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First-principles-based prediction of yield strength in the
RhIrPdPtNiCu high-entropy alloy
Binglun Yin1 and William A. Curtin1

High-entropy alloys are random alloys with five or more components, often near equi-composition, that often exhibit excellent
mechanical properties. Guiding the design of new materials across the wide composition space requires an ability to compute
necessary underlying material parameters via ab initio methods. Here, density functional theory is used to compute the elemental
misfit volumes, alloy lattice constant, elastic constants, and stable stacking fault energy in the fcc noble metal RhIrPdPtNiCu. These
properties are then used in a recent theory for the temperature and strain-rate dependent yield strength. The parameter-free
prediction of 583 MPa is in excellent agreement with the measured value of 527 MPa. This quantitative connection between alloy
composition and yield strength, without any experimental input, motivates this general density functional theory-based
methodological path for exploring new potential high-strength high-entropy alloys, in this and other alloy classes, with the
chemical accuracy of first-principles methods.
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INTRODUCTION
High-entropy alloys (HEAs), also called multiple principal element
alloys, nominally consist of five or more elements at near-equal
compositions in a single crystalline phase.1 Many HEAs possess
high yield strengths, ultimate strengths, and/or ductility, making
them a broad new class of candidates for structural applications.2–4

As a result, new materials are emerging rapidly. In the noble metal
family, Sohn et al.5 reported a single-fcc-phase RhIrPdPtNiCu
system with compressive yield strength σy= 527MPa, ultimate
strength of 1839MPa, and strain to failure of 32.4%, the latter two
properties rivaling the strongest and toughest steels.6 However,
HEAs must not only match currently available structural alloys but
exceed them in one or more properties. Since there is no physical
restriction to near-equi-composition random alloys, the available
composition space for multi-property optimization is vast. Search-
ing through that space can be greatly facilitated by theory and
modeling for both property prediction and phase stability.
Accurate predictions require both accurate theories and the
chemically accurate inputs to those models, and the latter leads
to the application of first-principles methods.
Strength and ductility depend on the motion and interaction of

dislocations through the random alloy. First-principles modeling
of dislocations in pure elemental metals alone is challenging.
Studying the required properties/behaviors of dislocations in
complex HEAs is even more formidable. Thus, theories are needed
to predict the desired properties based on computationally
accessible material inputs. The first property of interest is the
initial yield strength. This is the stress at which pre-existing
dislocations can first start to move through the crystalline lattice
and generate the on-going plastic strain at the macroscopic
imposed strain-rate and temperature. A general theory has been
developed to predict the temperature and strain-rate dependent
yield strength in random fcc alloys.7,8 The theory envisions the

HEA as an “effective-medium matrix”, and each elemental atom in
the alloy acts as a solute in the effective matrix. With an additional
assumption that the solute/dislocation interaction energies are
governed by elasticity, the model then requires only the average
material properties of the alloy matrix and the properties of the
elemental solutes in that average matrix.
Here, we use first-principles density functional theory (DFT) to

compute all the necessary alloy properties that enter the theory,
for the 6-component RhIrPdPtNiCu alloy studied recently. We
present a new and general method to compute the required
solute misfit volumes in the multicomponent random alloys,
which then enables parameter-free and experiment-free predic-
tion of the yield strength. Good agreement with experiment is
achieved, establishing the overall methodology as a framework for
computationally guided design of new fcc HEAs.

RESULTS
Theory of yield strength in multicomponent random alloys
We consider a general fcc alloy containing Nelem types of alloying
elements at concentrations {cn} (with

PNelem
n¼1 cn ¼ 1), with all

alloying elements distributed randomly on the fcc lattice sites.
There is thus a probability cn that any given lattice site will be
occupied by a type-n atom. The strengthening of the random alloy
arises through solute/dislocation interactions. The interaction of
the dislocation with the random fluctuations in the local solute
concentrations induces the dislocation to become wavy over
some characteristic wavelength 4ζc and amplitude wc that
minimize the total energy of the system. The wavy dislocation is
then locally trapped in low-energy regions. Dislocation motion,
and plastic strain, thus occurs by stress-assisted thermal activation
across the adjacent high-energy regions along the dislocation
glide plane and into the next low-energy regions. The theory
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computes the fundamental zero-stress energy barrier ΔEb and
zero-temperature flow stress τy0 from which the yield stress at
finite temperature T and finite strain-rate _ϵ are obtained. The
theory is well described in the recent literature8 and has been
validated against molecular dynamics simulations in model alloys
using semi-empirical interatomic potentials.7

