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Predicting interfacial thermal resistance by machine learning
Yen-Ju Wu 1, Lei Fang1 and Yibin Xu1

Various factors affect the interfacial thermal resistance (ITR) between two materials, making ITR prediction a high-dimensional
mathematical problem. Machine learning is a cost-effective method to address this. Here, we report ITR predictive models based on
experimental data. The physical, chemical, and material properties of ITR are categorized into three sets of descriptors, and three
algorithms are used for the models. Those descriptors assist the models in reducing the mismatch between predicted and
experimental values and reaching high predictive performance of 96%. Over 80,000 material systems composed of 293 materials
were inputs for predictions. Among the top-100 high-ITR predictions by the three different algorithms, 25 material systems are
repeatedly predicted by at least two algorithms. One of the 25 material systems, Bi/Si achieved the ultra-low thermal conductivity in
our previous work. We believe that the predicted high-ITR material systems are potential candidates for thermoelectric applications.
This study proposed a strategy for material exploration for thermal management by means of machine learning.
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INTRODUCTION
Thermal transport across the interfaces of two different materials
is a crucial issue in micro/nanoscale electronic, photonic, and
phononic devices. A temperature discontinuity exists between the
interface of dissimilar materials; this discontinuity can be
described as interfacial thermal resistance (ITR) in the equation
R= q/ΔT, where q is the heat flux and ΔT is the temperature
difference at the interface. In nanostructured devices, in which the
characteristic length scales are shorter than the phonon mean free
paths, the transport mode is ballistic rather than diffusive, and ITR
becomes the dominant factor of phonon transport as the length
scale decreases. Practically, phonon transport in thin films is
affected by a variety of interfacial properties, including roughness,
binding energy, and the presence of impurities or intermediate
layers of mixed atoms. Even when the interfaces are in perfect
contact, phonon reflections occur across the boundary as a result
of differences in the acoustic properties of adjacent materials.
Thus, several characteristics contribute to ITR, making it difficult to
describe or predict.
Methods such as acoustic mismatch model (AMM), diffuse

mismatch model (DMM), and molecular dynamics (MD) are
commonly used to predict ITR. In AMM and DMM, which were
introduced by Khalatnikov in 1952 and Swartz and Pohl in 1989,
respectively, phonons in the equilibrium state are modeled
without accounting for the nonequilibrium distribution of
phonons.1,2 AMM assumes that incident phonons at an interface
undergo specular reflection or transmission, however, high-
frequency or high-temperature phonons are scattered diffusely
because of the interface roughness, leading researchers to
develop more accurate methods to predict ITR. Prasher proposed
the scattering-mediated acoustic mismatch model (SMAMM) and
modified traditional AMM for weakly bonded atoms at an
interface.3 DMM assumes that phonons are elastically scattered
and lose their memory of transport modes at the interface. In
addition, the transmission probability depends on the ratio of the

phonon density of states (PDOS). Therefore, the assumption of
elastically scattering will result in failure when inelastic phonons
are present, as at the imperfect interfaces, where they create
energy channels. In AMM and DMM models, properties including
temperature, density, sound velocity (longitudinal and transverse),
and unit cell volume, are used as descriptors. However, AMM and
DMM result in large discrepancies between the predicted and
experimental values, with correlation coefficients of 0.6 and 0.62,
and with RMSE of 121.3 and 91.4 (10−9 m2K/W), respectively.4 Both
AMM and DMM assume that the phonons are in equilibrium on
each side of the interface; however, in systems where the layer
thickness is smaller than the phonon mean free path (e.g., systems
with multiple quantum wells and superlattices), the nonequili-
brium distribution of phonons should be taken into account. Thus,
AMM and DMM have important shortcomings that need to be
addressed.
The effect of lattice mismatch at the interface on ITR can be

evaluated by MD simulation. Equilibrium MD is more suitable for
the analysis of transient response measurements, whereas none-
quilibrium MD is applied for steady-state measurements. In
classical MD, atomic motion is calculated from classical Newtonian
mechanics rather than quantum theory, and the zero-point energy
is assumed to be zero. In contrast, ab initio MD provides a higher
accuracy than classical MD, however, the simulation time and
particle numbers are restricted to allow the full quantum
calculation of the electronic structure for every configuration of
atoms. All trajectories of the system often need more information
than that which is known.
Predicting the ITR for various material systems is a time-

consuming process. Generally, the physical explanation with the
different prediction methods mentioned above can be used only
in specific cases. It is difficult to consider every property that might
affect ITR in a single equation, particularly for interfacial
conditions. Machine learning is a cost-effective and time-
efficient method to address this high-dimensional problem. The

