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Toward nanoscale molecular mass spectrometry imaging via
physically constrained machine learning on co-registered
multimodal data
Nikolay Borodinov1, Matthias Lorenz 1,2, Steven T. King1, Anton V. Ievlev1 and Olga S. Ovchinnikova 1✉

Mass spectrometry imaging (MSI) plays a pivotal role in investigating the chemical nature of complex systems that underly our
understanding in biology and medicine. Multiple fields of life science such as proteomics, lipidomics and metabolomics benefit
from the ability to simultaneously identify molecules and pinpoint their distribution across a sample. However, achieving the
necessary submicron spatial resolution to distinguish chemical differences between individual cells and generating intact molecular
spectra is still a challenge with any single imaging approach. Here, we developed an approach that combines two MSI techniques,
matrix-assisted laser desorption/ionization (MALDI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), one with low
spatial resolution but intact molecular spectra and the other with nanometer spatial resolution but fragmented molecular
signatures, to predict molecular MSI spectra with submicron spatial resolution. The known relationships between the two MSI
channels of information are enforced via a physically constrained machine-learning approach and directly incorporated in the data
processing. We demonstrate the robustness of this method by generating intact molecular MALDI-type spectra and chemical maps
at ToF-SIMS resolution when imaging mouse brain thin tissue sections. This approach can be readily adopted for other types of
bioimaging where physical relationships between methods have to be considered to boost the confidence in the reconstruction
product.
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INTRODUCTION
Recent developments in mass spectrometry imaging (MSI) have
enabled characterization of localized molecular composition in
signal transduction1, drug delivery2, disease progression3, and
forensics4. In particular, MSI is an invaluable tool for pharmaco-
logical applications that pinpoints spatial distribution of biologi-
cally relevant molecules such as proteins5, peptides6, lipids7, and
pharmaceuticals8,9 across the tissue. This allows to visualize
metabolic processes and generate direct insights into the
biological action of novel drug candidates9. Potential impact of
the ability to generate mass spectra of the intact species will have
a pronounced effect on the cellular and subcellular metabolome
research10. This subsequently drives the need for novel analytical
tools offering higher sensitivity, and detailed chemical information
coupled to high-spatial resolution modes.
Much attention has been focused on both developing

nanometer scale molecular MSI platforms and combining
molecular mass-spectrometry-based chemical imaging with high
spatial resolution techniques, such as scanning probes11,12, optical
microscopy13,14, and electron/ion systems15. High-spatial resolu-
tion molecular mass spectra are then generated by using fusion-
based algorithms16–18. However, these approaches are limited by
the fundamental difference between physical mechanisms of
image generation for MSI and techniques used for data
upsampling. As the correlation between information channels is
assumed but not constrained by any known relationships, the
output of such algorithms is prone to reconstruction errors19.
Therefore, development and implementation of combining
several information channels for scientific use will require
integration of physical constraints into data processing workflows.

Here, we apply this principle for the automated prediction of
molecular mass spectra with sub-micrometer spatial resolution by
incorporating known relations between matrix-assisted laser
desorption/ionization (MALDI) and time-of-flight secondary ion
mass spectrometry (ToF-SIMS) signals. Both MALDI and ToF-SIMS
chemical approaches are widely used for studying biological
systems; however, they produce very different information about
the chemical composition of the sample due to the difference in
physical nature of the imaging methods20. In MALDI, analyte
species are mixed with a matrix compound that facilitates primary
charge carrier formation upon laser irradiation. Charge transfer
from the matrix to the analyte molecule enables the preservation
of a singly charged intact molecular species for identification. At
the same time, the use of laser ionization in standard commer-
cially available geometries limits the spatial resolution to
5–50 µm20,21. In contrast, ToF-SIMS uses focused ion beams to
release secondary ions from analyte species, enabling sub-
micrometer spatial resolutions22–24 but resulting in significant
fragmentation of molecular compounds, which can complicate
the interpretation of mass spectra25. The combination of both
techniques provides complementary information about the
sample26 enabling predictive chemical imaging of intact molecular
species with sub-micrometer spatial resolution. This approach can
offer critical insights for research in Alzheimer’s disease27,28,
cancer29–31, tuberculosis32, drug action33,34, and mechanisms of
protein posttranslational modifications35. Here, we assume linear
relationship between peaks in ToF-SIMS and MALDI spectra and
determine the coefficients of their correlation thus enforcing the
functional connection between those channels expected from
physics.
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This approach can be extended to incorporate other channels
of information and/or reconstruction constraints and serves as a
glimpse of powerful capabilities offered by extracting additional
information from cross correlating and combinatorial processing
of the captured signals for biomedical research. Incorporating of a
physical model into the algorithm gives a much clearer outlook on
the validity of the workflow output and interpretability of the
reconstruction process.