To make the theory computationally accessible, it has been
simplified through the use of elasticity theory.7 In this limit, the
solute/dislocation interaction energy of a type-n solute in the alloy
is modeled as −p(x, y)ΔVn where p(x, y) is the elastic pressure field
at solute position (x, y) due to a dislocation centered at the origin
and ΔVn is the average misfit volume of the type-n solute in the
alloy. With this simplification, the theory becomes analytic for fcc
alloys. Specifically, the zero-stress activation barrier ΔEb and the
zero-temperature shear yield stress τy0 (stress at which the energy
barrier is zero) are

ΔEb ¼ 2:5785
Γ

b2

� �1
3

b3P
2
3δ

2
3;

τy0 ¼ 0:04865
Γ

b2

� ��1
3

P
4
3δ

4
3;

(1)

where b is the dislocation Burgers vector, and

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
n

cnΔV2
n=ð9b6Þ

r
(2)

is the well-known δ-parameter that describes the collective effect
of the misfit volumes of all the elements in the alloy. In addition,

Γ ¼ αμ110=111b
2;

μ110=111 ¼ ðC11 � C12 þ C44Þ=3 (3)

are the dislocation line tension and shear modulus for fcc slip on
the {111} plane in the 〈110〉 direction expressed in terms of the
standard cubic elastic constants, respectively. The dimensionless
line tension parameter α= 1/8 is accurate for several fcc metals.
The last quantity in Eq. (1) is an elastic coefficient P= P(Cij)
associated with the anisotropic dislocation pressure field. For fcc
metals, P can be written in terms of appropriate averaged isotropic
elastic constants μave and νave as

P C11; C12; C44ð Þ ¼ μave
1þ νave

1� νave
: (4)

Previous applications of the model used experimentally measured
isotropic elastic constants of the alloy, μexpt and νexpt.7,9,10 A
forthcoming full anisotropic analysis will demonstrate that the use
of the Voigt-averaged elastic constants

μV ¼ C11 � C12 þ 3C44ð Þ=5;

νV ¼ 3B� 2μV

2ð3Bþ μVÞ ;

B ¼ C11 þ 2C12ð Þ=3;

(5)

where B is the bulk modulus agrees with the full anisotropic model
to within ~3% over a wide range of elastic anisotropy. We will thus
use the Voigt-averaged values.
The resulting strength versus temperature T and strain-rate _ϵ is

τyðT ; _ϵÞ ¼ τy0ðTÞ 1� kBT
ΔEbðTÞ ln

_ϵ0
_ϵ

� �2
3

" #
; (6)

where _ϵ0 = 104 s−1 is a reference strain-rate determined by the
dislocation density and other factors. The properties entering
τy0(T) and ΔEb(T) should in principle be computed at the
temperature of interest, especially the elastic constants. We
discuss this further in Section “Yield strength prediction.”
Experiments are typically performed in uniaxial tension on random
untextured polycrystalline specimens. The measured uniaxial yield

stress is related to the shear yield stress as σy=Mτy where M=
3.06 is the Taylor factor for random fcc polycrystals.
Dislocations in fcc metals dissociate into two partial dislocations

separated by a stacking fault. The two partials are separated by a
distance d and each partial dislocation also spreads across a few
atoms with the spreading characterized by a Gaussian function
with standard deviation σ. This complex dislocation structure
should thus influence the strengthening, since the solutes interact
with the actual dislocation structure. Full analysis of the elastic
theory as a function of d reveals that the strength is nearly
independent of d for d≳ 6.5b. The spreading parameter σ has been
examined in several atomistic simulations using interatomic
potentials and the typical values are 1.5 ≤ σ/b ≤ 2.0. The analytic
model above (Eq. (1)) with the numerical coefficients given
corresponds to a sufficiently large partial separation d≳ 6.5b and
σ/b= 1.5. The use of these values has yielded very good
predictions in comparison with experiments.7,9,10

