with a definite α, we searched for about 60 Moiré T3LG
supercells having different δo, δs combinations. Then we stretched
each supercell structure in steps of Δδ ≈ 0.085%. This way we
ended up with approximately 1800–2000 Moiré-supercells for
each phase-map. Every Moiré T3LG superstructure was relaxed
with a fixed simulation cell using in-plane periodic boundary
conditions and the same setup as in the case of Fig. 1. The type of
morphology and corrugation was analyzed after the relaxations.

Fig. 1 Moiré-superlattice corrugation and morphologies for
various strain configurations. Moiré-superlattice corrugations of
the top rotated graphene layer for three differently strained T5LG
(one twisted graphene layer above four Bernal stacked graphene
layers) heterostructures (red dots) from molecular mechanics
simulations. Each point represents a commensurate Moiré-super-
lattice. a The overlayer is externally compressed with ~0.65% during
minimization which leads to a convex phase for angles below 8.2∘

and a chain phase for angles above. The phase transition, indicated
by dashed lines, is smooth, and the whole curve is monotonically
decreasing. b The overlayer is stretched with ~0.45% strain. This
cause a nanomesh phase to emerge for angles below 4∘, and a chain
phase for angles above. Near the phase transition (dashed line), the
corrugation vanishes and an ultra-flat phase appears. c Both the
overlayer and the substrate are stretched with a small 0.05% strain.
No phase-transition occurs, each point corresponds to a chain
structure. In the range of 0–4∘ the corrugation is closely constant
(plateau-effect). The topographies of the top three layers of the
corresponding Moiré-phases are displayed in bubbles.
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The results of the ~8000 Moiré-superstructures can be seen in
Fig. 2.
Three Moiré-phases are present in the phase-maps for the

examined angles (Fig. 2 top row). Also for compressive strains
higher than a threshold value, the Moiré-pattern is absent, and the
whole structure is buckled due to the buckling instability of
graphene while having a much larger corrugation. We denoted
the buckled states with black. Incidentally, the buckled states are
twist-angle dependent: increased buckling threshold can be seen
in the convex phase for higher twist angles. There are three phase-
boundaries between the Moiré-phases. Two out of the three are
more extended, namely the nanomesh-chain boundary and the
convex-chain boundary. The convex-nanomesh boundary is small
and is vanishing for larger twist angles as this boundary is
completely merging with the buckled states. Furthermore, there is
a triple point where the three phases coexist. The fascinating thing
is that the position of the strain-free δo= 0, δs= 0 state is very
close to the triple point for angles between 0∘–4∘. What this means
is that very delicate strain fluctuations can lead to very different
phase realizations, therefore the δo= 0, δs= 0 state is very
sensitive from this point of view. Not only it is sensitive for the
realization of various Moiré-phases but from a corrugation
perspective. In the bottom row of Fig. 2, we show the corrugation
value of each relaxed Moiré-supercell. When stretching the whole
system gradually the corrugation is decreasing as it is expected;
however, for a certain set of finite δo, δs, the corrugation drops
rapidly close to zero (dark regions in the bottom row of Fig. 2).
These are the already discussed ultra-flat states. They run along
the convex-chain and the nanomesh-chain phase boundaries. The
main difference in the two boundaries is that in the former case
the substrate corrugation is zero, while in the latter the overlayer.
This is the reason why we could not see ultra-flat states in Fig. 1 a)
as these states occur in the substrate. The emergence of ultra-flat
states can be linked to the convexity change of the topographies.

The convexity of the overlayer is positive both in the convex and
in the chain-phase, therefore the transition between these two
phases can be continuous in the corrugation. However, when
moving from nanomesh to chain the convexity changes sign
progressively in the overlayer implying a particular twist angle in
between, where the corrugation has to be zero. Nonetheless, this
effect takes place in the substrate inversely: the change of the
convexity occurs during the convex-chain transition with con-
sequent ultra-flat states appearing in the substrate, but not in the
overlayer (see also Supplementary Fig. 7).
The ultra-flat states go along the boundaries, however, they do

not meet in the middle at δo= 0, δs= 0. Now it can be clearly
seen, that around the δo= 0, δs= 0 point, the corrugation strongly
fluctuates. It means that in realistic samples even small strain
fluctuations can be crucial in determining the topography of the
system, which can take shape from being ultra-flat to highly
corrugated, or with convexity from positive to negative. This is a
very important finding for the practical design of 2D hetero-
structures, pointing out the crucial role of even mild strains that
have to be controlled very accurately for reliably engineering the
morphology of Moiré-superlattices in 2D heterostructures.
The phase boundaries (convex-chain, nanomesh-chain) are also

moving as the twist angle changes. With increasing twist angle we
see the chain phase being more dominant on the phase map. The
movement of the boundaries takes place in two distinct stages.
For smaller twist angles (0∘–4∘) only the angle between the phase
boundaries are changing and the boundaries are rotating. For
larger angles (>4∘) the phase boundaries are perpendicular to each
other, and their movement consists of pure translation. The
movement of the phase boundaries makes it possible for a system
to go under a phase transition while altering the twist angle as it
was shown in Fig. 1.

