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Combining thermodynamics with tensor completion
techniques to enable multicomponent microstructure
prediction
Yuri Amorim Coutinho 1, Nico Vervliet 2, Lieven De Lathauwer2,3 and Nele Moelans 1*

Multicomponent alloys show intricate microstructure evolution, providing materials engineers with a nearly inexhaustible variety of
solutions to enhance material properties. Multicomponent microstructure evolution simulations are indispensable to exploit these
opportunities. These simulations, however, require the handling of high-dimensional and prohibitively large data sets of
thermodynamic quantities, of which the size grows exponentially with the number of elements in the alloy, making it virtually
impossible to handle the effects of four or more elements. In this paper, we introduce the use of tensor completion for high-
dimensional data sets in materials science as a general and elegant solution to this problem. We show that we can obtain an
accurate representation of the composition dependence of high-dimensional thermodynamic quantities, and that the decomposed
tensor representation can be evaluated very efficiently in microstructure simulations. This realization enables true multicomponent
thermodynamic and microstructure modeling for alloy design.

npj Computational Materials             (2020) 6:2 ; https://doi.org/10.1038/s41524-019-0268-y

INTRODUCTION
A number of recent discoveries has largely increased the interest
in multicomponent alloy design. High entropy or multi-principle
element alloys, for example, can give access to a wide range of
properties and combinations of properties that cannot be
obtained in alloys based on a single major element.1 Moreover,
the large range over which the diffusion properties of the different
elements can vary gives rise to complex precipitation, interdiffu-
sion, and coarsening paths,2–4 resulting in new ways to stabilize
metastable phases or structures for extended times.5 Adding too
many alloying elements may, however, also unnecessarily
complicate material recovery and recycling.6 Hence, in order to
exploit in an optimal and responsible way the opportunities
multicomponent alloy design can bring, a profound under-
standing of the effects of compositional variations and heat
treatment on microstructure evolution in these alloys is required.
Microstructure simulations are indispensable to obtain these
insights given the immense parameter space, including not only
the current temperature and the amount of each element, but
also many parameters describing the history of the material, such
as cooling rate and the duration of a heat treatment or mechanical
loading.
Phase-field models (PFM) are generally considered as most

suitable to study multicomponent microstructure evolution as
diffusion and phase morphology often play a crucial role.7–9 They
describe complex morphological changes such as precipitate
shape evolution during growth and coarsening and dendrite
growth. The effects of various competing thermodynamic driving
forces and transport processes can be considered. For multi-
component alloys, the chemical bulk driving force is an important
contribution. CALPHAD thermodynamic models are usually
adopted to describe the composition and temperature-
dependent Gibbs free energy expressions of the different phases.
For many technologically relevant alloy systems, CALPHAD models

have been assessed to reproduce experimental, theoretical and ab
initio data on thermodynamic quantities and phase diagrams.10–12

Different approaches have been proposed to include the
CALPHAD thermodynamic descriptions in PFM.13–26 A classifica-
tion and discussion of the different approaches is given further in
the paper. However, to date, only a few results for quaternary or
higher-order systems are reported in the literature. The reason is
that the proposed methods were either for a specific case and
cannot be generalised towards systems containing other types of
phases, or become prohibitively complex or computation and
data-intensive when the number of elements in the alloy is
increased. There is thus no robust simulation approach available
facilitating in silico microstructure design for multicomponent
alloys.
Here, we introduce the use of tensor completion27–30 in

materials science to enable the representation and use of high-
dimensional data sets efficiently. More specifically, we used a
canonical polyadic decomposition (CPD) with the factor vectors
constrained to polynomial expressions31 to include high-
dimensional thermodynamic data sets obtained from a CALPHAD
model in phase-field simulations. Using CPD, the multicomponent
composition dependence can be described using a limited
number of coefficients. We show that the accuracy obtained with
the proposed approach is comparable or better than that
obtained with previous approaches, whereas the applicability is
general and the computational cost to evaluate data is low.
Moreover, the addition of more elements does not lead to a
substantial increase of the complexity, and the number of
coefficients and the computational cost to evaluate a CPD depend
only linearly on the number of components in the system, in
contrast to an exponential increase of the amount of thermo-
dynamic data represented. The observed advantages will thus
become increasingly prominent when adding more elements. The
capabilities of the approach are illustrated for phase-field
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simulations of spinodal decomposition and subsequent coarsen-
ing, an important phenomenon in multicomponent alloys,32 for
Ag-Cu-Ni-Sn liquid alloys.

RESULTS AND DISCUSSION
Tensor completion of thermodynamic data
In material science, we are familiar with the tensorial character of
direction-dependent material properties, like stresses and strains.
However, in mathematical engineering, the term tensor has been
used much more widely. In general, tensors are higher-order
generalisations of vectors (first-order tensors) and matrices
(second-order tensors).33,34 They can be seen as multiway arrays
of any order holding numerical values. The term thermodynamic
data tensor (TDT) is introduced here to denote a tensor that is
obtained by calculating and storing the data set of any
thermodynamic quantity of a phase, evaluated from a CALPHAD
model. The TDTs typically needed in PFM implementations are the
molar Gibbs free energy, G, the diffusion potential of each
component n, PðnÞ, and the derivative of the diffusion potential of
the component n with respect to the molar fraction of
components m, Dðn;mÞ .
Typically, the molar fractions xn of the components are used to

indicate an alloy composition. For an alloy with C components, the
composition dependence of any thermodynamic quantity can be
expressed as a function of C � 1 molar fractions xn, with n ¼
1; ¼ ; C � 1 referring to C � 1 of the C components. The order N
of the TDT, this is the number of dimensions of the tensor, then
equals C � 1. A graphical illustration of a third-order TDT,
representing composition dependence of a thermodynamic
quantity is shown in Fig. 1b. As by definition xC þ

PN
n¼1xn ¼ 1

and 0< xn < ð1� xCÞ, tensor entries (these are the values in the
tensor) for a combination of molar fraction values disobeying this
constraint are not physical and cannot be calculated. A TDT is
therefore necessarily incomplete. Besides composition depen-
dence, other dependencies of the thermodynamic function, such
as temperature, can be considered, increasing the order of the
tensor with one for each extra dependency.
If a thermodynamic model is available, TDTs can be precalcu-

lated and used in phase-field simulations to get the required
thermodynamic quantities. However, the great challenge of
dealing with TDTs is that their number of entries increases
exponentially with the order of the tensor, as illustrated in Fig. 1a.
Therefore, when more components are considered, it quickly

becomes impossible to generate, store, or handle the huge data
sets. The computational difficulties caused by this exponential
dependence are known as the curse of dimensionality.28

Moreover, as illustrated in Fig. 1a, b, the step size, δxn ; with
which the molar fraction xn is sampled, obviously also affects the
number of entries in the TDT, as the size of the tensor along each
dimension In is inversely proportional to the step size. The step
size can be chosen differently along each dimension, but in this
study we take a same step size for all molar fractions, i.e.,