From the above summary, we see that the required inputs to
the analytic theory are the fcc lattice constant (a0 with
b ¼ a0=

ffiffiffi
2

p
), the elastic constants (C11, C12, C44), and the solute

misfit volumes (ΔVn) at the alloy composition {cn}. The partial
separation must also be d≳ 6.5b, which can be well-estimated in
anisotropic elasticity as d= K/γssf where γssf is the stable stacking
fault energy of the alloy and K is an anisotropic elastic parameter
computed exactly in terms of dislocation character, elastic
constants, and Burgers vector.11–15 All of the above quantities
can be computed by first-principles using the methods described
in Section “DFT methodology”, leading to yield strength predic-
tions given in Section “Yield strength prediction.”

Misfit volumes
We consider, in general, an alloy containing Nelem types of alloying
elements at concentrations {cn}. The average misfit volume of a
type-n atom in the random alloy can be conceptually defined as

ΔVn ¼
X
m

cm ΔVn=m
D E

; (7)

where 〈ΔVn/m〉 is the volume change caused by replacing one
type-m atom with type-n atom and with the brackets indicating
averaging over many different such replacements where the atom
of interest has different surrounding atomic environments.16

Performing this actual procedure is computationally costly and
unnecessary, but the definition remains useful. Operationally, we
consider a macroscopic sample with Ntot atoms and total volume
V tot
0 at the alloy composition. We then add ΔNn type-n atoms by

replacing ΔNm=−ΔNncm/(1− cn) type-m atoms for all m ≠ n at
randomly chosen type-m atom sites in the sample. The volume of
the new random alloy is V tot ¼ V tot

0 þP
m �ΔNmð Þ ΔVn=m

� �
. The

average atomic volume V= Vtot/Ntot can then be expressed as

V ¼ V0 þ ΔVnxs;

with xs ¼ ΔNn

Ntotð1� cnÞ :
(8)

After adding the additional type-n atoms, the changes of the
elemental compositions are (1− cn)xs for the type-n atom and
−cmxs for all the other element types m ≠ n. The new alloy can
thus be considered as a pseudo-binary alloy with a formula
½type�n atom�xs matrix cnf g½ �1�xs , where the matrix is the original
alloy and the “solutes” are the extra type-n atoms introduced into
the effective matrix. Similarly, ΔNn type-n atoms can be removed
(ΔNn < 0) with other atom types added as ΔNm=−ΔNncm/(1− cn)
for all m ≠ n. The total volume is then
V tot ¼ V tot

0 þP
m ΔNm ΔVm=n

� �
, with 〈ΔVm/n〉=−〈ΔVn/m〉. This

procedure leads again to Eq. (8), but with xs being negative.
Therefore, measuring the sample volume at different values of
xsj j � 1 for all solute types enables the determination of the
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desired misfit volumes ΔVn for all solutes in the alloy at the
composition of interest.
To compute the average atomic volumes V(xs) of the various

pseudo-binary random alloys, and the lattice constant and elastic
constants at the central composition, there are various methods,
such as cluster expansion (CE) method,17 small set of ordered
structures (SSOS) method,18 similar local atomic environment
(SLAE) method,19 etc. To date, the two most widely used methods
are the special quasi-random structures (SQS)20 and the coherent
potential approximation (CPA).21 The supercell method combined
with the concept of SQS has the very important advantage that
explicit local lattice distortions within the SQS supercell are
possible. On the other hand, the CPA method can mimic the
perfect chemical disorder within one primitive cell. In this work,
we need to compute the atomic volumes, lattice constants, and
elastic constants precisely, where the local lattice distortion should
be explicitly considered. Previous literature has shown that the
local lattice relaxation has a significant effect on the alloy
properties, e.g., formation energy.22 We also wish to assess
accuracy of the computed quantities, which can be accomplished
using multiple realizations and sizes of the SQS cells. The SQS
method is strongly preferred for these reasons, and is used here.
Application of the above strategy to the equi-composition 6-

component (ABCDEF) alloy such as RhIrPdPtNiCu alloy is achieved
as follows. We start with a supercell ABCDEFð ÞN0