Fig. 2 Moiré-phase maps for different twist angles in the space of externally applied homogeneous strains. a–d A single point in a map
represents a relaxed T3LG commensurate Moiré-superlattice. The corresponding Moiré-phases are indicated with different colors
(yellow–convex, purple–nanomesh, red–chain). As the twist angle increases the phase boundaries move, and the chain phase becomes
dominant. e–h The same phase-maps as a–d, but colored by the corrugation of the relaxed Moiré-superlattices. The dark areas show the ultra-
flat states around the phase boundaries. On the side of the green shaded area, the overlayer corrugation is shown, while on the gray side the
substrate corrugation is displayed, in order to show the ultra-flat states both in the overlayer and in the substrate.
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Energetic interpretation
The interpretations of the results above can be attained through
energetic considerations. The Moiré-morphology is defined by the
balance between the elastic energy and the vdW adhesion. The
elastic energy stemming from the corrugation ξ with a Moiré-
wavelength λ is a power series of ξ/λ33. The vdW contribution is
determined by the interlayer separation of the AA stacking d1 and
the AB/BA stackings d2. The corrugation in the overlayer ξo and
substrate ξs are coupled through vdW interaction. In particular, it is
easy to show, that ξo= ξs+ Δd (see Supplementary Fig. 3), where
Δd= d1− d2, which is a strict constraint on the geometry of the
phases. It can be seen (see Section A of Supplementary
Discussion), that in the convex phase ξo≥ Δd and ξo > ξs, while
ξs≥ Δd and ξo < ξs in the nanomesh phase. In the chain phase 0 ≤
ξo≤ Δd, 0 ≤ ξs≤ Δd. These geometric properties have a strong
impact on the realization of the phases. For example, a more
corrugated overlayer than the substrate can be realized only in the
convex or the chain phase. In the case when the overlayer does
not want to corrugate as much as the substrate then the
nanomesh or the chain phase is favorable. When the corrugation
is equally unfavorable for the overlayer and for the substrate, we
expect the chain phase to emerge. Also as the elastic energy goes
with the powers of ξ/λ, the energy increment with a unit dξ will be
much bigger for larger twist angles. Therefore, there is a tendency
to divide the total corrugation evenly between the substrate and
the overlayer as the twist angle increases. This geometry, however,
can only be realized in the chain phase. Consequently, with
increasing twist angle we expect to see the chain phase being
more dominant on the phase maps. Moreover, for small twist
angles, ξ/λ tends to zero and the vdW adhesion becomes
prominent, while for large twist angles the elastic energy is the
major energy term (see Supplementary Fig. 9). The plateau on Fig.
1c) is the consequence of the special geometry of the chain-phase
combined with these two energetic regimes (Supplementary Fig.
9). The boundary movements (rotation, translation) also coincides
with these two regimes. The detailed analysis of the results on this
energetic basis can be found in the Supplementary Information,
where we established the general picture of the Moiré-phases,
and also developed an analytic one-dimensional string model (see
Section B of Supplementary Discussion). Our analytic results
(Supplementary Figs. 7–12) are in good qualitative agreement
with the outcome of the molecular simulations.

Scanning tunneling microscopy
The experimental validation of our theoretical predictions is rather
difficult as we cannot fully control the amount of heterostrain