δx ¼def δx1 ¼ ¼ ¼ δxN . If TDTs are used to provide thermodynamic
quantities in phase-field simulations, a small step size δx is
desirable to avoid sudden molar fraction jumps and the need for
multi-directional interpolation between entries.
In practice, the use of TDTs in microstructure evolution

simulations is thus limited to lower-order systems. The hypothesis
motivating our work is that, if a higher-order TDT is too large to be
constructed or used, the information present in the TDT may still
be accessible if a CPD of the TDT is obtained. See Methods section
Tensor Decomposition for a general introduction to this metho-
dology. When applied to a quaternary thermodynamic system
(N ¼ 3), such as the liquid Ag-Cu-Ni-Sn alloys under study, our
technique decomposes the TDT into a sum of R rank-1 terms, of
which each term is the outer product of N factor vectors, and with
R called the rank of the decomposed tensor model. This is
graphically illustrated in Fig. 2a, b. An alternative representation of
the same CPD is obtained by collecting all factor vectors of the
CPD related to each dimension n into a factor matrix AðnÞ. In this
case, the dimensions n refer to the molar fractions xn, with
n ¼ 1; 2; 3, and factor matrices Að1Þ , Að2Þ , and Að3Þ are obtained, as
shown in Fig. 2a–c.
A major benefit of this approach is demonstrated in Fig. 2d,

where the number of entries in a TDT is shown to grow
exponentially with the number of components in the system,
whereas the number of parameters in a CPD, representing the
same TDT only grows linearly. For alloys with four or more
components, the reduction in coefficients when using a CPD
representation of a full tensor is gigantic, enabling multicompo-
nent microstructure evolution simulations.
While determining the rank value, R is needed for an exact

decomposition of a TDT is difficult, previous applications in other
fields have shown that tensors representing physical data can
often be well approximated using a low-rank CPD.35–38 In this
work, we applied tensor decomposition to high-dimensional
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Fig. 1 Characteristics of a thermodynamic data tensor. a The number of entries in a TDT is plotted as a function of the step size δx (used for
data collection) and the number of components in the system. b Visualisation of two third-order incomplete TDTs sampled with different step
size. b The dashed box represents what would be the shape of a full third-order tensor; however, owing to the constraint

PC
i¼1xi ¼ 1 on the

molar fractions, the TDT is incomplete and only the entries within the indicated tetrahedron, i.e., the entries satisfying
PN

i¼1xi � 1 can be
evaluated. The step size δx determines the density and hence the number of entries in the TDT. On the other hand, the number of TDT entries
depends exponentially on the number of components, or, more generally, on the order N of the tensor, making storage, and computation
quickly intractable, as can be seen in a.
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thermodynamic data sets and we show that a low-rank
approximation can be used to obtain an accurate decomposed
tensor model describing the dependence of Gibbs energies and
derived thermodynamic functions on the molar fractions, repre-
senting the alloy composition.
Moreover, when a priori knowledge on solution thermody-

namics is taken into account, a CPD can be made even more
compact and a continuous description of the composition
dependence can be obtained. In this study, for example, we
exploited the polynomial dependence of thermodynamic quan-
tities on the molar fractions when the ideal mixing term is
subtracted. This approach is reasonable as the contribution from
ideal mixing depends only on known information (namely, the
molar fractions of all components and the temperature) and can
be calculated separately and added to the values evaluated from
the CPD in the phase-field simulation (see Methods sections
CALPHAD thermodynamic model and Thermodynamic tensor
model). A polynomial constraint could therefore be imposed on
the factor vectors,31,39,40 and the CPDs representing the molar
Gibbs free energy, �G (the superscript � denotes that the ideal
mixing contribution is subtracted from the thermodynamic
quantity), the diffusion potential of component n, �PðnÞ, (i.e.,
derivative of the molar Gibbs free energy) and the derivative of
the diffusion potential of component n with respect to the molar
fractions of the component m, �Dðn;mÞ , (i.e., the second derivatives
of the molar Gibbs free energies) were coupled. A single set of
factor matrices modeling the composition dependence of all the
required thermodynamic quantities at once was then obtained.
Such a set containing all factor matrices necessary to completely
describe the thermodynamic quantities of the system in a phase-
field simulation is further referred as a thermodynamic tensor
model of rank R. For a quaternary system, it is represented as

TTM R ¼ Að1Þ;Að2Þ;Að3Þ; _A
ð1Þ
; _A

ð2Þ
; _A

ð3Þ
; €A

ð1Þ
; €A

ð2Þ
; €A

ð3Þn o
: (1)

The factor matrices AðnÞ give the contribution related to xn to

the Gibbs free energy TDT. The _A
ðnÞ

model, the contribution
related to taking the first partial derivative of the Gibbs energy
with respect to xn, is needed to represent the TDT of the diffusion

potential of component n. The €A
ðnÞ

model contributions related to
taking the second partial derivative of the Gibbs energy with
respect to xn. A cross partial derivative with respect to xn and xm is

obtained using _A
ðnÞ

and _A
ðmÞ

.
From these factor matrices, the thermodynamic tensor models

representing the required TDTs can be obtained, for instance, for a
quaternary system

�G � ½½Að1Þ;Að2Þ;Að3Þ��;
�Pð1Þ � ½½ _Að1Þ

;Að2Þ;Að3Þ��;
�Dð1;2Þ � ½½ _Að1Þ

; _A
ð2Þ
;Að3Þ��;

�Dð3;3Þ � ½½Að1Þ;Að2Þ; €A
ð3Þ��;

(2)

giving an extremely compact representation of an immense
amount of data. Taking, for example, N ¼ 3, δx ¼ 0:0001, and
R ¼ 7, a TDT of about ð1=δxÞN=N! � 1:6 ´ 1011 entries (the factor
1=N! takes into account that only the entries within the
tetrahedron in the TDT in Fig. 1a, b are calculated) is represented
using factor matrices that contain only R ´ N ´ 1=δx � 2:1 ´ 105