(total number of
atoms Ntot= 6N0). We then add 5N1 atoms of type A and remove
other atom types equally, leading to the pseudo-binary composi-
tion A6N1 ABCDEFð ÞN0�N1

with xs= 6N1/Ntot. Similarly, removing 5N1

atoms of type A and adding the other elements equally leads to
the pseudo-binary composition A�6N1 ABCDEFð ÞN0þN1

and xs=
−6N1/Ntot. This is repeated for each individual atom type (B, C, …)
in the alloy. In fact, there is no actual need to use the same
supercell when adding/removing atoms; this is just the clearest
way to understand the process. Then, the pseudo-binary formula
becomes of particularly high value. In practice, only the quantities
6N1 and N0− N1 (or −6N1, N0+ N1) need to be integers. For
example, in Table 1, the xs=−3.1 at.% case is achieved using N1

= 2/3 and N0= 64/3, corresponding to −6N1=−4, N0+ N1= 22
with Ntot= 128. The pseudo-binary concept thus leads to
considerable flexibility in the choice of supercell size for each
individual composition.
The choice of the supercell composition formulas is flexible but

a few guidelines are helpful. First, Ntot should be neither too large
nor too small. A large value is computationally costly while a small
value might be insufficient for achieving an SQS of high quality.
According to the literature, good representations of chemical
disorder can usually be achieved using approximately several tens
of atoms.22 Second, |xs| should be neither too large nor too small.
If too large, the volume change might exceed the domain of linear
changes around the central composition. If too small, the
uncertainty due to the configurational randomness will greatly
increase the uncertainty in the deduced misfit volumes. The
supercells and formula units used here are shown in Table 1, and
satisfy 100 < Ntot < 150 and 0.03 < |xs| < 0.06.

For each composition, the SQSs are generated independently
using the ATAT code.23 For the 6-element alloys here, SQS
generation at the necessary supercell sizes of 100 ~ 150 atoms is
computationally intensive.18 Fortunately, the resulting structures
can be used multiple times by switching the atom types. In
addition, these SQSs can immediately provide candidate SQSs for
other alloys having fewer components with compositions in
multiples of 1/6, such as A2BCDE, A4B2, etc. For a given 6-
component SQS, there are many different possible SQS structures
for alloys with fewer components. The best SQS from among the
possibilities is easily determined by evaluating the SQS quality,
e.g., the SQS error using available error estimates.24 The present
SQSs can therefore be easily used for studying new alloys without
any further time-consuming searches for new SQSs. For this
reason, we provide the exact SQSs used here (https://doi.org/
10.24435/materialscloud:2018.0019/v1).
With the SQS construction as described above, the equilibrium

atomic volumes are computed by minimizing the total energy
versus volume with full relaxation of all ions and supercell shape.
We perform calculations for multiple samples at the same and/or
various xs to improve the overall accuracy of the final misfit
volumes. From the entire set of DFT-computed equilibrium atomic
volumes, we then perform a linear regression with one constraintP

n cnΔVn ¼ 0 to obtain the misfit volumes ΔVn for all solutes and
the atomic volume V0 at the desired composition {cn}. Figure 1
shows the computed atomic volumes versus compositions xs for
all alloys studied here around the RhIrPdPtNiCu composition. We
obtain the lattice constant and misfit volumes shown in Table 2.
Importantly, from the totality of the data computed, we can
compute the 95% confidence intervals for the lattice constant
(±0.00017 Å) and misfit volumes (±0.093 Å3), respectively. The
misfit quantity δ in the theory for yield strength is then computed
as δ= 3.873%, as shown in Fig. 1 and summarized in Table 2, with
95% confidence interval within ±0.2%.

