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Deep neural networks for understanding noisy data applied to
physical property extraction in scanning probe microscopy
Nikolay Borodinov1, Sabine Neumayer 1, Sergei V. Kalinin1, Olga S. Ovchinnikova1, Rama K. Vasudevan1 and Stephen Jesse1

The rapid development of spectral-imaging methods in scanning probe, electron, and optical microscopy in the last decade have
given rise for large multidimensional datasets. In many cases, the reduction of hyperspectral data to the lower-dimension materials-
specific parameters is based on functional fitting, where an approximate form of the fitting function is known, but the parameters
of the function need to be determined. However, functional fits of noisy data realized via iterative methods, such as least-square
gradient descent, often yield spurious results and are very sensitive to initial guesses. Here, we demonstrate an approach for the
reduction of the hyperspectral data using a deep neural network approach. A combined deep neural network/least-square
approach is shown to improve the effective signal-to-noise ratio of band-excitation piezoresponse force microscopy by more than
an order of magnitude, allowing characterization when very small driving signals are used or when a material’s response is weak.
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INTRODUCTION
The need to recover salient information from signals with a noisy
background is prevalent in virtually all measurement fields and
affect an instrument’s resolution, sensitivity, validity, and reliability
and ultimately define its capabilities. In many cases, the noise floor
can be reduced using filtering such as signal averaging1 or lock-
in2,3 based approaches, that have been used in radio telescopes,4

atomic force microscopy,5 and depth profilometry6 and many
other fields. Naturally, such techniques immediately limit the
temporal resolution, and can be undesirable or unsuitable when
fast dynamics are probed. Furthermore, these approaches
specifically constrain the physics of the system that can be
probed, i.e., time-dependent systems and non-linear responses
may not be well processed.
In cases where the measured signal arises from an excitation,

the signal-to-noise ratio (SNR) can usually be increased by
increasing the excitation of the driving signal. However, this
approach can introduce at least two challenges: (1) large
excitations induce system nonlinearities complicating subsequent
data processing, or (2) applying large excitations can damage
samples. Hence, methods that improve the ability to determine
signals and the valuable information contained within signals,
against noisy backgrounds, will enhance the capabilities of current
instrumentation and do so without hardware or experimental
modifications.
In many situations, partial information about the physics of a

measurement system can be used to increase the detection and
sensitivity limits. For example, in scanning probe microscopy
techniques, the use of resonant amplification by the cantilever
allows one to increase signal-to-noise ratios, and is in fact a central
aspect in virtually all dynamic SPM measurements.7–9 This in turn
necessitates detection methods that account for this physics. For
example, dual amplitude resonant tracking methods employ
amplitude-based feedback on two frequencies near a resonance,
whereas band-excitation methods rely on the detection of the

response of multiple frequencies across a band centered at one or
more resonance.10 This approach, in turn, requires extracting a
small number of parameters describing system properties (e.g.,
resonance frequency, amplitude, and quality factor of a damped
simple harmonic oscillator (SHO) model) from the hyperspectral
data.11,12

Extracting physical parameters from data falls within the larger
framework of “solving inverse problems”. Some of the earliest and
now traditional numerical methods for solving such types of
problems involve functional fitting, and are usually conducted via
standard least-squares algorithms (e.g., the Levenberg–Marquardt
algorithm).13,14 In noisy environments, these methods can be less
than ideal because the algorithms are susceptible to becoming
trapped in one of many incorrect local minima, as opposed to the
global minimum. This can be due to a poor choice of priors (i.e.,
the initialization, or the parameters ‘guess’). Therefore, improving
priors is vitally important and multiple approaches exist for
addressing this issue. For instance, when multiple measurements
are available, multivariate approaches such as principal compo-
nent analysis (PCA) or non-negative matrix factorization (NMF) can
be useful either in denoising,15 or with providing cleaner
constituent signals, respectively.16 If multiple measurements are
spatially distributed and vary slowly across space, one can average
within spatial regions of similar response to reduce noise.
Parameters extracted from locally averaged signals can be used
as priors for least-squares fitting of the individual measurements
within the region. However, all of these approaches introduce
compromises between spatial resolution and signal-to-noise.
Recently, interest in using machine learning (ML) tools has
resulted in application of ML functionality for the purposes of
processing scanning probe microscopy data for measurement
artifacts correction,17 identification of probe degradation18, and
classification of force spectroscopy data.19 Generally, neural
networks find multiple applications as tools for rational design
of complex systems due to their ability to generate
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multiparametric empirical models20–23 and provide parameter
estimation,24,25 which is useful for analysis of complex scientific
data such as potential energy surfaces.26–29 In addition, neural
networks have been recently applied to condensed matter physics
for the extraction of relevant degrees of freedom and identifica-
tion of order parameters without a priori information.30–32