coefficients. The CPD model is thus about a million times more
compact than the TDT. Furthermore, the coefficients of the degree
d polynomial constraint alone already suffice for the representa-
tion of the TTM. The Gibbs free energy and derived TDTs can thus
be represented with R ´N ´ ðd þ 1Þ ¼ 105 coefficients only. Such
impressive compression ratios have recently revolutionised
tensor-based scientific computing;35–38 in materials science
applications, the approach is new.
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Fig. 2 Canonical polyadic decomposition of a thermodynamic data tensor (TDT). a–c Visualisation of a canonical polyadic decomposition
(CPD) when applied to a third-order TDT with dimension I1 ´ I2 ´ I3. The third-order TDT a is written as a sum of R rank-1 terms b, each of which
is represented by the outer product of three nonzero factor vectors að1Þr , að2Þr , and að3Þr . The collection of R factor vectors into factor matrices c
with dimensions I1 ´ R; I2 ´ R; and I3 ´ R, provides a convenient representation of the CPD. Each factor matrix contains the coefficients
necessary to describe the contribution of the molar fraction of one of the components to the TDT. The entire tensor in a corresponds to the
dashed box in Fig. 1b; the CPD in b will be determined from only the tetrahedron part in Fig. 1b. d The number of entries in the TDT and the
number of coefficients in the CPDs with rank values R= 3, 6, 10 are plotted as a function of the number of components, for step size
δx ¼ 0:0001. The exponential dependence of the number of entries in the TDT on the number of components is broken when a CPD
representation is used instead. Indeed, the CPD needs only ðI1 þ I2 þ I3ÞR coefficients, which depends linearly on the number of components.
e The same information as in d is plotted, but excluding the TDT size for a better visualisation of the number of coefficients in the TTM as a
function of the number of system components.
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Moreover, the coefficients in the factor vectors can be obtained
using only a limited set of entries from the original TDT, called the
training set (see Methods section Thermodynamic tensor model
training for more details). There is thus no need to compute the
full TDT at any point in the derivation.
Another major advantage of the approach is that values

approximating individual entries of the TDT can be calculated
very efficiently and easily from the TTM. For example, the diffusion
potential of the first component ~μ1 at a composition given by the
molar fraction values x1, x2, and x3, for which the entry in the
tensor is indexed by i1, i2, and i3, is calculated as

~μ1ðx1; x2; x3Þ �
XR
r¼1

_að1Þi1;r a
ð2Þ
i2;r a

ð3Þ
i3 ;r þ RTðlogðx1Þ � logð1� x1 � x2 � x3ÞÞ:

(3)

Therefore, again we avoid the need to construct explicitly the
full TDT �Pð1Þ before data can be extracted. This provides us with
an efficient framework to supply PFM with CALPHAD thermo-
dynamic quantities.
First TTMs with rank values R ¼ 3; ¼ ; 10 are optimised using

Tensorlab,40 modeling the composition dependence of the molar
Gibbs energy, the diffusion potentials of the elements Ag, Cu, and
Ni, and the partial derivatives of these diffusion potentials with
respect to the molar fractions Ag, Cu, and Ni. The data used for
training were obtained using Thermo-Calc 2017b with the COST
531 database.41 Further details are given in Methods section
Thermodynamic tensor model training. This particular system was
chosen for validation purposes, as we have access to all
coefficients of the CALPHAD model for this quaternary system.
The rank R of the TTM is an important parameter in this study.
A rank as low as possible is preferred, as the size of the factor

matrices scales linearly with R (see Fig. 2b, c), and consequently
the number of coefficients that has to be optimised and the
number of terms that has to be evaluated when extracting data
from the tensor model (equation (3)) in the phase-field simula-
tions, increase linearly with R as well.
The dependence of the accuracy of the TTMs on the rank value

R is evaluated by comparing thermodynamic quantities approxi-
mated with TTMs R ¼ 3; ¼ ; 10 with the corresponding entries in
the validation TDTs (see Methods section Validation). The
empirical cumulative density function (ECDF) of the relative errors
(RE) on the thermodynamic quantities calculated from the TTMs is
plotted for the different rank values in Fig. 3a. The interquartile
range (IQR) and Q ¼ 0:95 and Q ¼ 0:98 quantiles of the relative
error are given for each rank value R in the table in Fig. 3b. The
plot and table show that up to R ¼ 7, the accuracy improves for
increasing R, whereas for higher values of the rank further
improvement is limited. Using the TTM with rank value R ¼ 7, 98%
of the data points are represented with more than four digits of
accuracy, i.e., RE< 10�4. For a small fraction (<0:1%) of points, the
relative error remains large. However, further inspection of these
larger RE showed that they are only found when the considered
thermodynamic quantity itself has a value close to zero. It is
verified, for instance, that TTMs with R ¼ 7 or higher all have a
maximum absolute error smaller than 32 J/mol, which is very small
compared with the range over which the Gibbs free energy data
vary, namely between −1.02 × 105 J/mol and 3.82 × 106 J/mol.

Phase-field simulations
Next, the TTMs for different rank values are used to evaluate the
diffusion potentials as a function of the local composition in a
multicomponent phase-field model simulating spinodal decom-
position and further coarsening in Ag-Cu-Ni-Sn liquids, using the
model described in Methods section Phase-field microstructure
evolution model. The accuracy and advantages of the approach
using TTMs are compared with those of the existing approaches
for using CALPHAD thermodynamic models in phase-field
simulations. Fig. 4 gives an overview of the most common
coupling approaches.13–16,18–20,22–26 The methods using direct
implementation of the CALPHAD Gibbs free energy expressions
(b) or an interface with a thermodynamic software (d), give an
exact and continuous representation of the composition depen-
dence of the CALPHAD Gibbs free energies. They are considered
as a reference against which the accuracy of the simulations using
TTMs is evaluated. In comparison with the method using lookup
tables (e–f), the curse of dimensionality is broken and an arbitrarily
fine resolution, and even continuous representation, of the
composition dependence can be obtained.
First, 1D simulations were conducted using TTMs and validated

against the approach using an interface with thermodynamic
software. The conclusions are discussed in the Supplementary
Information. Next, 2D simulations were conducted for the six alloy
compositions given in Fig. 4i, using TTMs with rank values
R ¼ 3; ¼ ; 10, and validated against the approach where the
CALPHAD substitutional model is directly implemented in the
PFM. For each of the six alloy compositions an initial condition is
created by adding small random noise at each position in the
system to the values of the molar fractions as given in Fig. 4i. The
initial condition and all phase-field simulation parameters are the
same for all simulations. The only difference is the approach used
to include the CALPHAD diffusion potentials in the PFM.
A selection of the 2D-simulated microstructures is shown in Fig.