Elastic constants
The elastic constants of the alloy are computed starting from the
equilibrium states of the two SQS structures of the random
RhIrPdPtNiCu alloy containing 108 and 144 atoms, respectively.
These systems have small initial (Pulay) stresses σ0i (i= 1...6) using
the Reuss contracted notation. We use the well-established stress
method.25 Six linearly independent strain tensors are applied
(non-zero components= 0.002) and the corresponding stress
tensors are computed in DFT. The elastic constants are then
computed from σi � σ0

i ¼ Cijϵj . In one least-squares fitting, we
calculate all 21 Cij components of Cij,108 and Cij,144 (in GPa). The
elastic constants expressed in the standard 6 × 6 Voigt matrix
notation for the two different SQS cells are

286 176 176 �4 �2 �3

296 182 �4 1 �3

297 �5 0 �2

111 �2 �2

Sym 113 �2

113

2
666666664

3
777777775
;

284 172 171 �1 �3 �2

288 176 �1 0 �1

286 0 �2 �1

111 �1 0

Sym 110 �2

112

2
666666664

3
777777775
:

The fcc-symmetry is broken in these small cells of random
alloys. To obtain the fcc constants Cij, we take the averages of all
the fcc-symmetry-equivalent components over both structures.
The remaining Cij components are set to zero (the averages being
negligible). The resulting values are C11= 289 GPa, C12= 176 GPa,
and C44= 112 GPa. Since each elastic constant is an average over
six values, we can compute the 95% confidence interval, which
results in ~±2% of the mean value. The bulk modulus B= (C11+
2C12)/3= 214 GPa obtained from the averaging is very close to the
values of B computed from the energy versus volume for the two
structures (215 and 214 GPa, respectively).

Table 1. Compositions and supercell formulas used here to compute
misfit volumes

xs (at.%) Formula Ntot

5.6 A6(ABCDEF)17 108

4.2 A6(ABCDEF)23 144

0.0 A0(ABCDEF)18 108

0.0 A0(ABCDEF)24 144

−3.1 A−4(ABCDEF)22 128
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This alloy is moderately anisotropic, with Zener anisotropy index
A= 2C44/(C11− C12)= 1.98. The Voigt-averaged elastic constants
that enter the strength theory are μV= 90 GPa and νV= 0.316. For
this value of A, the full anisotropic value of P in Eq. (1) is only
~0.5% smaller than the isotropic approximation using these Voigt
averages. The shear modulus used in the line tension is computed
as μ110/111= 75 GPa.
Note that the measured shear modulus of the polycrystalline

material is expected to be closer to the Voigt-Reuss-Hill average
μVRH= 85 GPa.26 This value does not enter the strength theory and
indicates the typical error that might be expected when using an
experimentally measured shear modulus. All of the various elastic
constants (anisotropic and associated isotropic average) for
RhIrPdPtNiCu are shown in Table 3.

Stable stacking fault energy and partial separation
The stable stacking fault energy γssf is computed using the ANNNI
model. In this model, γssf is related to the difference between hcp

and fcc cohesive energies of the alloy as γssf ¼ 2 Ehcp0 � Efcc0

	 

=Afcc

0 ,

where Ehcp0 and Efcc0 are the atomic energy for the fully relaxed hcp
and fcc structures, respectively. Afcc

0 is the fcc atomic area on the
stacking fault plane.

Direct computation of γssf in random alloys is deemed likely to
have large fluctuations since it is a planar defect energy computed
from two bulk energies of 3-dimensional random structures.27

Furthermore, application of the analytic strengthening theory
requires only that γssf be sufficient to ensure sufficiently large
partial dislocation separation d.
Benchmark DFT computations of γssf for the individual

elemental metals using the direct tilted-cell method28 and ANNNI
model show differences (which can be positive or negative) within
±20mJ/m2. The differences arise, in part, from the two fcc/hcp
interfacial energies that are not considered in the ANNNI model.29

We can thus anticipate that application of the ANNNI model to the
6-component alloy will have a similar level of uncertainty.
The formation energy of the fcc HEA phase is obtained from the