RESULTS
Workflow overview and data collection
Overall, the workflow for processing of the coregistered MALDI
and ToF-SIMS signals includes the following steps: (1) co-
registration of spectral inputs; (2) dimensionality reduction using
non-negative matrix factorization (NMF); (3) identification of the
physical relations between channels, using canonical correlation
analysis (CCA); and (4) reconstruction of molecular mass spectra at
high spatial resolution based on a prediction using the identified
physical relationship between MALDI and ToF-SIMS channels.
Once data pre-processing is done, the rest of the workflow does
not require significant computational capabilities and can be
performed on a desktop computer.
MALDI and ToF-SIMS MSI datasets were collected for 10-µm-

thick fresh-frozen mouse brain tissue sections that were desic-
cated prior to the imaging experiments. ToF-SIMS imaging was
performed using a Bi3

+ ion beam with 2-μm pixel size (Fig. 1a).
The Bi3

+ ion beam was then used to sputter square fiducial
markers to simplify co-registration with subsequent MALDI
imaging (Fig. 1b). Following ToF-SIMS analysis and fiducial marker
imprinting (Fig. 1c), α-cyano-4-hydroxycinnamic acid (CHCA)
matrix was applied by sublimation and MALDI imaging performed
with 50-μm pixel size (Fig. 1d). Fiducial markers can be clearly seen
in the MALDI imaging data (Fig. 1f), which ensured that the

datasets could be correctly co-registered. Details of the spatial co-
registration process are discussed in “Methods” section and shown
in Supplementary Fig. 1. The resulting data represent two 3-
dimensional datasets with matching spatial and spectral (m/z
binned mass spectra) coordinates but different spatial resolutions
(Fig. 1e, f display exemplary ion maps at m/z 95.22 and 369.35 and
g and h show the point spectra).

Data processing
While the relationship between ToF-SIMS and MALDI point spectra
is not explicitly known, it is possible to outline some physical
constraints and correlations, which can be used in the develop-
ment of the reconstruction workflow. Specifically, we assume the
following: (1) each compound in the sample has a specific
localization independent on imaging technique, (2) those
compounds have characteristic non-negative ToF-SIMS and MALDI
spectra for the chosen SIMS/MALDI/sample preparation condi-
tions, (3) the mass spectrum in each point represents a linear
combination of mass spectra of all compounds presented in this
point. While these simplifications are applicable in most cases, the
real measurement may be influenced by the matrix effect in ToF-
SIMS36. These cases have to be addressed separately, however, if
the assumptions are satisfied, we can enforce linearity on the data
transformation relating the information gathered from ToF-SIMS
and MALDI.
The assumptions outlined above allowed us to design a

workflow by combining several mathematical transformations of
the ToF-SIMS and MALDI data to establish a predictive link
between them. First, we reduced data dimensionality using NMF.
In addition, ToF-SIMS data are downsampled to MALDI MSI spatial
resolution. NMF assumes that each mass spectrum in each point
can be represented as a linear combination of a small number of
archetypical non-negative spectra referred to as endmembers,

Fig. 1 The data acquisition workflow. a ToF-SIMS sample analysis is followed by the b sputtering of fiduciary markers and then by c
application of the matrix and d subsequent MALDI imaging. The exemplary e ToF-SIMS and f MALDI ions maps for m/z 369.35 (MALDI) and m/z
95.22 (ToF-SIMS) as well as g, h corresponding point spectra are shown. A spatially aligned dataset is formed on the next step, SIMS is
downsampled to MALDI resolution.
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with weights forming abundance maps of the spatial distribution:

V ¼ W ´H þ R; (1)

where V is the original data with the shape m × n (m is the number
of samples or spatial points, n is the number of data points in the
mass spectra); H is a matrix of archetypical spectra with size of p ×
n, (p is number of components); W is matrix of weights with size of
m × p; and R is a residual matrix.
The maps of corresponding weights W are further referred to as

abundance maps. Here, the algorithm seeks to decrease the
reconstruction error R given the amount to components and
simultaneously enforces its non-negativity. The latter lies in
perfect agreement with the nature of mass spectrometry data.
Under this model, the random shots cannot be fit by NMF
decomposition and are cast out into the residual matrix R. This
allows to preserve the spatial details while improving signal-to-
noise ratio. It is important to highlight that one NMF component
does not necessarily contain one compound but rather a mixture
of compounds that spatially coexists and cannot be separated by
linear unmixing. For example, if compounds A and B always
appear together in the tissue, their spectra will appear in the same
component as well. See Supplementary Figs 1 and 2 for all 20
components for each mode.
This way both ToF-SIMS and MALDI datasets are simplified to a

limited number of endmembers and corresponding abundance
maps. Results of NMF with 20 components are presented in Fig. 2
and in Supplementary Figs. 1 and 2. Here each endmember (such
as Fig. 2b, e, endmember spectra for both modes are displayed on
the same axis) corresponds to a certain compound or a group of
chemical compounds that spatially appear together (the maps are
shown in Fig. 2a, d for ToF-SIMS and c, f for MALDI) and hence
cannot be automatically unmixed by NMF.
A single MALDI ion may correspond to multiple ToF-SIMS ions

due to molecular fragmentation in ToF-SIMS, similarly a single ToF-
SIMS fragment can correspond to several MALDI peaks. Relations
between ToF-SIMS and MALDI data are expected to be linear
under one of our assumptions. To identify those relations, we
utilized CCA. This algorithm looks to maximize the correlation
between two column vectors X and Y by identifying the vectors a
and b in such a way that aT × X and bT × Y are correlated (see
Supplementary Fig. 3 for all ten CCA components). Here, we use

abundance maps generated by NMF to find the correlation. In
particular, using of NMF components instead of the full data
allows to reduce the amount of noise in the data, in addition, the
peaks with similar abundance are combined into the same NMF
component which helps to increase the influence of the peaks
with unique spatial distribution. Each pixel in NMF-transformed
datasets is characterized by a 20-long vector showing the
intensities of the abundance map in that point. ToF-SIMS NMF
loading are used as X and MALDI as Y.
This decomposition yields a series of loading map pairs, first of

which is displayed in Fig. 2—a ToF-SIMS map (Fig. 2g) is very close
to the MALDI map (Fig. 2i). The weights of this decomposition
form CCA components and show which linear mixture of ToF-SIMS
NMF components would correspond to which linear mixture of
MALDI NMF components (displayed in Fig. 2h). Further details on
the CCA can be found elsewhere37. Overall, the spatial correlation
between MALDI and ToF-SIMS NMF abundance maps is used to
identify the relationship between corresponding endmembers
and, ultimately, the sample mass spectra in both modes. At the
same time, for each component (consisting of one or more analyte
compounds) present in the sample the localization of abundance
maps has to be correlated between the two methods. We use CCA
with ten components (Supplementary Information Fig. 3) to link
co-registered ToF-SIMS and MALDI MSI datasets.

Prediction of high-spatial resolution molecular spectra
The ultimate goal of our workflow is to predict high-spatial
resolution molecular spectra. To achieve this, we need to establish
the coefficients of all linear unmixing and linear combination
operations, which are done during the training step of the
algorithm. This step is performed on the co-registered ToF-SIMS
and MALDI MSI datasets brought to the same spatial resolution.
These two datasets separately undergo NMF to extract abundance
maps, which are then paired through CCA establishing the cross-
correlation matrix G. This matrix can be further used to reconstruct
either of the dataset. Effectively, the latter allows to infer MALDI-
type molecular mass spectra by ToF-SIMS dataset at original high
spatial resolution. This dataset is transformed by the NMF using
previously calculated endmembers, then a trained CCA transfor-
mation infers the MALDI abundance maps via multiplication by