Received: 21 December 2018 Accepted: 10 April 2019

1Center for Materials Research by Information Integration (MI2I), Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials
Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Correspondence: Yibin Xu (Xu.Yibin@nims.go.jp)

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://orcid.org/0000-0003-2647-3407
http://orcid.org/0000-0003-2647-3407
http://orcid.org/0000-0003-2647-3407
http://orcid.org/0000-0003-2647-3407
http://orcid.org/0000-0003-2647-3407
https://doi.org/10.1038/s41524-019-0193-0
mailto:Xu.Yibin@nims.go.jp
www.nature.com/npjcompumats


machine learning has been implemented for thermal transport
properties in many reported works. Xin Qian et al. developed
Gaussian approximation potential models for analyzing the
phonon dispersion stability.5 Shenghong Ju et al. designed the
Si/Ge interfacial structure for controlling heat conduction through
atomistic Green’s function and Bayesian optimization.6 Masaki
Yamawaki et al. used Bayesian optimization for multifunctional
structural design of graphene nanoribbons for thermoelectric
materials.7 Our previous work also shows promising improve-
ments of ITR predictive performance compared with the common-
used AMM and DMM models through machine learning.4 And, the
melting point, heat capacity, unit cell volume, density, and film
thickness were proposed to be important descriptors for ITR
prediction.4

In general, the larger dissimilarities of phonon properties lead to
high ITR corresponding to the temperature. However, the inelastic
interfacial scattering processes, which would be influenced by the
interfacial quality, interfacial bonding, and phonon transmission
coefficient, become important at and above the room tempera-
ture. Therefore, the physical and chemical properties which affect
the interfacial quality should be carefully considered. Based on the
thermophysical properties selection of our previous work,4 in this
study, we will further discuss how we consider lots of important
factors, especially the interfacial conditions, through machine
learning. In the following, we will introduce how we evaluated the
models, analyzed the predictions. The details of data collection,
descriptor selection, and algorithms selection can be found in the
Method section.

RESULTS AND DISCUSSION
Predictive performance
The predictive performance by three different algorithms was
estimated by R, R2 and RMSE as shown in Table 1. The R values of
Regression tree ensembles of LSBoost (simplified as LSBoost),
support vector machines (SVMs), and Gaussian Regression
Processes (GRPs) models trained with all the descriptors are
0.958, 0.938, and 0.957, whereas the RMSE values are 8.944,
10.897, and 9.073 (10−9 m2K/W), respectively. The R and R2 values
of the LSBoost, SVMs, and GRPs models with all descriptor sets are
all higher than those with only the thickness and property
descriptors, while all the RMSE are further reduced. It is said that
introducing the compound and process descriptors, which
provides chemical characteristics and material compositions
information, can enhance the predictive performance of all three
models. Take LSBoost model for example, the experimental ITR
values against predicted ITR values are shown in Fig. 1. The navy
circles are the results predicted by the SVMs model with all

descriptors while the orange squares are the results predicted with
thickness and property descriptors. The orange circles are more
scattered and far away from the black diagonal line. In other words,
by including all the descriptor sets, the mismatch between the
predicted and experimental values becomes smaller. To further
investigate the effect of descriptors on the ITR prediction, three
material systems with the largest improvement were taken as
examples in larger scale. Figure 2 shows the ITR experimental values
against predicted values of Pb/diamond (circle), Au/GaN (square),
and Au/Ti/GaN (triangle), respectively. The predictive performance of
all of these material systems are improved by the models with all
descriptors, even for the material system with interlayer such as Au/
Ti/GaN. For the Pb/diamond, the predicted ITR value get closer to
the experimental value by 16.5 (10−9 m2K/W).