previous DFT calcuations. For all fcc samples, we have the
equilibrium energies. Performing a linear regression to the DFT
energy data, analogous to what was done for the equilibrium
atomic volumes in Fig. 1, gives the formation energy of fcc
RhIrPdPtNiCu as Efcc0 ¼ 34meV/atom, relative to the compositional
average of the pure metal atomic energies in the fcc phase. The
positive formation energy indicates that the single-phase
RhIrPdPtNiCu HEA is either entropically stabilized or metastable.
This result is in contrast to a negative formation energy roughly
estimated from an empirical literature model.5 To calculate Ehcp0 ,
we use the process employed for fcc at the composition of
interest. We create the hcp SQSs for the HEA (https://doi.org/
10.24435/materialscloud:2018.0019/v1), and perform DFT calcula-
tions to obtain the ground state energy on the compositions
surrounding the central composition to improve the accuracy, and
then perform linear regression to the DFT energy data for hcp
structures. The resulting formation energy of RhIrPdPtNiCu in hcp
phase is Ehcp0 ¼ 61meV/atom relative to the same compositional
average of the pure metal atomic energies in the fcc phase. With
Afcc
0 ¼ ð ffiffiffi

3
p

=4Þa20, the ANNNI model yields a stable stacking fault
energy γssf= 138 mJ/m2 for RhIrPdPtNiCu. The uncertainty in γssf is
determined from the 95% confidence intervals of Efcc0 and Ehcp0 ,
which are ±1 and ±2meV, respectively. Therefore, the uncertainty
in the DFT result itself for γssf is about ±15mJ/m2. Combined with
the intrinsic error/uncertainty of the ANNNI model, a conservative
estimate of the uncertainty in the stable stacking fault energy is ~
±35mJ/m2.
Finally, using the computed anisotropic elastic constants and

lattice constant, the elastic parameter is K= 0.180 eV/Å and the
estimated partial separation is then d= K/γssf= 7.8b. Considering
the uncertainty in γssf, the corresponding partial separation ranges
from 6.2b to 10.4b. This estimation is an upper bound of the
uncertainty since the value ±20mJ/m2 is probably higher than
the true value in the HEA. The analysis thus generally satisfies the
requirement d≳ 6.5b for applying the analytic solute strengthen-
ing model above.

Table 3. Density functional theory (DFT)-computed material
quantities at T= 0 K entering the solute strengthening model, and the
resulting predicted yield strength at the experimental conditions of
T= 300 K, _ϵ= 10−4 s−1

a0 (Å) 3.811

δ (%) 3.873

C11 (GPa) C12 (GPa) C44 (GPa) 289 176 112

μV (GPa) νV 90 0.316

μ110/111 (GPa) 75

σy (MPa) 583 (527)

The experimentally reported yield strength is shown in parenthesis

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
13.65

13.7

13.75

13.8

13.85

13.9

13.95

14

Fig. 1 Atomic volumes of random alloys at compositions surround-
ing the equi-composition RhIrPdPtNiCu alloy for various changes in
composition. Solid lines show the linear regression that leads to the
computed misfit volumes shown in Table 2, with the R2 value
indicated

Table 2. Lattice constant, misfit volumes, and δ-parameter from direct
DFT calculations of the RhIrPdPtNiCu HEA

Density functional theory (DFT) Vegard’s law

a0 (Å) 3.811 3.800

ΔVRh (Å3) 0.253 0.259

ΔVIr (Å3) 0.767 0.799

ΔVNi (Å3) −2.581 −2.841

ΔVPd (Å3) 1.412 1.605

ΔVPt (Å3) 1.835 1.893

ΔVCu (Å3) −1.686 −1.715

δ (%) 3.873 4.193

Also show for comparison are results from the application of Vegard’s law
using the elemental DFT lattice constants
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Yield strength prediction
With all of the necessary material properties computed via DFT as
described in the previous section, the yield strength of the alloy
can be predicted. The experiments were performed at T= 300 K
and strain-rate _ϵ= 10−4 s−1. As shown in Table 3, the predicted
strength using only the DFT-computed inputs is σy= 583MPa. The
uncertainty in this prediction due to the uncertainties in DFT-
computed materials parameters is small. Using the 95% con-
fidence intervals of the lattice constant, misfit volumes, and elastic
constants, the 95% confidence interval for the strength prediction
is ~±10% of the above mean value. This uncertainty is due to the
configurational randomness in the computations, at the SQSs
qualities that we achieve.
The average prediction of 583 MPa is in very good agreement