Fig. 2 Multicomponent analysis of the ToF-SIMS and MALDI data. The NMF outputs highlight the abundance maps (a, d for ToF-SIMS, c, f,
for MALDI) and the endmembers b and e which are subsequently processed though CCA to establish the relationship between two methods.
The loading map for g linear combinations of ToF-SIMS and i MALDI are very similar suggesting good applicability of CCA for this case. As a
result, h the pairing between spectral endmembers is also established.
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the matrix G, which is followed by an inverse NMF which
generates a MALDI-type mass spectral array at ToF-SIMS imaging
resolution (Fig. 3).

DISCUSSION
To estimate the accuracy of this molecular mass spectra
reconstruction process we utilized a spectral angle mapper
(SAM) to compare actual MALDI spectra in each pixel and the
output of the workflow—reconstructed MALDI-type data. SAM
values range from 0 to 1, where 0 corresponds to a perfect
reconstruction, to 1 corresponding to no correlation between. For
our test dataset the SAM values averaged for all pixels across the
image was found to be 0.268, which indicates sufficient quality of
the spectral processing. To further evaluate reconstruction quality,
we compared a MALDI ion map (m/z 369.35) (Fig. 4a), with a
reconstructed molecular high spatial resolution map generated by
the workflow (Fig. 4b) and a ToF-SIMS ion map of cholesterol (Fig.
4c) and its fragment (m/z 95.07)38 (Fig. 4d). One can see a close
resemblance of the ion maps acquired by both modes and the
workflow product. While it is possible to detect some molecular
ions in ToF-SIMS mode, as exemplified here, these maps have
overall low ion count and some fine details cannot
be resolved (e.g., missing features from Fig. 4d). Using the entire
ToF-SIMS spectra rather than a singular peak allows to efficiently
reconstruct the distribution of the intact molecular species that
was almost absent in the original SIMS spectra, which highlights
the strength of our algorithm. In addition, phospholipid MALDI
maps clearly correlate with phosphocholine SIMS ion maps and
appear in the same CCA component with the same sign (negative)
(Supplementary Fig. 4 for details). This fact indicates that the
workflow puts the signal generated by the same compound in the

same CCA components thus recognizing its cooccurrence. It is
important to notice that there are some small differences between
the central region of Fig. 4b, d. This particular region of interest is
very small and features apparently distinctive spectrum. It is
experiencing reconstruction errors outpacing the rest of the
image. We believe this could be caused by the fact that when
calculating the scores for NMF and CCA the contribution of this
region to the overall reconstruction error is too small, so it is not
being considered on par with larger regions featuring their unique
spectra. We believe that this could be addressed by performing
training of NMF models with respect to this apparent class
imbalance. The simplest method to tackle this would be to select a
number of regions of interest, which would have different areas
with distinctively different spectra and then use this dataset for
endmember extraction. Then, trained models could be deployed
for the full image. This issue is going to be addressed in future
publications.
The approach developed here can be used to reconstruct

spatial maps of any molecular species distribution with sub-
micrometer spatial resolution under the conditions that they are
visible in MALDI spectra and a reliable correlation of those peaks
with signals in ToF-SIMS spectra can be found. Figure 5a, b shows
the MALDI MSI data for m/z 513.76 and its reconstructed high
spatial resolution image, respectively. The reconstructed image
clearly resolves fine features, which are barely visible in the
original data. Similarly, comparison of the original and recon-
structed images for m/z 676.45 (Fig. 5c, d, respectively) highlights
fine features of the tissue, which are smaller than pixel size in the
MALDI dataset. The reconstructed point spectra (point spectrum
for MALDI, averaged over 25 × 25 pixel area for reconstructed)
(Fig. 5f) clearly show molecular signals, which are consistent with
the original MALDI data (Fig. 5e). This showcases that the

Fig. 3 Co-registered data processing. a During the training step, ToF-SIMS and MALDI data at the same resolution undergo NMF and filtering
and are linked through CCA. The trained NMF and CCA models are later used b to process high spatial resolution ToF-SIMS and generate
desired reconstructed dataset of molecular intact species.
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developed approach enables accurate spectral prediction based
on MALDI spectra with ToF-SIMS spatial resolution.
The developed machine learning-based approach for correlative

chemical imaging allows reconstruction of spectral data with
improved spatial resolution based on coregistered multimodal
imaging. This approach can shine the light on the fine details of
molecular distributions within complex systems and can be used
for subcellular imaging of biological systems and incorporate
other channels such as Raman and FTIR imaging as long as these
systems also follow known mixing rules.

