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First principles calculation of spin-related quantities for point
defect qubit research
Viktor Ivády 1,2, Igor A. Abrikosov1,3 and Adam Gali 2,4

Point defect research in semiconductors has gained remarkable new momentum due to the identification of special point defects
that can implement qubits and single photon emitters with unique characteristics. Indeed, these implementations are among the
few alternatives for quantum technologies that may operate even at room temperature, and therefore discoveries and
characterization of novel point defects may highly facilitate future solid state quantum technologies. First principles calculations
play an important role in point defect research, since they provide a direct, extended insight into the formation of the defect states.
In the last decades, considerable efforts have been made to calculate spin-dependent properties of point defects from first
principles. The developed methods have already demonstrated their essential role in quantitative understanding of the physics and
application of point defect qubits. Here, we review and discuss accuracy aspects of these novel ab initio methods and report on
their most relevant applications for existing point defect qubits in semiconductors. We pay attention to the advantages and
limitations of the methodological solutions and highlight additional developments that are expected in the near future. Moreover,
we discuss the opportunity of a systematic search for potential point defect qubits, as well as the possible development of
predictive spin dynamic simulations facilitated by ab initio calculations of spin-dependent quantities.
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INTRODUCTION
In the last decades considerable efforts have been made to utilize
fundamental aspects of quantum mechanics in various visionary
applications, such as quantum information processing and
quantum computation.1 The conceptual building block of these
revolutionary applications is the quantum bit (qubit), the simplest
possible quantum system that includes only two levels. In practice,
the levels implementing the qubit states must be isolated from
the environmental degrees of freedom and at the same time they
must remain controllable via different external means. Simulta-
neous fulfillment of these criteria causes one of the major
challenges in qubit implementations.
Qubits have been already demonstrated in a broad range of

physical systems.1 Point defect-based quantum bits in semicon-
ductors are among the most recent realizations,2–7 where
generally the spin of a paramagnetic point defect or associated
paramagnetic nuclei gives rise to the quantum states that may be
manipulated by electric and magnetic fields, microwave irradia-
tions, and optical means.3 Due to the special characteristics of the
point defect qubits and the properties of the semiconducting host
material, the existing point defect quantum bits are well isolated
from their environment.3,7 This leads to observations of generally
long coherence times3,8 and qubit operation even at room
temperature.9–11 For example, in isotope engineered high-purity
diamond sample the coherence time can exceed a millisecond at
room temperature.9 These attributes together with the possibility
of magneto-optical control make point defect qubits, including
single or ensemble of isolated qubits, highly promising for
numerous applications. For instance, point defect qubits created

in nanocrystals or close to the surface of nano-fabricated thin film
samples can be utilized as atomic-scale temperature,12 electric
field,13 and strain14 sensors, as well as magnetic resonance
probes15–17 that are about to revolutionize nanoscale metrology.
Ensembles of point defects qubits in larger samples can be used
to greatly increase the sensitivity of microscale room temperature
sensors18,19 and gyroscopes20,21 with some of them readily
integrable in existing semiconducting electric devices. Quantum
optics devices are intensively studied for quantum information
processing applications22,23 and for testing fundamental aspects
of quantum entanglement. Indeed, the loophole-free Bell test was
first demonstrated by point defect qubits.24 Silicon-based
quantum computation maybe be realized by using single point
defect spins and quantum dots.1,5,25 Furthermore, point defect
qubits can be used to polarize nearby nuclear spins,26,27 thus
ensembles of these nuclear polarization sources can lead to the
hyperpolarization of the host material that may be utilized in
nuclear magnetic resonance and imaging to enhance sensitivity
by orders of magnitudes.28