Table 1. The predictive performance evaluation of R, R2 and RMSE by
various algorithms

Algorithms R R2 RMSE

All descriptors

LSBoost 0.958 0.919 8.944

SVM 0.938 0.879 10.897

GPR 0.957 0.916 9.073

Property descriptors, thickness

LSBoost 0.952 0.907 9.575

SVM 0.815 0.664 18.171

GPR 0.934 0.871 11.271

Note: The top are the models predicted with all descriptors listed in Fig. 8
and the bottom are the models predicted with property descriptors and
thickness

Fig. 1 The mismatch between experimental and predicted ITR
values by LSBoost model. The navy spheres represent the values
predicted by the model with all descriptor while the orange squares
are predicted by the model with property descriptors and thickness

Fig. 2 The mismatch between experimental and predicted ITR
values by LSBoost model of three interfaces, Pb/diamond, Au/GaN,
and Au/Ti/GaN, are represented as circle, square, and triangle,
respectively. The navy symbols represent the values predicted by
the model with all descriptor while the orange symbols are
predicted by the model with property descriptors and thickness
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Generally, the database is not sufficiently large (e.g., lack of
experimental results for some material systems; more data for
binary systems than for ternary or quaternary systems), therefore,
the known physical and chemical knowledge should be included
as descriptors to assist the machine in learning from the data.

ITR prediction
After achieving high predictive performance, we input 80,282
material systems (metal/metal is excluded) to predict by the three
models of LSBoost, GPRs, and SVMs. The 80,282 material systems
are composed of 293 materials that the similarities between
materials can be found in Fig. 3. These 293 materials are elements
or binary compounds. The materials included in the training
dataset are defined as red stars and the other materials are
defined as navy spheres in Fig. 3. The similarities are evaluated by

Euclidean distance of all descriptors (except for thickness,
interlayer) and then projected in the two-dimensional plot
through metric Multidimensional scaling (MDS),8 which uses a
similarity matrix to plot the graph between a series of n objects to
the coordinates of the same objects in an m-dimensional space.
The m is usually fixed at two or three so as to be visualized easily.
That is to say, the metric MDS seeks a low-dimensional
representation of the data in which the distances between output
two points are as close as possible to the similarity in the original
high-dimensional space. The distance between two points is
shorter, the similarities of their descriptors (properties) are higher.
For examples, the metals which are located in the left bottom
have different EN and IP properties compared with other
inorganic compounds, Pr6O11 and Fe7Se8 which are far away
from the other materials have large unit cell volumes, and LiH
which is on the top alone has high heat capacity and low density
than the averages.
From the ranking of ITR predictions, we compared the top-100

high-ITR material systems predicted by models of LSBoost, GPR,
and SVM. Among the top-100 high-ITR material systems, there are
25 material systems repeatedly predicted by at least two models
as shown in Fig. 4a. The predicted top-100 high-ITR material
systems are illustrated by circles in Fig. 4a, and the intersections
show the repeatedly-predicted material systems. There are 13 and
15 material systems predicted by SVMs and LSBoost, and SVMs
and GPRs, respectively as shown in Fig. 4a. Besides, there are three
material systems, Bi/graphite, Bi/diamond, and Bi/B, predicted by
all three models corresponding to the orange points in Fig. 4b.
The similarities of the 25 material systems are plotted by two-
dimensional MDS in Fig. 4b. These 25 material systems in the MDS
plot are mainly separated into two groups: Bi/oxides and AsI3/
Tellurides or Iodides (such as Sb2Te3, and CdI2).
The linear correlation by Pearson heatmap between the

descriptors and ITR by the three models can be found in Fig. 5.
If the color is lighter yellow or darker navy, it shows stronger
positive or negative linear correlation with ITR, respectively. From
the prediction of 80,282 various material systems, there is no
obvious correlation except melting point and mass in Fig. 5a–c. On
the other hand, from the prediction of the top-100 high-ITR
material systems, the stronger linear correlation of compound
descriptors, such as atomic coordinates, binding energy and ionic
potential, can be found in Fig. 5d–f. Besides, some descriptors of

Fig. 3 The two-dimensional MDS plot of 293 materials by their
properties including heat capacity, density, melting point, unit cell
volume, composition ratio, atomic coordinate (AC), electronegativity
(EN), ionization potential (IP), mass, and binding energy. The red
stars are the materials included in the training dataset, and other
materials are navy spheres. The similarities of properties are higher,
the distance between two points is closer