5a, c, e. Results obtained using the direct implementation of the
CALPHAD model expressions (CE) are shown in the first column
and results obtained using TTMs R ¼ 4 and R ¼ 6 in the second
and third column. Even for R ¼ 4 and R ¼ 6, the microstructures
obtained using the TTMs look very similar to those obtained using

b
Rank IQR Q = 0.95 Q = 0.98

3 2.46 × 10− 2 8.70 × 10− 2 3.67 × 10− 1

4 4.92 × 10− 3 2.40 × 10− 2 1.02 × 10− 1

5 5.15 × 10− 5 1.85 × 10− 4 6.72 × 10− 4

6 1.17 × 10− 5 3.94 × 10− 5 1.52 × 10− 4

7 2.32 × 10− 6 8.01 × 10− 6 3.13 × 10− 5

8 2.39 × 10− 6 7.27 × 10− 6 2.93 × 10− 5

9 1.27 × 10− 6 4.40 × 10− 6 1.29 × 10− 5

10 9.87 × 10− 7 3.44 × 10− 6 8.81 × 10− 6
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Fig. 3 Thermodynamics tensor model accuracy. a Empirical
cumulative distribution function (ECDF) of the relative error of
TTMs for rank values R ¼ 3; ¼ ; 10. b Table with the interquartile
range (IQR) and quantiles Q ¼ 0:95 and Q ¼ 0:98 of the relative error
of TTMs for rank values R ¼ 3; ¼ ; 10. In both cases a, b the relative
error is calculated for the Gibbs free energy, diffusion potentials, and
derivatives taking data collected using TC-toolbox with COST 531
database as the reference. There is little improvement of the
accuracy of the TTM for rank values R � 7.
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the direct implementation of the CALPHAD model. More results
can be found in the Supplementary Information.
For a more quantitative comparison, the corresponding

probability density functions (PDF) of the molar fraction fields
are visualised in Fig. 5b, d, f. The distributions are bimodal with
two means, m1 and m2, corresponding to the different composi-
tions of the co-existing liquid phases. According to the Langer-Bar-
On-Miller (LBM) method,42–44 the microstructure characteristics
can be quantified based on the amplitude A, defined as A ¼
jm2 �m1j (see Methods subsection Validation). For all six alloys,
the bimodal PDFs obtained from the simulations using the TTM
with rank value R ¼ 6, coincide with those obtained evaluating
the full CALPHAD model expressions. When using the TTM R ¼ 4,
a deviation of the PDF from that obtained for CE is observed in
some cases, see Fig. 5d. These deviations are also reflected in the
values of the amplitude A. Therefore, the relative error on the
values obtained for the amplitude A from those measured from
the profiles obtained using the direct implementation of the
CALPHAD model (CE) are considered as an appropriate measure to
quantify the accuracy of the phase-field simulations using TTMs
with a different rank value R.
In Fig. 6a, the CDFs of the RE on the amplitudes of the bimodal

distributions of the molar fraction values are plotted for varying
rank. Up to rank value R ¼ 6, the accuracy improves when the
rank value of the TTM is increased. For R � 6, no further
improvement of the accuracy is obtained. The analysis of the IQR
given in Fig. 6b indicates a low dispersion in the relative error,
even for R < 6. The Q ¼ 0:95 and Q ¼ 0:98 quantile show that
even when approaching the upper limit of the distribution, high
accuracy is maintained.
As an additional comparison, the volume fraction of one

of the phases is measured as a function of time from the
simulations. In Fig. 6c, d, results from simulations using the
full CALPHAD expression (CE) are plotted along results from
simulations using TTMs with rank values R ¼ 3; ¼ ; 6. The

volume fractions obtained using a TTM with rank value R ¼ 6
are almost identical to those obtained with the direct
implementation of the CALPHAD expression in the PFM.
However, if the main interest is in the volume fraction
measurements, a TTM with rank value R ¼ 5 or even R ¼ 4
may already give sufficient accuracy (see Fig. 5c, d). Depending
on the application and the desired accuracy, a lower rank value
R can thus be chosen to limit the number of coefficients in the
TTM and the computation time needed to extract data from the
tensor by evaluation of equation (3).
In conclusion, exploiting the low-rank tensor character of

thermodynamic properties for higher-order multicomponent
systems, a highly accurate and compact representation of their
composition dependence can be obtained, which can be
evaluated easily and efficiently in microstructure evolution
simulations. Although tensor decomposition and tensor comple-
tion can be applied as a purely data-driven method, we illustrated
that there is the flexibility to also account for a priori knowledge
on the models or physical phenomena behind the data by
applying functional constraints to the factor vectors. It is possible
to extend the proposed method to other types of thermodynamic
solution models, to include more elements or the dependence on
other variables than composition, or to represent different types
of composition-dependent phase properties, such as diffusion
mobilities, other kinetic coefficients, interface properties, and
mechanical properties. The rank value may be slightly higher for
more complex dependencies. It is also possible to adjust the
degree of the polynomial constraint or even use different types of
constraints to model thermodynamic functions with certain
features. The statement that the number of coefficients in the
CPD depends only linearly on the number of components in the
system is an intrinsic property of the CPD and will thus remain
valid. The important advantage is that the efficiency and lower
complexity is not compromised when adding more elements or
variables, which opens up the possibility for detailed higher-order

CALPHAD

Substitutional model
G

Thermodynamic database
COST531

m(xAg, xCu , xNi, xSn )

Direct implementation

Thermodynamic software
programming interface

Polynomial fit
Paraboloid expression

Data sampling

Gm, μi ,
μi

x j

Phase-field model
Spinodal decomposition simulations

Alloys composition

Lookup table

Tensor decomposition
CPD

Thermodynamic tensor
model
TTM

Alloy x1 x2 x3

1 0.44 0.10 0.22
2 0.23 0.20 0.40
3 0.30 0.25 0.30
4 0.35 0.30 0.25
5 0.24 0.15 0.47
6 0.46 0.30 0.15

~
~∂

∂

Fig. 4 Schemes coupling CALPHAD and phase-field method. Using the CALPHAD method, an expression for the bulk free energy of the
existing phases a is coupled with the phase-field model i via different approaches. b The expression of the CALPHAD Gibbs free energy model
and its derivatives with respect to the composition variables are inserted directly in the phase-field model. It is simple if all phases show the
behaviour of a substitutional solution. However, most solid phases are described using a sublattice model for which it is complex to relate the
phase-field and the CALPHAD variables. c A paraboloid expression fitted to data calculated with the CALPHAD method is used to approximate
the composition dependence of the Gibbs free energy. However, this approximation can only describe the Gibbs free energy accurately over
limited composition ranges. Moreover, for higher-order systems, it becomes hard to prevent molar fractions from taking nonphysical values
below 0 or above 100%. d External software is used to evaluate thermodynamic quantities as required by the phase-field simulation. The time
spent in the communication between software is the main disadvantage of this approach, making it less efficient than a. e, f The sampling of
data as a function of composition using a thermodynamic software into lookup tables that are consulted in the phase-field simulation, which
is heavily affected by the curse of dimensionality. g Proposed methodology in this work: a canonical polyadic decomposition is applied to
describe efficiently the thermodynamic quantities, resulting in factor matrices h from which the thermodynamic quantities can be evaluated
in PFM. The alloy compositions considered for the phase-field simulations are given in i.
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multicomponent microstructure evolution studies, essential for
future alloy development.