Here, we introduce a fundamentally new method based on
deep neural networks, to fit functional forms to noisy data based
on a known physical model. We apply this method to the
extraction of simple harmonic oscillator parameters33 from piezo-
response force microscopy data, and show that by using a
combination of both deep neural networks and least-squares
fitting, we can probe signal responses in regimes an order of
magnitude lower than with the traditional means, approaching
the thermal limit for the excitation signal. As a model system, we
demonstrate the extraction of damped simple harmonic oscillator
parameters from band-excitation (BE) piezoresponse force micro-
scopy (PFM) imaging of a layered ferroelectric compound. This
approach of using deep neural network (DNN) is general and
shows their utility as function approximators in both forward and
reverse cases and that they work well in noisy environments.

RESULTS AND DISCUSSION
A typical AFM set-up is presented in Fig. 1a. Movement of the
microscale beam with a sharp tip interacting with the sample is
registered by monitoring its deflection via the laser beam. It is
reflected from the cantilever surface into the photodiode. The
resulting data are captured in the time domain and is converted
into the frequency domain using a Fast Fourier Transform (FFT).
The output of the FFT is a complex function that is commonly
represented as amplitude (Fig. 1b), which is the absolute value of
the complex number at a specific frequency and phase (Fig. 1c),
and which is the angle between real and imaginary parts.
However, the cantilever dynamics can be represented directly as
real (Fig. 1d) and imaginary (Fig. 1e) parts as well.34 Most
commonly, SPM operates at a single frequency; however,
capturing the broad-band cantilever response allows to extract
the four parameters of the SHO equation and drastically improve
the quality of the analysis. In addition to mechanical driving at the
base (which is often the case in SPM), the SPM lever can also be
excited at the tip by the electrically driven oscillation of the
surface, as is the situation for piezoresponse force microscopy,35

the technique of choice for electromechanically active materials
including ferroelectrics and ionic conductors.36–38 In this case, the

tip stays in contact with the surface and the sample deformations
induced by the converse piezoelectric effect (for piezoelectrics) or
electrochemical strains (for ionics) drive cantilever motion. Such
methods ensure that changes in contact mechanics are correctly
interpreted with respect to the model of the oscillation, which
would not be possible with a single-frequency measurement near
a resonance.
The simple harmonic oscillator (SHO) serves as a good model

for quantitative analysis of data generated by various scanning
probe microscope set-ups. It describes the vibrational motion of
the cantilever beam as a function of the frequency of induced
oscillation. SHO equation (1) relates the response of the oscillator f
to the frequency ω and has four major parameters: drive
amplitude A0, resonant frequency ωr, quality factor Q, and phase φ:

f ωð Þ ¼ A0ω
2
r e

iφ

ω2 � iωωr
Q � ω2

r
(1)

The physical meaning of these parameters is well-defined,
which allows using them to describe the behavior of the system
being analyzed. Drive amplitude corresponds to the strength of
the periodic external force acting on a system, quality factor
reflects the dampening, phase or phase angle describes the shift
between the excitation and response of the sample, and finally,
resonant frequency reflects the overall stiffness of the system.
Thus, a complete physical characterization of the sample via SPM
would strongly benefit from the ability to extract these parameters
from the experimental data.
Hence, the meaningful characterization of a sample using PFM

requires the correlation of the observed broad-band signal with
the SHO model equation. In practice, however, the noise
presented in the experimental set-up, complicates extraction of
the parameters. High driving amplitude may not be desirable due
to the change or degradation of the sample, alternatively, the
system may have intrinsically low response. In both scenarios, a
low signal-to-noise ratio becomes a concern. Here, we demon-
strate that using deep neural networks allows one to perform
fitting and extract useful information from noisy datasets.
Previously we have demonstrated application of machine-
learning tools for the analysis of scanning probe39 and electron
microscopy data.40