METHODS
Sample preparation
Frozen coronal mouse brain sections mounted to ITO-coated glass
microscope slides were purchased from Zyagen (San Diego, CA) and
stored at −80 °C until analysis. Just prior to analysis, slides were retrieved
from cold storage and placed into a hand-pumped vacuum desiccator
alongside silica gel desiccant for transport between buildings and to allow
the samples to warm to room temperature in a dry environment. Samples
were not washed prior to analysis.

SIMS imaging
The ITO-coated glass slide was mounted on top of a top mount sample
holder for the ToF-SIMS instrument using electrically conductive carbon
tape. A conductive pathway between the stage and the ITO surface of the
slide was confirmed by using a digital multimeter to gauge the resistance
between the two surfaces. A TOF.SIMS 5 secondary ion mass spectrometer
(IONTOF GmbH, Münster, Germany) was used with a Bi3

+ primary ion
beam (31 nA DC current). The instrument was operated in spectrometry
mode, which provides a mass resolution of m/Δm= 3000–10,000. Charge
compensation was enabled. Samples were imaged in stage scan
experiments, acquiring five shots per pixel with a pixel step size of 2 µm.
The patched image of 10.9 mm× 8.4 mm dimensions was recorded in
about 5 h.

Fiduciary marker etching
Three 250 µm × 250 µm patches in the tissue were milled using a SIMS Bi3

+

primary ion beam with 10% duty cycle, scanning 512 × 512 pixels in a
sawtooth pattern. These patches were located at the vertices of an

imagined right triangle spanning the area of the tissue section. The
locations of the etched markers were obtained from the stage coordinates
in the ToF-SIMS dataset with 10 nm precision; however, the MALDI imaging
would allow the imaging of the markers with ca. 10 μm resolution.

Matrix application and MALDI imaging
The ITO-coated slide with two tissue samples on it was scored and split in
half using a handheld diamond-tipped glass cutter so that each half now
bore one mouse brain section. The samples were then gently cleaned with
low-velocity dry air to remove glass particulate debris. The sublimation
apparatus (Chemglass Life Sciences, Vineland, NJ) was primed with 300mg
dry α-cyano-4-hydroxycinnamic acid (purchased from Sigma Aldrich, St.
Louis, MO) powder and coupled to a rough vacuum pump (Pfeiffer). The
mouse brain section was mounted to the underside of the coolant
reservoir of the apparatus with conductive copper tape. The apparatus was
then heated in a sand bath to 155 °C, as measured by a digital
thermometer probe placed into the sand bath directly beneath the
apparatus, then maintained at a temperature between 150 and 160 °C for
20min.
MALDI MSI data were acquired using a Bruker Autoflex Speed (Bruker

Daltonics, Bremen, Germany) instrument equipped with a Smartbeam-II
laser using FlexImaging (version 4.1) and FlexControl (version 3.4). The
tissue section was sampled with a laser in a rectangular grid covering the
entire tissue surface area with a pixel diameter of 50 µm. Each collected
spectrum was the sum of 500 laser shots randomly distributed within the
25-µm radius. Spectra were collected on the mass range m/z (0–7300)
using a digitizer frequency of 5 GHz, resulting in a spectral resolution of
246,726 data points per spectrum. The resulting spectra were individually
normalized by total ion count (TIC) to account for pixel-to-pixel signal
variation caused by the uneven distribution of CHCA matrix on the sample
surface.
Peaks of interest were manually selected from the MALDI average

spectrum. This procedure was practically limited to the mass range from
m/z (500–950) due to the overwhelming isobaric noise from matrix clusters
below m/z 450 and contamination by optimal cutting temperature (OCT)
compound, which, in addition to being a powerful ion suppressant,
generated a wide band of polymeric peaks from m/z 1000 to m/z 2000,
precluding detection of isobaric endogenous species. Due in part to the
ion suppressing effect of the OCT contamination layer and also in part to
the intentional omission of a sample washing step prior to MALDI analysis,
we additionally observed no signals associated with am/z greater than m/z
2000. In practice, these factors limited our analysis to a band of 60