METHODS
CALPHAD thermodynamic model
Ag-Cu-Ni-Sn liquid alloys are considered in this study. According to the
CALPHAD method,10–12,45 the required thermodynamic quantities are
described assuming a random substitutional solution model. They are a
function of C ¼ 4 molar fractions xi , with i ¼ 1; ¼ ;C, and the temperature
T . The molar Gibbs free energy consists of three parts

Gm ¼ Go þ Gid
mix þ Gxs

mix; (4)

in which Go refers to the Gibbs free energy of a reference surface, Gid
mix to

the contribution from ideal random mixing (i.e., owing to the configura-
tional entropy), and Gxs

mix to the excess energy owing to deviations from
ideal behavior. The term Go is given by

Go ¼
XC
i¼1

xiG
o
i ; (5)

where Go
i is the temperature-dependent molar Gibbs free energy of pure

component i with respect to the SGTE46 reference state. Gid
mix is given by

Gid
mix ¼ RT

XC
i¼1

xi logxi ; (6)

in which R is the ideal gas constant. Gxs
mix is expressed using a

Redlich–Kister–Muggianu polynomial47

G xs
mix ¼

XC
i¼1

XC
j>i

xixj
X
v

LðvÞij ðxi � xjÞv

þ
XC
i¼1

XC
j>i

XC
k>j

xixjxkðxiLð0Þijk þ xjL
ð1Þ
ijk þ xkL

ð2Þ
ijk Þ;

(7)

in which LðvÞij are binary interaction parameters and Lð0;1;2Þijk ternary
interaction parameters.
As the molar fractions should always sum to one, i.e.,

PC
i¼1xi ¼ 1, one

molar fraction, e.g., the Cth, is dependent on the other fractions, i.e.,
xC ¼ 1�

PN
n¼1xn . Therefore, the molar Gibbs free energy can be

expressed as a function of N ¼ C � 1 molar fractions xn , with
n ¼ 1; ¼ ;N, and the temperature T .
The diffusion potential of the nth component, needed in multi-

component phase-field simulations, is given by the first partial derivative
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Fig. 5 2D microstructures and probability distribution function of the molar fraction profiles. a, c, e show a selection of microstructures
resulting from the 2D simulations of three different alloys for visual comparison. The first column shows the microstructures obtained with
direct use of the CALPHAD full expressions in the phase-field model. The second and third column show the results obtained using the
coupling through decomposed TTMs for rank values R ¼ 4 and R ¼ 6. Each row represents one alloy and the molar fraction of one component
as described by the label. a, c, e show the PDF of the molar fraction values in the different grid cells of the numerical domain. The two means
m1 and m2 of the bimodal distribution are indicated. The amplitude A of the molar fraction variation in the microstructure is defined as the
difference between m1 and m2.

Y.A. Coutinho et al.

6

npj Computational Materials (2020)     2 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



of the molar Gibbs free energy with respect to xn ,

~μn ¼ ∂Gm
∂xn

; (8)

which is related to the chemical potentials μn of component n and μC of
component C, as defined in standard solution thermodynamics, as14

~μn ¼ μn � μC : (9)

The partial derivatives of the diffusion potential of the nth component
with respect to xm ,

∂~μn
∂xm

¼ ∂μn
∂xm

� ∂μC
∂xm

¼ ∂2Gm

∂xn∂xm
; (10)

are often necessary to numerically solve phase-field equations.
Inspection of the different terms in equation (4) shows that only the

contributions Go and Gxs
mix contain model parameters from the thermo-

dynamic database, namely Go
i , L

ðvÞ
ij , and Lð0;1;2Þijk . As these parameters may

not be accessible by the user or the PFM, the terms Go and Gxs
mix must be

modelled. The contribution Gid
mix given by equation (6), however, is a

function of known variables only, namely the independent molar fractions
xn and the temperature T . Therefore, the contribution of Gid

mix to equation
(4) can be calculated at any moment and for any entry of the TDT without
consulting the thermodynamic database. As the logarithmic dependence
on the molar fractions of this term complicates the formulation of an
accurate TTM, we define a starred version of the Gibbs free energy,
diffusion potentials, and their partial derivatives with respect to the molar
fractions in which the contribution of Gid

mix is not included:

�Gm ¼ Gm � RT
XN
n¼1

xnlogxn

 !
þ xC logxC

" #
; (11)

�~μn ¼ ~μn � RTðlogxn � logxCÞ; (12)

∂ �~μn
∂xm

¼

∂~μn
∂xm

� RT
1
xn

þ 1
xC

� �
; n ¼ m

∂~μn
∂xm

� RT
1
xC

� �
; n ≠ m:

8>>><
>>>:

(13)

Equations (5) and (7) show that �Gm, �~μn , and
∂ �~μn
∂xm

depend polynomially
on the molar fractions of the different components. As discussed in
Methods section Thermodynamic tensor model, only these polynomial
contributions to the TTMs are modelled, knowing that equation (7) for Gid

mix
and its derivatives can be evaluated and added during the phase-field
simulation.
For the simulations, temperature-dependent expressions for all binary

and ternary interaction parameters LðvÞij , Lð0;1;2Þijk , and the Gibbs free energies
Go
i of the pure elements for the liquid phase are obtained from the COST

531 thermodynamic database.41

Tensor decomposition
A CPD writes a Nth-order TDT T as a sum of R rank-1 terms,28,33,34 each of
which is the outer product, denoted by �, of N nonzero factor vectors aðnÞr ,
with r ¼ 1; ¼ ; R and n ¼ 1; ¼ ;N:

T ¼
XR
r¼1

að1Þr � 	 	 	� aðNÞr : (14)

Elementwise, this means that each entry indexed with in , for
n ¼ 1; ¼ ;N, of T is given by

T ði1; ¼ ; iNÞ ¼
XR
r¼1

að1Þi1 ;r ¼ aðNÞiN ;r : (15)

Collecting all factor vectors aðnÞr into factor matrices AðnÞ ¼ aðnÞ1 ; ¼ ; aðnÞR

h i
,

the CPD can be compactly written as

T ¼ ½½Að1Þ; ¼ ;AðNÞ��: (16)

There exist various techniques to determine the coefficients in the factor
matrices based on a limited set of data entries of the original tensor.28

Moreover, when available, a priori knowledge on the model or physical
process behind the data can be taken into account, resulting in an even
more compact and continuous tensor model of the data. In this work, for
example, we exploited the polynomial dependence of �Gm on the molar
fractions, and the fact that the �~μn and

∂ �~μn
∂xm

are the first and second partial
derivatives of �Gm. A polynomial constraint could therefore be applied on
the factor vectors and the CPDs for �Gm and its first and second partial