One of the major advantages of deep learning over traditional
approaches in fields such as computer vision has been its
remarkable ability to deal with noisy environments, including
such examples as images, speech, and natural language proces-
sing.41 Indeed, neural networks, which have a single hidden layer,

Fig. 1 Principal scheme of the atomic force microscope operating in tapping mode (a). This resonance of the oscillation is characterized by a
complex function, which can be represented using (b, c) amplitude and phase or (d, e) real and imaginary components
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but are infinitely wide are effective function approximators for any
non-linear function,42 as follows from the universal functional
approximation theorem. For known functions, it may seem
counterintuitive to take a model with a handful of known
parameters and then use a deep neural network with millions of
parameters to approximate the same result. However, unlike least-
squares method for parameter extraction, deep learning does not
rely on the use of priors and can be trained on millions of
examples in all manner of noisy conditions.
The deep neural network used for the fitting of the SHO data is

presented in Fig. 2. The simulated SHO response with varying
drive amplitudes, Q factors, resonant frequencies, phase shifts,
and noise levels are split into two arrays corresponding to the real
and imaginary parts of the complex-valued response. In our
implementation, we process a complex output of the SHO
equations by splitting it into two vectors corresponding to real
and imaginary parts stacked along the new axis. For example, a
complex array of size 100 would turn into a real (100,2,) array.
Thus, the input is a sequence of 100 vectors with 2 channels each.
The first layer is the convolutional layer with 128 nodes with the
kernel size 15 which determines the length of the convolutional
representation. It is followed by the second convolution with 64
nodes with the kernel size of 5. This is followed by a series of
dense layers with 512, 512, 128, and 128 nodes, respectively. The
node is a vector with length m2 as up until the Flatten layer, nodes
of dense layers that follow Conv1D are not single numbers but
rather vectors with the same length as Conv1D kernel. Proceeding
this, there are two more densely connected layers with 128 nodes
each. The output of the network is the four parameters of the SHO
model. The rectified linear response (ReLU)43 activation has been
used for all layers of the network. Here, convolutional layers
operate as feature-detection tools with high generalizability,
which is required to return SHO response close to the ground
truth for a wide range of fitting parameters. A series of dense
layers with vast number of nodes composed of kernels with the
length 5 was added to ensure that the structure of the network is
complex enough to support multivariate optimization. Finally,
flattening of the NN layers was used to yield SHO parameters. In
this paper we focused on the proof-of-principle study and its
applications for a relevant use case of SPM, and the optimization
of the NN architecture as well as outlining minimal requirements
for the number of layers, and their nature will be considered in
future publications.
In order to ensure that the DNN is trained to recognize any

combination of four fit parameters, we have used a batch
generator, which created 100,000 SHO curves with randomized
parameters, 80,000 of which were used to train the network and

20,000 of which were used for validation. To combat overfitting,
each batch of 100,000 curves has been passed through the
network only once (one epoch). This procedure was repeated 50
times, each time with a new set of randomly-generated SHO data.
The training of the network was done on a desktop PC and takes
several hours depending on the number of frequency bins of the
data and computer specifications. The length of the input vector,
however, does influence the overall quality of the NN prediction.
Figure S1 (Supplemental information Section 1) displays the
validation accuracies and losses after training on 10 batches of
80,000 curves for a series of neural networks with varying input
length. It is evident that increasing input size progressively
improves fit quality. We suggest that this effect can be explained
by fact that if the SHO peak contains fewer points, less useful
information can be extracted to determine SHO parameters. This
consideration has direct implications for the practical use of NN-
based fitting: the data resolution can impact the fit quality and
experimental design should be selected accordingly.
The example of the SHO fitting of the actual experimental data

done using DNN is presented in Fig. 3. This dataset was acquired
using band-excitation PFM on a CuInP2S6 (CIPS)/In4/3P2S6 (IPS)
composite flake of several μm thickness. While CIPS exhibits high
piezoresponse and domains of positive and negative polarization
orientation, the IPS phase is centrosymmetric and therefore not
piezoelectrically active.44 It is evident that although the DNN has
no explicit information about the functional relationship between
input and output, it can extract the parameters of the simulated
data (Fig. 3a, b). However, there are cases of poor fitting like the
one displayed in Fig. 3c, d where the resonant frequency is visibly
off the optimal value. This is due to the fact that unlike traditional
fitting algorithms, neural network recognizes the potential
parameters of the fit without the optimization of their values.
This behavior is a keystone feature of the DNN fitting, which also
outlines its limitations. In order to further investigate the
applicability of the DNN fitting method, it is necessary to compare
its output with the least-square fitting method used for band
excitation.
In the case of PFM, amplitude and phase of response are the