Fig. 4 The output of the reported workflow. a MALDI m/z 369.35 ion map and b reconstructed map, c ToF-SIMS map attributed to
cholesterol and d cholesterol fragment (m/z 95.07) are well matched by the output of the workflow.
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manually identified peaks typically associated with low-mass lipids
between m/z 500 and m/z 950.

MALDI and SIMS co-registration
Data processing was done using Python 3.6. Both the SIMS and MALDI
datasets were converted from different proprietary file formats into a
common data structure. We developed and applied Python codecs for
converting and merging these dissimilar data formats into the Universal
Spectroscopic Imaging Data (USID) format, a file structure based on the
Hierarchical Data File format. Both instrument vendor software packages
contain closed-source tools to carry out data export into an open-source
format. SIMS data were exported from the IONTOF SurfaceLab 7 software as
binary GRD files roughly constituting a chronologically ordered list of detected
ions, their times-of-flight, and the pixel coordinates from which they
originated. We reformatted these data into spectral data of the format
intensity-vs.-m/z with fixedm/z bin size, then saved them as coordinate-linked
lists of spectra. Due to the volume of the data contained in these files, we
elected to perform spectral (64×) binning on the SIMS dataset to reduce the
on-disk size of the output file. MALDI data were exported from FlexImaging in
the imzML format, consisting of .ibd binary data file and .imzML plaintext
metadata header file. We used pyimzML39 to parse the imzML file pair to
extract spectra, then reformatted the dataset into USID format40.
USID-formatted SIMS and MALDI data files were coregistered by manually

identifying ion maps within the MALDI dataset in which the etched fiduciary
markers were visible as the dominant features of the map (Supplementary Fig.
5). Ninety-nine such maps were identified and passed to a two-part
automated feature finding algorithm. A sliding window 2D correlation of
the MALDI single ion images with the fiducial marker has been done to find
the coarse position of the squares. Since the size of the etched marker is
precisely known, the pixel dimension of the sliding window can be calculated
with high accuracy. The size of the sliding window step can be relatively high

to speed up the feature finding as size matching makes it already very robust.
A second stage in the co-registration algorithm is fine adjustment of the scale,
physical location, and rotation of the image. Through an iterative procedure
maximizing the 2D correlation between the chosen marker shape and the
local image, these parameters are identified. The marker coordinates in the
MALDI dataset, as well as their counterpart coordinates within the SIMS
dataset (as recorded during marker etching), were saved as metadata
attributes alongside their respective datasets within the merged USID data
file. The linked pairs of coordinates were therefore quickly accessible for use in
bidirectional co-registration of individual ion maps.
Then, SIMS is downsampled to MALDI resolution via linear interpolation

to establish one-to-one pairing of the spectra. Finally, the ionization for
ToF-SIMS leads to “salt-and-pepper” type of noise as a certain number of
secondary ions is needed in order to get a representative spectrum. See
Supplementary Fig. 6 for the effect of NMF denoising.
To finally coregister image A to image B, the stored pairs of marker

coordinates are read from the merged data file and used to calculate a 2 ×
3 transformation matrix. This matrix specifies scaling, rotation, translation,
and shearing parameters necessary to spatially transform the supplied
coordinate pairs of image A into their corresponding coordinate pairs
within image B. Once spatially aligned, image A is passed through a linear
interpolation filter to either upsample or downsample the image as
necessary to match the resolution of image B. This results in a 1:1
translation of image A into the coordinate system of image B such that
each pixel in the merged dataset now represents spatially-linked pairs of
MALDI and SIMS spectra. This transformation may be performed
bidirectionally, either coregistering image A to image B, or coregistering
image B to image A. The current implementation of this procedure
required over 40 GB of RAM to process the presented datasets in
multiprocessing regime and requires Linux for the multiprocessing to be
used. As a result, the processing of raw MALDI and ToF-SIMS data is
recommended to be performed on a high-performance computing cluster