Fig. 4 a The circle regions represent the top-100 high-ITR material systems predicted by the three models of LSBoost, GPR, and SVM. The blue
and orange intersection regions express the 25 material systems repeatedly predicted at least by two models. b The two-dimensional MDS
plot of the 25 material systems according to the blue and orange regions in a. The three orange points are predicted by all three models. The
similarities of properties are higher, the distance between two points is closer
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the two materials in Fig. 5d–f, (e.g., f_melt and s_melt, f_density
and s_density, f_AC1y and s_AC1y), show opposite linear trends. It
is said that if the differences of several descriptors between the
two materials are larger, the ITR might be increased. However, the
effect of descriptors on the target (ITR) cannot be considered
individually, but a combination effect based on various algorithms.
Although all three models have similar improved trend on
predictive performance after introducing all descriptors, the
improvement of various material systems might differ among
three models. The predicted ITR of the 25 material systems by the
three models can be found in Fig. 6. Some material systems, such
as Bi/BeO, Bi/Al2O3, and Bi/Si, have very close predicted values,
while some material systems, such as AsI3/ PtTe2 and AsI3/Bi2Te3,
have larger differences. It is normal that the predicted values differ
among various algorithms even if the predictive performance are
all higher than 93 %. It is also implied that the correlation between

the descriptors and the target (ITR) might have various regulations
and be fitted by several algorithms. In order to prevent the partial
and inadequate analysis, the intersection region among the three
models with high accuracy would be a good way to seek the
candidates from the prediction.
We measured the ITR of Bi/Si interface by frequency-domain

thermoreflectance9 as 51.8 ± 4.5 (10−9 m2K/W), which is in the
range of the predicted ITR of 50.68–61.13 (10−9 m2K/W) as shown
in Fig. 6. The Bi/Si material systems, the red points in Fig. 4b and
Fig. 6, achieved the ultralow thermal conductivity of
0.16Wm−1K−1.10 This thermal insulating Bi/Si nanocomposite thin
film, which was proposed for the first time, was composed of
crystallized-Bi in an amorphous-Si matrix by a laboratory-built
combinatorial sputtering system. The low thermal conductivity
can be attributed to the high ITR, high ratio of interfacial surface
area to volume and high atomic ratio of Si/Bi. The details of
interfacial design and nanostructure analysis can been found in
our previous paper.10 It is proved that the high-ITR predictions are
potential candidates for thermal insulating applications. Through
the ITR prediction by machine learning, the material systems
exploration for thermal management can be accelerated.
A precise ITR prediction through machine learning with high

correlation coefficient R of 0.96 was achieved by further
considering the interfacial conditions based on chemical, physical,
and material properties. The descriptors are categorized into three
descriptor sets: property descriptors, compound descriptors, and
process descriptors, respectively, as shown in Fig. 8. From the top-
100 high-ITR prediction among 80,282 kinds of material systems,
25 material systems were repeatedly predicted by at least two of
the models of LSBoost, GPRs, and SVMs. There are two main
groups of the 25 material systems as shown in MDS plot: Bi/oxides
and AsI3/ Tellurides or Iodides. One of the 25 material systems, Bi/
Si, accomplished the ultralow thermal conductivity of
0.16Wm−1K−1. The high-ITR prediction is proved to be the
potential candidates for thermal insulating or thermoelectric
applications. The ITR predictive model can also be extended for
more specific thermal needs by limiting the material searching
space, such as high melting point for high temperature

Fig. 5 The Pearson heatmap of the correlation between the descriptors and ITR. The (a–c) are the predictive results of 80,282 different
material systems by SVM, GPR, and LSBoost, respectively. The (d–f) are the predictive results of top-100 high-ITR material systems by SVM, GPR,
and LSBoost, respectively. The f and s represent the two materials in the material system. The property descriptors [heat capacity (heatcap),
density, melting point (melt), and unit cell volume (unit).] and compound descriptors [composition ratio (R), atomic coordinate (AC),
electronegativity (EN), ionization potential (IP), mass, and binding energy (Eb)]. The R1 and R2 represent the composition ratio of first and
second elements. The AC coordinates are defined as (ACix, ACiy), where i represents the order of the element of the compound, and x and y
are the group and period in the periodic table, respectively. ENc and ENa, and IPc and IPa represent the EN and IP of cation and anion,
respectively