two most important parameters of the system. The amplitude,
which is proportional to the piezocoefficient, reveals the inactive
IPS phases (blue areas on Fig. 4a), as well as the boundaries
between piezoelectric CIPS domains (orange on Fig. 4a), while the
phase allows to differentiate domains of different polarizations
(green and blue correspond to CIPS while noisy areas correspond
to IPS). Figure 4a, b displays the amplitude and phase derived
using the least-square (LS) fitting algorithm, while Fig. 4c, d shows
the optimal amplitude and phase determined by the DNN. The LS

Fig. 2 The scheme of the neural network used for the functional fitting. The complex function is represented using real and imaginary parts
and then passed to the first layer as a 2xN matrix. It is then followed by a series of densely connected layers consisting of vectors with length
m2. Two dense flattened layers are connected to four outputs. The neural network is trained using parameters of the fit as outputs
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fitting algorithm used here is included in pycroscopy package and
uses contextual-driven initial guesses of the SHO fit. It is evident,
that both methods can function to a satisfactory degree when the
signal is strong. The signal collected from the center of
ferroelectric domains is processed correctly by the neural network

(Fig. 4e, f). The signal from the inactive IPS phase (low amplitude
regions) has little physical meaning in the absence of the PFM
signal and renders any estimation of the phase shift values
(Fig. 4g) meaningless. However, in the regions where the PFM
signal is weak, DNN is capable of identifying the amplitude and

Fig. 3 Examples of fitting using a deep neural network. Overall, using the parameters generated by DNN to reconstruct the signal results in a
good correspondence with the experimental data (a, b), however, it is not always perfect. The position of the resonant frequency of the fit
may be slightly off (c, d)

Fig. 4 The comparison of the experimental dataset fitting done by least-squares (LS) method (a, b) and by DNN (c, d). The amplitude values
for LS a and DNN c correspond well to each other, however, the phases estimated by DNN d are less noisy compared to LS fitting b. The
regions with strong piezoelectric response are fitted well for both phases (e, f) by DNN. When there is no piezoelectric response, DNN fitting
results in phase values close to 0 (g). Remarkably, this method is capable of identifying phase even when the signal is very weak (h). IPS shows
no piezoresponse and appears as blue areas on A and noisy areas on B while CIPS shows strong response and appears as orange on A and
blue/green on B

N. Borodinov et al.

4

npj Computational Materials (2019)    25 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



phase signal, while LS fitting fails to do so due to high noise
(Fig. 4h). The frequency-dependent change in the phase occurs
slightly to the left from the NN-fit (blue curve).
Thus, a signal buried in the noise can be picked up by the DNN

more reliably, even though, just like in Fig. 3c, d the output of
neural network-based fitting may not perfectly correspond to the
ground truth. This result follows what one would expect from a
DNN. Namely, that it can generalize well, but perhaps not yield the
exact answer, and that the output could benefit from subsequent
optimization to find a more exact answer.
Comparison between the LS and DNN approaches thus far has

shown that there are regimes in which LS methods produce better
results, and ones (in particular low SNR) where DNN is superior.
However, the complimentary nature of the methodologies and
behaviors of the two approaches suggests that further improve-
ments can be achieved through their synergistic combination. The
remarkable robustness of the DNN-based fitting with respect to
noise can be used to estimate parameters that can undergo
further optimization via iteration. In order to test this hypothesis,
we created an artificial dataset. The Q factor and resonant
frequency were unchanged throughout, phase of the response
was varied as stripe domains, and the drive amplitude was linearly
decreased from top to the bottom (Fig. 5a) of a simulated scan
while the noise level was kept the same. This roughly models a
sample with four domains. The LS fit that used uniform guess
across the simulated dataset shows excellent match when the
noise is low; however, as amplitude decreases, the fit becomes
progressively worse (Fig. 5b). DNN phase fit, however, maintains
its utility much better and shows much clearer phase contrast. At
the same time, it is not very accurate, and the estimated phase
contrast appears to be smaller than it should be (Fig. 5c). When
the results of the DNN are used as inputs for the LS optimizer,
however, the robustness to noise of the DNN is combined with the
accuracy of LS (Fig. 5d). This is summarized in Fig. 5e. The bottom
axis is the signal-to-noise ratio (SNR) calculated as the maximum
amplitude of the noiseless simulated signal in Fourier domain
divided by the standard deviation of the noise. The left axis is the
phase contrast defined as the difference between average values