Fig. 5 The zoom-in of ion maps and exemplary point spectra. The examples of molecular spectra inferred from MALDI data are shown for
peaks m/z 513.76 and m/z 676.45. It is evident that the workflow allows for drastic improvement of the spatial resolution of the MALDI data. a,
c The comparison between the original data and b, d the workflow output shows that the CCA-based pipeline reveals fine details of the
sample. Comparison of MALDI and reconstructed point spectra (e and f, respectively, taken from the regions of the datasets marked with blue
square) demonstrate the fidelity of the reconstruction across the entire mass range.
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or cloud-based virtual machine. Single-core processing is also possible
through the same package, but is not recommended due to the very long
time needed to process the data.

Processing of co-registered SIMS and MALDI datasets
The ToF-SIMS instrument allows stitching of several patches of maximum
field-of-view allowing to cover the entire millimeter-sized sample. Within
these discrete fields of view, individual pixels are resolved by deflecting the
ion beam to the analysis site using conventional ion optics. Near the edges
of each field-of-view, the primary ion beam is further deflected just prior to
impacting the sample by the accumulated charge of the surface. This
results in the appearance of a grid-like artifact on the single ion maps,
which is not related to the distribution of the analytes in the sample. To
reduce this distortion, we have applied a 2D Fourier filter to decrease the
intensity of the measurement artifacts (see Supplementary Fig. 7 for the
comparison). A 2D Gaussian smoothing is also performed to eliminate
the noise.
In the case of “salt-and-pepper” type of ionization, the mass spectro-

metry signal in a point is not exactly proportional to the concentration of
the compounds in the sample being distorted by random shots. However,
these random events are not representative of the system. To extract
valuable knowledge out of the dataset, we have used NMF.

Quality of the workflow product: metrics and sanity checks
Several metrics are used to characterize the output of the spectral datasets:
root mean square error (RMSE), SAM, cross correlation (CC), and peak
signal-to-noise ratio (PSNR). RMSE is an overall measure of the similarity
between two datasets, SAM is sensitive to the spectral distortions and CC
characterizes the geometrical distortion introduced by the workflow. It is
important to notice, however, that in the case where a random noise is
present, the values of the metrics (especially SAM and CC) can be low,
while the quality of the data processing is satisfactory. Thus, it is important
to compare these metrics within the same dataset looking for the best
values of workflow parameters. The ideal value of SAM and RMSE is 0 and
the ideal value of CC is 1. PSNR is widely used to characterize the image
compression quality and is calculated as the ratio between the maximum
possible power of a signal and the power of corrupting noise that affects
the fidelity of its representation.

Dataset size considerations
We specifically focus in this work on the novelty of the data processing
aspect of our approach and would like to point out a few decisions that
enabled us to limit the amount of data to handle for the model system
described here. First, ToF-SIMS allows for submicron resolution (down to
50–100 nm)41 which would provide additional spatial fidelity, but also
boost the dataset size. Same considerations led us to set an absolute
threshold for the peak intensity for ToF-SIMS at 1% of maximum TIC
intensity and exclude the m/z range above 250 Da. While we collected ions
up to 2000 Da with ToF-SIMS (which would include some intact molecular
ions), they were not used in a reconstruction process to highlight the
applicability of the algorithm for cases where the molecules of interest are
too heavy to appear in the secondary ion mode. Second, we decided to
focus on lipids in MALDI imaging to highlight our workflow, and
sublimation without recrystallization was performed during the matrix
application. MALDI allows for the imaging of the species much heavier
than 2000 Da, but in order to improve the ion extraction a different matrix
application approach would be required. However, in our experimental
design the overlap between ToF-SIMS and MALDI spectral ranges allows
for an immediate assessment of the algorithm output (such as comparing
the cholesterol map obtained my MALDI and cholesterol fragment map
obtained by SIMS).
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