emerging in the system. Nevertheless, we have prepared and
analyzed graphene layers deposited at various rotation angles on
graphite substrates. We were able to measure the rotation angle,
Moiré-periodicity, as well as the Moiré-amplitude for various
rotation angles using room temperature scanning tunneling
microscopy. Although, at finite temperatures, thermal fluctuations
are present in two dimensional heterostructures, distorting the
Moiré superlattice, such fluctuations are rapidly averaged out on
the time scale of scanning tunneling microscopy imaging,
therefore, an undistorted Moiré can be observed. On shorter
time-scales, the finite temperature time-averaged corrugations
of the Moiré superlattices are scattered around the corrugation of
the 0K simulation35. Albeit, due to the lack of control over the
heterostrain, we cannot reliably plot curves similar to the
theoretical plots in Fig. 1, the general tendency observed was
that the corrugation is high at small rotation angles and low at
high angles, which is in accordance with the previous expecta-
tions. However, we were also able to find a graphene flake where
the corrugation was very low almost undetectable at an
intermediate (9∘) rotation angle. We made sure that this is not
an artifact, as the atomic corrugation was as expected (no
resolution issue). Furthermore, a very faint superlattice signature
could still be observed in larger area images, ensuring that the
graphene overlayer is not decoupled by contamination from the
graphite substrate. The experimentally determined average Moiré-
amplitudes for the three rotation angles shown in Fig. 3 are as
follows: 0.32Å ± 0.02Å(4.2∘ ± 0.1∘); 0.05 Å ± 0.02Å(9.7∘ ± 0.1∘);
0.12Å ± 0.02Å(16∘ ± 0.5∘). Consequently, the graphene flake dis-
played in Fig. 3b) can be regarded as an experimental realization
of an ultra-flat state predicted theoretically, although the exact
parameters (heterostrain values) could not be directly inferred.
Therefore the direct quantitative comparison of the experimen-
tally found ultra-flat state with the simulations is not straightfor-
ward as the unknown strain values essentially influence the twist
angle at which the ultra-flat states emerge as it was shown in
Fig. 2. The exact shape of the vdW interactions also affects the
twist angle value of the ultra-flat state (see Supplementary Fig.
8d). These effects can be at the origin of the quantitative
discrepancy between the theoretically predicted and experimen-
tally observed twist angles for the ultra-flat states. Changes in the
Moiré-morphologies (i.e., from convex to concave) have also been
observed experimentally (Supplementary Fig. 1) on the same
graphene flake (for the same rotation angle), which can be
induced by the locally varying strain, in agreement with the
predicted high strain-sensitivity of the Moiré-phase realizations.
The high strain-sensitivity of Moiré-superlattices is also supported
by the experimental observation of the coexistence of the convex

Fig. 3 Scanning tunneling microscopy observation of an ultra-flat state. Topographic scanning tunneling microscope images of graphene
layers deposited on top of a graphite substrate for various relative rotation angles (scale bars: 2 nm). Although the apparent corrugation has a
decreasing tendency from a–c, the STM image in panel b reveals an ultra-flat state, much smoother than observed even for high rotation
angles (c). The experimental conditions for image acquisition (Itunnel= 1 nA, Ubias= 200mV), data processing, and graphic display parameters
are the same for all panels. The relative rotational angles are indicated under each panel.
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and nanomesh morphologies of graphene superlattices on Au
(111)36.

Conclusions
In conclusion, we showed using Molecular Mechanics simulations
that strain and twist angle alteration can induce phase transitions
in twisted 2D superlattices between three typical topographical
Moiré-phases. On phase boundaries, ultra-flat states were
identified where the corrugation is almost zero either in the
overlayer or in the substrate, but not both. These ultra-flat states
were shown to be also present for small twist angles, where
conventionally a large corrugation is expected. We also showed
that for smaller twist angles (0∘–4∘) the strain-free equilibrium
point is critical and even very small strains can induce significant
changes in the corrugation and in the morphology of the
superlattices. The results and concepts developed here are
expected to be essential for the rational design of twisted 2D
superlattices and highlight the critical role played by externals
strains in defining the nanoscale morphology of such 2D
heterostructures.

METHODS
Classical molecular geometry optimalization
The classical molecular energy minimizations were carried out using the
LAMMPS code37. In-plane periodic boundary conditions were used. During
the relaxation the size of the simulation cell was fixed, which ensured
through the periodic boundary conditions that the pre-applied strain can
not be fully eliminated, and that δo, δs is an additional constraint on the
energy minimum. The long range bond order potential was utilized38 for
carbon-carbon interactions within a single carbon layer. The weak Van der
Walls forces between the carbon layers were modeled using the
Kolmogorov–Crespi potential39. We performed geometry relaxations on
commensurate Moiré-supercells using Hessian-free Truncated Newton
algorithm implemented in LAMMPS as the hftn algorithm. Each supercell
used in this paper was found by our script iterating through highly ordered
commensurate cells as described in refs. 40,41 to match the criterion of the
cell having a definite α, δo, δs property. Due to the fact that for a given
arbitrary α, δo, δs there not necessarily exists a corresponding supercell, the
α, δo, δs values may display minor fluctuations that limit the angle and
strain resolution of our data; nevertheless do not affect their interpretation.

DATA AVAILABILITY
The data supporting this work are available from the corresponding author upon
reasonable request.
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