of the phase estimated by a given fitting method. For a perfect fit,
this difference must be equal to π. It is clear that fitting algorithms
have two regimes of approximation. At high SNR values, the phase
contrast is close to π, which we label as quantitative fitting. At low
SNRs, the phase difference is manifested, but it is progressively
noticeably smaller than π as the SNR decreases. This regime, which
we term qualitative fitting, can be used to process data and can
yield contrast between domains of different polarization, but the
results of the fit lack accuracy. LS fit switches to qualitative regime
at SNR ~6. The DNN fit is much more robust and experiences
regime transition at SNR ~2; however, its prediction above that
value deviates from π, which is consistent with the previous
observation. The serial combination of DNN followed by LS shows
superior performance over each of them used separately. In
combination, the DNN component, which can be characterized as
a broadly sweeping and holistic means to assess data, provides a
reliable initial guess for LS even into low SNR regimes, and with a
reliable guess, the iterative and pedantic nature of LS provides a
more accurate determination of parameters that are not possible
by DNN. This way, the LS algorithm is initialized within the correct
minima of the multiparametric space and more easily converges
to it. When the amplitude of the signal approaches zero, the phase
contrast for all methods approaches zero as well. Practically this
suggests that there is no systematic false-positive identification.
Overall, this highlighted the functionality of the DNN for
processing of the SPM broad-band data: its best use is to provide
a guess for the LS optimizer.
Since hybrid fitting showed a unique combination of accuracy

and stability to high noise thresholds, we have further explored its
applicability as a tool for data analysis. Specifically, we have
chosen a material with strong and known ferroelectric properties
(Bismuth ferrite (BiFeO3, or BFO) and investigated its response at
decreasing values of piezoelectric drive amplitude (Fig. 6). In this
set-up, we can directly compare information provided by the
fitting of experimental data with varying SNR ratios. We have used
four methods of fitting: least-square with uniform guesses (A) (the
same as was used for Fig. 5), least-square with contextual-driven
guesses (B) (the same as was used for Fig. 4, implemented in

Fig. 5 Fitting of the simulated piezoelectric domains (a) with decreasing amplitude of the signal with the constant noise level highlights the
difference between LS and DNN fitting: while LS results better fit for low-noise cases, it quickly loses accuracy as the signal-to-noise ratio drops
(b). DNN is not as precise, however, it is much more robust and works even when the signal-to-noise is very low (c). When the results of the
DNN fit are used as a guess for LS, the advantages of both methods are combined (d, e)
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pycroscopy package),45 deep neural network fitting (C), and hybrid
fitting (D). It is evident that using uniform guesses result in poor
fitting even for high driving voltages (Fig. 6a). However, supplying
more meaningful initial guesses strongly improves the fit quality
(Fig. 6b). This serves as another vivid demonstration that least-
squares is a powerful method, however, its convergence is heavily
dependent on the starting point. When the SNR is decreased by
an order of magnitude from 2 to 0.2 V, traditional methods of
finding this starting point are no longer effective. The results of
DNN fitting are presented in Fig. 6c; however, hybrid fitting is
found to be superior to all of the above-mentioned methods
(Fig. 6d). In fact, a comparison between hybrid and state-of-art
fitting reveals that former allows for phase contrast analysis with
10–20 times smaller SNR. The details of contrast extraction are
discussed in Supplemental information Section 2.
We attribute this to the fact that a single spike in a spectrum