Rank IQR Q = 0.95 Q = 0.98

3 4.32 × 10− 2 2.76 × 10− 1 3.17 × 10− 1

4 2.09 × 10− 2 1.34 × 10− 1 1.48 × 10− 1

5 3.93 × 10− 3 2.59 × 10− 2 2.90 × 10− 2

6 1.58 × 10− 3 4.66 × 10− 3 7.93 × 10− 3

7 1.65 × 10− 3 4.80 × 10− 3 7.70 × 10− 3

8 1.64 × 10− 3 4.65 × 10− 3 7.93 × 10− 3

9 1.38 × 10− 3 4.48 × 10− 3 7.44 × 10− 3

10 1.64 × 10− 3 4.69 × 10− 3 7.78 × 10− 3
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Fig. 6 Rank dependence of the accuracy of the 2D simulations using thermodynamic tensor models. a The ECDF of the relative errors on
the amplitude of the molar fraction variation plotted in different line colours for TTM rank values R ¼ 3; ¼ ; 10. For R ¼ 6 and above, markers
are also used for better identification of overlapping lines. b Table showing the interquartile region (IQR) and quantiles Q ¼ 0:95 and Q ¼ 0:98
of the relative errors for rank values R ¼ 3; ¼ ; 10. c, d Evolution of the volume fraction of the liquid phases as a function of time steps
obtained from simulations using directly the CALPHAD model expressions (CE) and using TTMs with rank values R ¼ 3; ¼ ; 6. No further
improvement in the accuracy of the simulations using TTMs is obtained when using a rank value higher than R ¼ 6. It should be noticed,
however, that R ¼ 5 already gives high accuracy. Moreover, for certain applications, lower rank values might already give sufficient accuracy.
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derivatives �~μn and ∂ �~μn
∂xm

could be coupled within a single tensor model, as
discussed in Methods Thermodynamic tensor model.

Thermodynamic tensor model
We first show how a TDT can be written as a CPD in which each factor
vector aðnÞr is a discretized smooth function in a single variable xn , with
n ¼ 1; ¼ ;N. Moreover, these functions are linear combinations of a set of
basis functions common to each factor vector. This way, the problem of
modeling all TDTs is recast into finding N coefficient matrices. The method
is built upon two mild assumptions: separability and a linear combination
of basis functions.
The first assumption is that the underlying function f ðx1; ¼ ; xNÞ is a

sum of separable functions, i.e., the terms can be written as the product of
N functions in a single variable:

f ðx1; ¼ ; xNÞ ¼
XR
r¼1

f ð1Þr ðx1Þ 	 	 	 f ðNÞr ðxNÞ; (17)

in which R is preferably low. This is exactly the continuous formulation of
equation (15). For example, Gmðx1; ¼ ; xNÞ is not separable with low R
because of the term Gid

mix (equation (6)), which contains xC logxC with
xC ¼ 1�

PN
n¼1xn , but

�Gmðx1; ¼ ; xNÞ is, as it is the sum of products of
polynomials in xn . As Gid

mix (equation (6)) contains only known constants,
we can subtract this term and work with �Gmðx1; ¼ ; xNÞ (equation (11))
without loss of generality. If the function f , and therefore also each f ðnÞr ðxnÞ,
is evaluated on (a subset of points of) an N-dimensional grid, an
(incomplete) tensor is obtained. For example, in this paper, an equidistant
grid is defined by x1 ¼ 	 	 	 ¼ xN ¼ δx 2δx ¼ ð1� NδxÞ½ �> for some
δx and the TDT �G is �Gmðx1; ¼ ; xNÞ evaluated on this grid. If we collect the
functions f ðnÞr ðxnÞ evaluated in xn as columns of AðnÞ, n ¼ 1; ¼ ;N, we
obtain the CPD:

�G ¼ ½½Að1Þ; ¼ ;AðNÞ��; (18)

where �G is the tensor containing the values �Gmðx1; ¼ ; xNÞ. Similarly, the
TDTs for �~μn and

∂�~μn
∂xm

can be written as a CPD. Note that the grid points do
not need to be chosen in the same way for different components n, nor do
they have to be equidistant.
Second, we assume that each f ðnÞr can be expressed as a linear

combination of K basis functions bðnÞk ðxnÞ, k ¼ 1; ¼ ; K :

f ðnÞ
r ðxnÞ ¼ uðnÞ1;r b

ðnÞ
1 ðxnÞ þ 	 	 	 þ uðnÞK;r b

ðnÞ
K ðxnÞ

¼ bðnÞ1 ðxnÞ¼ bðnÞK ðxnÞ� uðnÞ1;r ¼ uðnÞK;r �
>
:

hh (19)

By evaluating f ðnÞr ðxnÞ on the grid, we obtain

AðnÞ ¼ bðnÞ
1 ¼bðnÞ

K �UðnÞ ¼ BðnÞUðnÞ;
h

(20)

in which BðnÞ collects the basis functions evaluated in xn and UðnÞ the
coefficients. As the basis functions are fixed, only the coefficients UðnÞ need
to be determined. In this paper, we choose a basis of monomial functions
evaluated in the same points in all dimensions, i.e., bðnÞk ðxnÞ ¼ bkðxÞ ¼
xðk�1Þ for k ¼ 1; ¼ ; d þ 1, and n ¼ 1; ¼ ;N, which is reasonable given the
polynomial nature of the theoretical models; see equations (11), (12), and
(13). This way, each TDT can be written as a CPD in which each factor
matrix AðnÞ is subject to a linear constraint:

�G ¼ ½½BUð1Þ; ¼ ;BUðNÞ�� with B ¼ 1 x x2 ¼ xd
� �

(21)

in which the powers are elementwise. Note that the coefficient matrices
UðnÞ do not necessarily contain the coefficients Go

i , L
ðvÞ
ij , and Lð0;1;2Þijk as their

entries.
A key property following from the definition of the TDTs and the CPD

formulation with linear constraints is that computing derivatives only
requires the computation of derivatives of the known basis functions
bkðxnÞ:

df ðnÞr ðxnÞ
dxn

¼ uðnÞ1;r
db1ðxnÞ
dxn

þ 	 	 	 þ uðnÞK ;r
dbK ðxnÞ
dxn

: (22)

For example, as �~μ1 ¼ ∂�Gm
∂x1

, the corresponding TDT �Pð1Þ can be
represented as

�Pð1Þ ¼ ½½ _Að1Þ
;BUð2Þ; ¼ ;BUðNÞ�� with _A

ð1Þ ¼ _BUð1Þ; (23)

as only Að1Þ depends on x1. _B contains the evaluated derived functions

_bkðxÞ ¼ ðk � 1Þxk�1:

_B ¼ 0 1 2x ¼ dxd�1
� �

: (24)

Similarly, the derivatives of the potentials depend on _B and €B, in which the
latter matrix contains the second-order derivatives:

€B ¼ 0 0 2 ´1 6x ¼ dðd � 1Þxd�2
� �

: (25)

For example, the CPDs of the TDTs corresponding to ∂ �~μ1
∂x1

and ∂ �~μ1
∂x2

are
given by

�Dð1;1Þ ¼ €BUð1Þ;BUð2Þ; ¼ ;BUðNÞ
h ih i

; (26)

�Dð1;2Þ ¼ _BUð1Þ; _BUð2Þ; ¼ ;BUðNÞ
h ih i

; (27)

respectively. Hence, once the coefficient matrices UðnÞ , n ¼ 1; ¼ ;N, are
determined, all TDTs are modeled. Moreover, as the coefficients are
independent of the grid, different grids can be used in the training phase,
i.e., to find UðnÞ and when actually using the model, i.e., during the phase-
field simulations.