Fig. 6 The distribution of predicted ITR by the three models of SVM
(square), GPR (circle), and LSBoost (triangle). The input conditions of
thickness and temperature are set as 90 nm and 298 K. The orange
points are the three material systems in the orange intersection
region corresponding to Fig. 4a. The red points show the predicted
ITR of Bi/Si which was proved to have similar value with experiments
of 51.8 ± 4.5 (10−9 m2K/W) as black star
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environment. This strategy can accelerate the material develop-
ment for thermal management.

METHODS
Data of ITR
The ITR database in this study contained 1317 data entries describing 456
interface samples composed of 54 materials, including metals, semicon-
ductors and insulators. The materials are elements or binary compounds.
The 456 interfaces are defined by the film, interlayer, substrate materials,
measurement temperatures and experimental conditions. The 1317 data
entries contained in the database are experimental data collected from 85
published papers as shown in Fig. 7.9,11–93 Generally, the ITR decreases
with the temperature increasing as shown in Fig. 7. The main contribution
for heat transfer of metals is mobile electrons, however the heat transfer of
non-metals is lattice vibrations. Therefore, the metal/metal interfaces are
not considered together in the training dataset. Besides, the interfaces
including 2D materials (e.g., graphene, MoS2), compounds with uncertain
compositions (e.g., TiOx), polymers, or under specific treatment such as
plasma bombardment are not considered this time.

Descriptor selection
Lots of factors, such as interface conditions, thermal properties of materials
adjacent to the interface and temperature, can affect the ITR; these
properties determine the transfer mode and efficiency of the carriers. In
general, constructing the machine learning model in material science
suffers from the lack of data or the inconsistency from the references,
especially some material properties such as thermal conductivity, sound
speed, and Debye temperature. If the data has missing properties, then it

cannot be used for training or further predicting and the size of the dataset
will shrink a lot. From our previous paper, the thermal related properties of
heat capacity, density, melting point, and unit cell volume, as well as the
material property of thickness were selected as good descriptors with high
data-consistency among the references and high data-availability, and
achieved good predictive performance.4

However, when two materials meet at an interface, the new binding will
form aside materials and tend to reduce the total energy of the system.
The mode of phonon transfer changes based on the interfacial conditions,
and the PDOSs of the two materials forming the interface shift to reduce
mismatch between the materials, thereby improving the thermal
conductance.94,95 Thus, the interfacial conditions which become important
especially at or above the room temperature should be further considered
in the model. In order to enhance the machine predictive power based on
the known knowledge, we further considered the interfacial properties and
categorized these properties into three descriptor sets (property descrip-
tors, compound descriptors, and process descriptors), as shown in Fig. 7.
Property descriptors include the physical thermal properties, which is
based on the previous results,4 of the materials on both sides of the
interface, whereas compound descriptors include the properties that can
describe the chemical characteristics of the interfaces (e.g., binding energy,
electronegativity, and ion potential). Process descriptors include the
properties that can be tuned during the experimental procedure, such
as film thickness and interlayer (e.g., Al/SiO2/Si: with interlayer and Al/Si:
without interlayer). These descriptors were collected from various sources,
including Atom Work Adv in NIMS,96 TPRC data series,97 and published
papers.9,11–93