with the single experimental value of 527 MPa. While there is only
one experimental data point, the yield strength of well-
characterized alloys usually has small scatter. As analyzed in
previous work using approximate methods,10 this as-cast alloy has
two different phases but these phases have very similar lattice
constants and estimated strengths. The above experimental value
is thus likely close to the “true value” of a single-phase
homogenous alloy.
There are a few other aspects that could affect the strength

prediction here. First, the DFT-calculated elastic constants must
have some (unknown) error, as demonstrated by the deviations
between DFT and experiment for the elemental metals. Here, we
might expect that the Perdew-Burke-Ernzerhof (PBE) DFT predic-
tions of the elastic moduli Cij of the HEA are slightly lower than the
(unknown) true experimental values due to the underestimate of
the moduli of elemental Pd and Pt, as discussed in Section “DFT
methodology.”
Second, the experiments are at room temperature and so the

room-temperature elastic constants should be used in the
predictions. Room-temperature calculations are possible but
computationally onerous, and so here we make reasonable
estimates based on the elemental values. In experiments, the
elastic constants Cij of the pure metals all decrease, but by less
than 10% from T= 0 K to T= 300 K. Therefore, the yield strength
predictions made using the T= 0 K elastic constants are likely
<10% too high. Thus, use of the (unknown) T= 300 K elastic
constants would bring the predictions closer to the experimental
value. For purposes of efficient identification of trends for alloy
design, we advocate the use of the easily computed T= 0 K elastic
constants, with temperature effects at room temperature esti-
mated from a concentration-weighted average of the elemental
elastic constants.
Third, the lattice constant a0 and the δ-parameter are also

temperature-dependent. Applying Vegard’s law (defined below)
using the temperature-dependent lattice constants of the pure
metals to estimate both the alloy volume and solute misfit
volumes at finite temperature, we find that the overall δ-
parameter decreases by <2% with increasing temperature. The
thermal expansion effects can thus be safely neglected.
Although there are uncertainties in the DFT-computed proper-

ties and the temperature dependencies, there are no adjustable/
fitted parameters in the model. Overall, we thus consider the
predictions to be robust and the agreement indicative of the
applicability of the theory.

DISCUSSION
The present methodology can be expanded to scan over a wide
range of the composition space so as to predict optimized
composition(s) with the highest yield strength(s). Suppose we
have a database of the atomic volumes over a set of equi-spaced
compositions spanning the entire configurational space. Then one
could fit the entire set to some overall function of the

compositions, i.e., V({cn}). The misfit volume of type-n atom at
composition {cn} could be computed by taking the derivative
respect to xs in the direction of {(1− cn) for n, −cm for m ≠ n}, i.e.,

ΔVn ¼ V cn þ 1� cnð Þxs;cm � cmxsf gð Þ � V cnf gð Þ
xs

; (9)

with xs→ 0. Here, the challenging task is the computation of the
data set. In order to have a quantitative estimate of the size of the
database, we assume that the well-spaced compositions consist of
elemental concentrations spanning from 0 to 100% by the step of
10%. For senary alloys studied here, the database needs 3003
different compositions for SQS sizes of ~100 atoms; this is not
computationally feasible at present. However, for quaternary and
ternary alloys, such a database requires 286 and 66 compositions,
respectively, and so could be achieved computationally. In any
case, the computation of the data set remains demanding but the
methodology for the misfit volumes remains useful and will
become more feasible as computational power increases.
Given the combinatoric challenge of performing DFT over the

huge composition space of a many-component alloy, it is very
useful to consider other more-approximate but more-efficient
approaches. One such approach is by assuming Vegard’s law and
assuming a simple rule-of-mixtures for elastic constants.10 Then
only the lattice constants and elastic constants of the elemental
metals are needed in the crystal structure of the HEA. These
quantities are computationally trivial to obtain if all the elements
are metastable in the HEA crystal structure. Vegard’s law uses the

atomic volumes V ðnÞ
0 of the individual elements and predicts the

atomic volume of the alloy as VVegard
0 ¼ P

n cnV
ðnÞ
0 . The misfit

volumes follow as ΔVVegard
n ¼ V ðnÞ

0 � VVegard
0 . The rule-of-mixtures

(ROM) estimate for the elastic constants is simply CROM
ij ¼P

n cnC
ðnÞ
ij and yields a rule-of-mixtures Voigt average for the

required μ and ν. With DFT results computed explicitly here for fcc
RhIrPdPtNiCu, we can assess the accuracy of such a simple model
since all the elements are stable in the fcc structure.
Using the DFT-computed atomic volumes for the constituents

of the RhIrPdPtNiCu, Vegard’s law yields δ= 4.193%. This is ~8%
larger than the direct DFT result of δ= 3.873% on the actual
random alloy, as compared in Table 2. Similarly, using the DFT
values for the elastic constants of the elements, the alloy ROM
values are CROM