might be interpreted as a resonance peak by the converging LS
optimizer, while DNN considers correlations across both real and
imaginary signals and across the entire band. At the same time,
some peculiarities of the neural networks must be respected for
the successful design of hybrid fitter. As it was previously
mentioned, DNN does not directly utilize a concrete physical
model in the process of the fitting. Consequently, it may generate
physically unfeasible outputs (such as Q factors equal to 0). While
this happens in less than one percent of cases, it is practically
useful to bypass such values with some predetermined guess
values. While the exact architecture of the network as well as
function to be fitted can be customized of case-by-case basis, we
believe that our approach in the current state can be readily
adopted for other applications requiring fitting of a known
function, which quantitatively describes certain physical

processes. In this case batch generation of synthetic datasets
becomes a viable approach to train neural network and ultimately
extract relevant multivariate parameters. We also suggest that the
output of the NN fitter needs to undergo further optimization
using any appropriate technique (such as least-square optimizer)
to ensure the precision of parameter estimation.
We demonstrate a novel approach for the inverse problem

solution and extraction of physical model parameters from
spectral-imaging data-based least-squares fitting augmented by
deep learning for determination of priors. Pattern recognition
allows for accessing functional properties of materials with a
signal that is more than an order of magnitude weaker than it was
possible without it approaching thermal limit. Specifically, for the
case of piezoresponse microscopy, we demonstrate imaging at
the order of magnitude lower excitation voltages.
The use of deep learning as a tool to generate priors for

functional fitting algorithms can be extremely beneficial in a
broad range of instrumentation and measurement applications,
helping to increase the range of materials that can be studied (via
reduction in the amplitude of required excitation), as well as
possible advances in the temporal resolution, due to the reduction
in need to signal average in time46,47. The DNN method is also
relatively fast, taking ~ms for 100 curves on a good GPU. We
further argue that this approach can be broadly applied to more
complex physical models of the response. This approach is
expected to be immediately applicable for other resonance-based
SPM techniques including atomic force acoustic microscopy
(AFAM)48,49, magnetic force microscopy (MFM)50, and KPFM.51

In the future, the implementation of these networks into
hardware will greatly accelerate processing, and thereby enhance
effective instrument capabilities with existing experimental

Fig. 6 Piezoresponse force microscopy phase maps obtained by fitting the lateral PFM signal with decreasing drive amplitude: a comparison
of least-squares with uniform guesses (a), least-squares with guesses generated using traditional methods (b), deep neural network fitting (c)
and a hybrid fit (d)
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hardware. In essence, these approaches allow one to push the
fundamental limits of the instruments via increased information
extraction from the measured signals. We envision that fitting
algorithms involving neural networks can be successfully applied
to more general task finding inverse problems solutions by
providing optimal initial conditions and guiding searches for
traditional computation parameter extraction approaches.

METHODS
Piezoresponse force microscopy measurements
Band-excitation PFM was conducted using Cypher atomic force micro-
scopes (Asylum Research) combined with National Instruments electronics
and custom LabView codes for signal generation and data acquisition.
The composite CuInP2S6 (CIPS)/In4/3P2S6 (IPS) sample was prepared as

described elsewhere.44 Band-excitation PFM measurements of the vertical
response were performed on a CIPS/IPS flake of several µm thickness
attached to a copper circuit board using conductive silver paint. The drive
voltage was 1 V, within a frequency band of 120 kHz centered around the
contact resonance of ~300 kHz using a conductive probe (Nanosensor PPP-
EFM, nominal force constant= 2.8 N/m, nominal free resonance= 75 kHz).
Band-excitation PFM on a bismuth ferrite (BFO) thin film (thickness=

100 nm) grown on a SRO/STO substrate and mounted on a grounded
support was conducted using Multi75-G Budget sensor probes (nominal
force constant= 3 N/m, nominal 75 kHz). For BFO, the lateral band-
excitation PFM response was acquired. Maps of the ferroelectric domains
were imaged using seven values of the driving voltage: 2 V, 0.2 V, 0.1 V,
0.05 V, 0.03 V, 0.02 V, and 0.01 V, within a frequency band of 30 kHz
centered around the contact resonance of ~620 kHz.

Neural network implementation
Data processing was done using Python 3.6. Keras with TensorFlow
backend was used to build up and train a deep neural network. Intel Xeon
CPU E-5-1650 v3 3.50 GHz processor and 40 GB of RAM were used to
perform the computations.

DATA AVAILABILITY
Scanning probe microscopy data as well as Python scripts used for the analysis are
available from the authors upon request.
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