The compound descriptors were atomic ratio (R), atomic coordinate
(AC), electronegativity (EN), ionization potential (IP), mass, and binding
energy (Eb) as shown in Fig. 8. The atomic ratio of the compounds for the
first and second elements was defined as R1 and R2, respectively; take
Al2O3 for example, R1 and R2 are 2 and 3. AC represents atomic coordinates
defined from the periodic table: the group as the x coordinate and the
period as the y coordinate as (ACix, ACiy), where i represents the order of
the elements of the compound. For a binary compound, the coordinates of
each element of the compound are introduced. As an example, the
coordinates of (AC1x, AC1y) and (AC2x, AC2y) for AlN are (13, 3) and (15, 2),
respectively. These coordinates also provide the information of atomic
radius and electronic configuration. In the periodic table, the atomic radius
increases from right to left of group and from up to bottom of period.
Groups 2 and 15 of the periodic table are more stable as a result of the
completely filled and half-filled electronic configurations, respectively.
Element in groups 2 or 15 are thought to need more energy to remove
electrons from the outside orbitals. EN reflects the ability of an atom to
attract an electron and can be used to predict the formation of ionic or
covalent bonds. EN ranges from 0 to 4, with a higher EN indicating greater
attraction to electron. IP is the energy required for an isolated atom to
discharge an electron and become a cation. The degree of mismatch in
mass and bond energy also affects the ITR of two dissimilar materials. Choi
et al. reported that differences in mass and bond energy result in
mismatches between phonon dispersion and limit high frequency phonon
transport at the interface.98

The process descriptors include film thickness and interlayer. Film
thickness is proved to be an important descriptor and affect the predictive
performance a lot in our previous paper.4 The change in phonon
transmission probability at the interface corresponds to the change in
thickness.60,94 The interlayer reflects whether an interlayer is present
between the materials at the interface; it is assigned a value of either 1 (if
an interlayer is present) or 0 (if no interlayer is present). In many cases, the
adhesion layer, a naturally or thermally formed oxidation layer, and surface
plasma treatment will form interlayers or a mixed region between the
materials instead of a clear interface. Hopkins et al. reported that increased
atomic mixing and disorder at the interface have detrimental effects on
ITR.52 Deng et al. proposed that in the weak interfacial coupling, the
detailed interfacial nanostructure and thickness of the heterojunction
significantly affect the ITR; whereas the structural effects are not obvious in
cases of strong interfacial coupling.99 In other words, the interfacial serves
as a coupling layer to tune the phonon transport mode and DOS,
particularly when the interfacial film has mediating vibrational proper-
ties.94 Moreover, the interlayers or materials with mediating properties
along the heat flux may possibly enhance the channels for thermal
conductance.95 After selecting the descriptors, the three descriptor sets
were used to train and generate the predictive models.

Fig. 7 The interfacial thermal resistance against the measurement
temperature of the experimental data collected from 85 published
papers. The ITR of metal/metal interfaces are represented by half-
filled orange squares, and the other interfaces are represented by
navy spheres

Fig. 8 List of the three descriptor sets: property descriptors,
compound descriptors, and process descriptors
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Machine learning
The entire dataset was randomly separated into ten folds: one testing fold
and nine training folds. This process was repeated ten times while keeping
the testing folds orthogonal to each other so that the testing data were not
duplicated. During each iteration of this process, embedded ten-fold cross
validation was conducted to generate appropriate hyperparameters for
optimizing the model. After the ten times iterations, the correlation
coefficient R, R2 and the root-mean-squared error (RMSE) of the ten test
folds from each process were used to estimate the models.
According to the previous paper, the linear repressor which has worse

predictive performance and the auto-descriptors-selected regressors (e.g.,
Least-absolute shrinkage and selection operator regularization (LASSO-
GLR)) which neglects the necessary descriptors (e.g., measurement
temperature) are not suitable for this dataset.4 Therefore the support
vector machines (SVMs), Gaussian Regression Processes (GRPs) and
Regression tree ensembles of LSBoost (simplified as LSBoost)100,101 were
used in terms of the dataset size and non-linear based regressors. SVMs
and GPRs are kernel-based algorithms, the front constructs an optimal
hyperplane as a decision surface to separate and train the observations,
and the latter is a nonparametric method which finds a distribution over
possible functions f(x) consistent with the observations. The kernel
functions used for SVMs and GPRs in this study are both Radial Basis
Function. LSBoost performs least-squares boosting, which fits regression
ensembles to minimize mean-squared error. The ensemble fits a new
learner using the difference between the observed response and the
predictions of all previous learners. The algorithms were run using MATLAB
statistical software.101 The acquisition function for hyperparameters
optimization was expected-improvement-plus for all algorithms. The initial
algorithm settings and additional algorithms details can be found in our
previous paper and the Matlab Statistics and Machine Learning
Toolbox.4,101
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