Thermodynamic tensor model training
In the optimisation routine for modeling the TDTs of a quaternary system
(N ¼ 3), we want to find the coefficients in the matrices Uð1Þ , Uð2Þ , Uð3Þ that
minimise the least squares cost function

min
Uð1Þ;Uð2Þ ;Uð3Þ

1
2 S � �Pð1Þ

T � _BUð1Þ;BUð2Þ;BUð3Þ� �� �� ���� ���2
þ 1

2 S � �Pð2Þ
T � BUð1Þ; _BUð2Þ;BUð3Þ� �� �� ���� ���2

þ 1
2 S � �Pð3Þ

T � BUð1Þ;BUð2Þ; _BUð3Þ� �� �� ���� ���2:
(28)

�Pð1Þ
T , �Pð2Þ

T , and �Pð3Þ
T are training TDTs, which are computed with a step

size of δx ¼ 0:025 using the TC-Toolbox (Thermo-Calc 2017b) with the
COST 531 thermodynamic database41 at 1400 K, each with 11,482 entries.
The residual between the tensor and its low-rank, polynomial-constrained
CPD model, e.g., �Pð1Þ

T � ½½ _BUð1Þ;BUð2Þ;BUð3Þ��, is multiplied elementwise
(denoted by �) with a binary tensor S which is one for each computed
training entry and zero otherwise, such that only the limited set of training
entries contribute to the objective function. S can be different for each
term of the objective problem during the optimisation, but here we
choose to keep it constant. Only the diffusion potentials are used in the
optimisation routine since other approaches, e.g., using �G or a
combination of all TDTs, have shown to be less accurate. Therefore, as
only derivatives are used, the Gibbs free energy is determined up to a
constant α, which can be estimated as the mean of the residual and must
be added to the computed CPD for the Gibbs free energy.
In this work, a conservative, i.e., small enough, value for δx is chosen

when selecting the training data to guarantee a highly accurate model. No
further investigations are conducted on the influence of the step size used
for the training data on the accuracy of the tensor model or phase-field
simulations. Various other aspects can affect the accuracy of the tensor
model, such as the degree of the polynomial constraint, the rank value of
the CPD and the distribution of the training data over the system.
However, the grid with which data are sampled is not very relevant, as we
are interested in the optimisation of the coefficient in the UðnÞ matrices and
not the factors in the AðnÞ matrices. The factors in the latter are only
computed after the optimisation routine with equation (20) and the grid
spacing can be chosen according to the necessity. This procedure also
assures that the thermodynamic quantities are accurately modelled over
the entire composition domain (including the dilute solution regions,
where at least one of the molar fractions takes a very low value).
The least squares cost function is optimised in Tensorlab40 using the

data independent algorithm for the CPD of incomplete tensors subject to
linear constraints (CPDLI DI).31 A few decompositions are computed
starting from random initial guesses for Uð1Þ, Uð2Þ , Uð3Þ , given R and d, and
the best result is retained. CPDs for rank values R ¼ 3; ¼ ; 10 are
computed. (Models with maximal degrees per variable d ¼ 3; 4; 5 have
been computed as well to validate that the correct degree d ¼ 4 can
indeed be recovered. This degree d ¼ 4 can be obtained from equation (4)
and the parameters obtained from the thermodynamic database COST
531.41)
Once the matrices with the unknown coefficients Uð1Þ, Uð2Þ , Uð3Þ are

found, the factor matrices AðnÞ , _A
ðnÞ

and €A
ðnÞ
, for n ¼ 1; 2; 3, are
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constructed using equation (20) and basis matrices B, _B, €B, which are
evaluated on a grid with δx ¼ 0:0001.

Validation
The TC-toolbox (Thermo-Calc 2017b) and MATLAB are used to generate
validation TDTs (indicated with subscript V) of the Gibbs free energy GV,

diffusion potentials Pð1Þ
V , Pð2Þ

V , and Pð3Þ
V and of the derivatives of the

diffusion potentialsDð1;1Þ
V , Dð2;2Þ

V , Dð3;3Þ
V , Dð1;2Þ

V , Dð2;3Þ
V , and Dð1;3Þ

V of the liquid
phase at 1400 K, with a step size of δx ¼ 0:0001 and using the COST 531
thermodynamic database.41

The accuracy of the TTMs with rank value R ¼ 3; ¼ ; 10 is verified based
on the RE on the entries of the validation TDTs. For example, for the Gibbs
free energy tensor, the relative error EðGÞR given by

EðGÞR ¼
GVði1; i2; i3Þ �

PR
r¼1 a

ð1Þ
i1 ;r a

ð2Þ
i2 ;r a

ð3Þ
i3 ;r þ RT

PN
i¼1 xi logxi þ xC logxC

� �
þ α

h i
GVði1; i2; i3Þ

						
						:
(29)

The contribution from the ideal mixing term Gid
mix is calculated separately

and added to the values calculated from the TTMs, which only include the
�Gm in equation (11) (see Methods section CALPHAD thermodynamic
model). As discussed in Methods Thermodynamic tensor model training, a
constant value α has to be added to the Gibbs energy values computed

from the TTMs. Analogously, the relative error EðPÞR of the diffusion

potentials and EðDÞ
R of the partial derivatives of the diffusion potentials with

respect to the molar fractions are calculated including their ideal mixing
contributions: see equations (12) and (13). As α is a constant, it does not
appear in the expressions for the diffusion potentials and their partial
derivatives with respect to the molar fractions.
An ECDF is then determined for each rank value R considering all the

values obtained for EðGÞR , EðPÞR , and EðDÞ
R together. The MATLAB fuction ecdf

is used for this. The ECDFs are plotted in Fig. 3a; the IQR, and quantiles
Q ¼ 0:95 and Q ¼ 0:98 are presented in Fig. 3b. Additional quantile values
can be found in the Supplementary Information.
The validation of the 2D simulations using TTMs is conducted based on a

comparison with simulations performed using the direct implementation
of the CALPHAD model (approach b in Fig. 4). The reason for this choice is
the fact that most of the alternatives, presented in Fig. 4, cannot be applied
to a quaternary system owing to certain limitations. For instance, in the
approach that uses polynomial fitting (Fig. 4c), only a narrow region of the
thermodynamic function can be accurately described and since diffusion
paths can become complex for multicomponent systems, it is difficult to
identify which composition region will be most relevant for a simulation.
Moreover, polynomial fits cannot prevent molar fractions from taking an
unphysical value below zero or above one. Although this can be avoided in
binary system, by designing the simulation in such a way that the molar
fraction does not take a negative value, when considering four or more
elements, there is always a time or location in the simulation where one of
the molar fraction fields goes below zero, making the remainder of the
simulation unstable. The approach that uses lookup tables (Fig. 4f) is also
unfeasible in this case owing to the size of the sampled data sets given the
required high resolution, as seen in (Fig. 1a). These approaches, however,
are suitable and straightforward to be applied to binary or ternary systems,
whereas the proposed use of tensor completion requires at least three
independent variables in the thermodynamic descriptions.
The approach that uses the direct implementation (Fig. 4b) of the