11 ¼ 326 GPa, CROM
12 ¼ 177 GPa and CROM

44 ¼ 131 GPa.
Two of these values are ~15% larger than the DFT-computed alloy
values (Table 3). The resulting Voigt estimate μV is then ~20%
larger (108 GPa vs. 90 GPa). With the approximate estimates for
both δ and μV being larger than the true DFT-computed properties
for the alloy, the predicted strength using the approximate model
is 775 MPa, which is rather larger than the full prediction.
The approximate approach above is thus of limited value for

quantitative prediction in this family of alloys. However, the
approximate approach may be too high mainly due to the moduli
estimates, and the moduli estimates may be systematically high
for other composition in the configurational space. This can be
further validated with the calculations at other {cn}.
The approximate approach may be useful only for rapid relative

assessment of the relative strengths of alloy compositions. But
even such a relative assessment can then point to a limited set of
promising new alloy compositions that could be studied
quantitatively using the computationally intensive but chemically
accurate DFT calculations proposed in this work.
In summary, we have presented a general approach to DFT-

level computations of the properties necessary to make strength
predictions in HEAs and other random alloys using a recent
analytic theory. The theory requires solute misfit volumes, alloy
lattice constant, elastic constants, and stable stacking fault energy,
all of which are accessible within current DFT capabilities. The DFT
computational methodology for misfit volumes in
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multicomponent random alloys is new and general. Executing the
methodology on the fcc RhIrPdPtNiCu HEA, we obtain parameter-
free predictions of the yield strength with no experimental inputs
and find very good agreement with the experimental strength. We
are also able to assess uncertainties in the approach and to assess
concepts for highly efficient scanning of the huge composition
space of HEAs. This work thus connects alloy composition to yield
strength, establishing a general first-principles methodology for
the computationally guided design of high-strength alloys.

METHODS
DFT methodology
All first-principles calculations are performed using DFT as implemented in
the vasp code30 within the generalized gradient approximation (GGA) and
using the PBE XC functional.31 The core electrons are replaced by the
projector augmented wave (PAW) pseudopotentials.32 The valence-
electron eigenstates are expanded using a spin-polarized plane wave
basis set with a cutoff energy 550 eV. A first-order Methfessel-Paxton
method33 with smearing parameter 0.2 eV is used. In reciprocal space, a Γ-
centered Monkhorst-Pack34 k-mesh is used with line density consistent
across all geometries. The interval between the neighboring k-points along
each reciprocal lattice vector bj is 0.02 Å

−1 (in vasp, ai · bj= δij). This k-mesh
density leads to, for example, 14 × 14 × 14 for Ni and Cu in the fcc cubic
unit cell, and 13 × 13 × 13 for the other four elements. Ionic forces are
relaxed to less than 1meV/Å, corresponding to a stress tolerance of
~0.01 GPa in vasp. Benchmark calculations of the lattice constant, elastic
constants, and stable stacking fault energy for the pure metal elements are
in very good agreement with previous DFT literature.35–37

In the benchmark results for the elements, the PBE functional predicts
the bulk moduli for Rh, Ir, Ni, and Cu within ±5% of experiment values but
underestimates the bulk moduli of Pd and Pt by ~13% (169 GPa vs.
195 GPa for Pd, 249 GPa vs. 288 GPa for Pt; see ref. 35 (Table S25.3) and
ref. 38). Results using the PBEsol functional39 improve the results for Pd and
Pt relative to experiments but increase the differences between DFT and
experiments for the other four elements in the alloy. These trends are
already known in the literature. For this study, we use PBE so as to capture
the better agreement with experiment for four of the six alloying elements
studied here.
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