CALPHAD model expression and the one that uses an interface with a
thermodynamic software (Fig. 4d) can be applied for quaternary and
higher-order systems. With our implementation of the method that uses an
interface with a thermodynamic software we could only run 1D simulations
in a reasonable amount of time (these are presented in the Supplementary
Information). It should be mentioned that optimisations (mainly based on
the idea of interpolation between previously calculated data) of phase-field
codes using an interface with a thermodynamic software have been
reported in the literature;18,19 however, to the best of our knowledge, only
for binary and ternary systems.
For the method using the direct implementation of the CALPHAD model

expression (CE), we found that (for our implementation) the efficiency is
similar to that using the TTM for the quaternary system. However, such a
comparison is often not relevant. The direct implementation of the
CALPHAD model expression requires access to an open thermodynamic
database (while today, the most advanced thermodynamic databases are
commercial). Moreover, if the phase under study is modelled using

sublattices, it is mostly impossible (except for some special cases) to relate
the phase-field molar fractions with the site fractions in the CALPHAD
expression. Hence, in these cases, the direct implementation of the
CALPHAD model expression is not even possible, whereas the tensor
model can still be formulated. We also observed that the current
implementation of the TTM in the phase-field model is memory bound,
which can be addressed with further optimisation studies. Theoretically,
the TTM method should be cheaper to evaluate than CE.
For the validation of the 2D simulation, the LBM method is used to

estimate the amplitudes of the molar fraction distributions of the
simulated microstructures during spinodal decomposition and consequent
coarsening.42–44 For each simulation, the microstructures obtained at every
thousandth time step are considered. For each microstructure, a Gaussian
mixture model is used to fit the distributions of the molar fraction values
for each of the three independent components with the MATLAB function
gmdistribution. A bimodal distribution is obtained with two means
m1 and m2, corresponding to the compositions of the two liquid phases, as
shown in Fig. 5b–d. The amplitude A is then calculated as the difference
between these two means, i.e., A ¼ jm1 �m2j. The amplitude AR from the
simulation using the TTM with rank value R is compared with the
amplitude A obtained from the simulation using the direct implementation
of the CALPHAD model (approach b in Fig. 4). The relative error E2DR is
defined by

E2DR ¼ A� AR

A

				
				; (30)

and is determined for each molar fraction field and each alloy composition
and for rank values R ¼ 3; ¼ ; 10. Then, the ECDF is calculated for each
rank value R, considering all the RE determined for the different alloy
compositions and the three independent molar fraction fields, obtained for
the given rank value R, together. The ECDFs are plotted in Fig. 6a and the
information of the IQR, Q ¼ 0:95 and Q ¼ 0:98 are presented in Fig. 6b.
In addition, the volume fractions of the two liquid phases are measured

at every thousandth time step as follows. First, the mean of one of the
molar fraction distributions is computed. Then, the grid cells of the
simulation domain are divided into two groups, one containing the grid
cells with a molar fraction value greater than the mean and the other with
the grid cells with a molar fraction value smaller than the mean. The
volume fractions of the two phases are then obtained by dividing the
number of grid cells in each group by the total number of cells in the
simulation domain. This information is presented in Fig. 6c, d.

Phase-field microstructure evolution model
Assuming a volume-fixed frame of reference 48, the temporal and spatial
evolution of the non-equilibrium microstructure of the quaternary Ag-Cu-
Ni-Sn system (C ¼ 4), is described with N ¼ C � 1 ¼ 3 conserved field
variables, namely the molar fractions x1ðr; tÞ, x2ðr; tÞ, and x3ðr; tÞ of silver,
copper, and nickel, respectively. The molar fraction of tin is then obtained
as xC ¼ 1� x1 � x2 � x3.
Following the Cahn-Hilliard49 formalism, the non-uniform free energy

functional is defined as

Fðx1; x2; x3Þ ¼
Z

V
f 0ðx1; x2; x3Þ þ

XN
n

kn
2
ð∇xnÞ2

" #
dr; (31)

where f 0ðx1; x2; x3Þ is the homogeneous free energy density and kn are
positive gradient energy coefficients for n ¼ 1; 2; 3. The variational
derivative of F with respect to xn is given by

δF
δxn

¼ ∂f 0ðx1; x2; x3Þ
∂xn

� kn∇2xn: (32)

The partial derivative of the homogeneous free energy is obtained given
the thermodynamic relation14 in equation (9) as

∂f 0
∂xn

¼ 1
Vm

ðμn � μCÞ ¼
~μn
Vm

; (33)

with ~μn the diffusion potential and μn the chemical potential of component
n (n ¼ 1; 2; 3) and μC the chemical potential of Sn.
The diffusion equation describes the evolution of the conserved field

variables for the multicomponent system7 and is given by

1
Vm

� �
∂xnðr; tÞ

∂t
¼ �∇ ´ Jn; (34)

in which Vm is a constant coefficient approximating the molar volume of
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the alloy. Jn is the diffusion flux of the nth component, which is defined
with the Onsager reciprocal relations50 as

Jn ¼
XN
m

�Mnm∇
δF
δxm

; (35)

in which Mnm is the mobility of component n taken with component m as
reference. As information on the diffusion coefficients for quaternary
systems are scarce, equal atomic mobilities β for all components are
adopted, giving48

Mnm ¼
1
Vm

βxnð1� xmÞ; n ¼ m

� 1
Vm

βxnxm; n ≠ m:

8<
: (36)

Equation (34) is implemented in MATLAB for 1D and 2D simulations
using finite difference discretization with explicit Euler time stepping
and a central three-point (1D) or five-point (2D) scheme for the spatial
coordinates. The parameters β= 10−12 m5/(Js), Vm= 10−5 m3/mol, kn=
5 × 10−11 J/m are used. A domain size of 5 × 10−8 m for the 1D and 25 ×
10−16 m2 for the 2D simulations is considered with a grid spacing of 2 ×
10−10 m. A time step of 10−13 s is used. For each simulation, an evolution
time of 105 simulation time steps, equivalent to10−8 s, is considered.

DATA AVAILABILITY
All data are kept available at KU Leuven and can be accessed upon request.
Alternatively, they can be generated in limited time using the provided codes in
combination with Tensorlab 3.0, MATLAB and TC-toolbox (Thermo-Calc 2017b).
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