The quality of the point defect qubits, i.e. the fidelity of spin
state manipulation and read-out and the decoupling from the
environment degrees of freedom, determines the capabilities and
limitations of the potential applications. The quality of the point
defect qubits relies on the other hand on the properties of the
semiconductor host material and the point defect that give rise to
the isolated electron or nuclear spin states. Consequently,
understanding and engineering point defect qubits and their
applications often translate to material science and material
engineering problems. Considering the vast diversity of these
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fields, there are many potential directions for future point defect
qubit research.
In this respect, computational studies play an essential role in

material science because of the detailed physical picture they
provide and due to their significant predictive power. First
principles electronic structure calculations have greatly contrib-
uted to the quantitative understanding of point defect qubit-
related materials, leading to the fast development of the field. On
the other hand, the emerging research directions generally
require the development of novel computational methods and
tools. Specifically, point defect qubit studies require high precision
electronic structure calculations of ground and excited state
properties, as well as all kinds of derived spin-dependent
properties at various environmental conditions.
Here, we report on recent developments and applications of

first principles calculations of point defects electronic structure
and spin-related quantities for solid-state qubits in semiconduc-
tors. By going through the recent achievements in this area, we
highlight required additional developments and point out
possible new directions that can further increase the predictive
power and area of applications of the computational methods.

PHYSICS OF POINT DEFECT QUBITS
There are two major classes of point defect qubits in semicon-
ductors. In the first type of qubits, electron and nuclear spins of
shallow donors, such as phosphor and bismuth, in silicon are
manipulated through electrical-gates (quantum dots).5,8,25,29,30

Spin–orbit and hyperfine interactions play a crucial role in the
physics and applications of these qubits. The corresponding spin-
dependent quantities can be calculated from first principles as we
discuss in Section 4.
In this section, we focus on the second class of point defect

qubits, i.e. deep-level high spin state color centers in wide band
gap semiconductors whose spin can be manipulated by optical
means. Using confocal microscopy techniques, it is possible to
excite and collect photons from defects in a volume of O 10 μm3ð Þ
of a semiconducting sample.31 For low point defect concentration
the examined volume may contain only a few, ultimately one
single color center. Individual color centers in semiconductors that
exhibit fast bound-to-bound optical transition may implement
single photon emitters that often operate even at room
temperature.22,32–34 Optically controllable point defect qubits
form a special class of single photon emitters. Due to this duality,
point defect qubits exhibit great potential in a broad range of
quantum information processing and sensing applications.2,3,7,35

For qubit implementation, a color center must fulfill additional
requirements: it must form high spin ground and/or excited state,
the electron spin must exhibit long coherence time, and the
luminescence of the defect should be spin dependent. The latter

requirement enables optical initialization and read-out of a point
defect qubit. Additionally, applying external magnetic field and
microwave irradiation, full control of the point defect spin states
can be achieved.
The most thoroughly investigated optically active point defect

qubits are the negatively charged nitrogen substitutional-vacancy
complex in diamond (NV center),9,36,37 the neutral silicon–carbon
double vacancy in SiC polytypes (divacancy),10,38 and the isolated
negatively charged silicon vacancy in SiC polytypes (silicon
vacancy).11,39 Additionally to these well-established qubits, there
are several emerging qubits and qubit candidates in diamond and
in other semiconductors. Group IV substitutional-vacancy complex
in diamond, such as SiV center,40,41 GeV center,42 and SnV
center,43 chalcogen double donors in silicon44 (for example S+

and Se+), and read-earth ions in optical materials, like Ce3+ in
yttrium aluminum garnet45 (YAG), Pr3+ ions in yttrium orthosili-
cate46 (YSO), are among the most recently investigated qubits and
qubit candidates. Furthermore, we note that phosphor donor-
related optical transition in silicon was recently utilized to achieve
advanced control of 31P nuclear spin states.47 For further reading
see the recent review by Awschalom et al. 48

In the following, we discuss NV center, divacancy, and silicon
vacancy room temperature qubits in more details. The polytypic
SiC host often gives rise to symmetrically non-equivalent
configurations of a considered point defect. Consequently,
divacancy and silicon vacancy qubits represent families of several
distinguishable configurations with slightly different characteris-
tics and varying potential for applications rather than a single
qubit.49

NV center and divacancy exhibit qualitatively similar electronic
structure,50 therefore we discuss the physics of these defects
together. The four (six) dangling bonds of the NV center
(divacancy) form two a1 and one e (two a1 and two e) single
particle states that are occupied by six (six) electrons. According to
ab initio density functional theory calculations (DFT),50–53 a fully
occupied lower lying a1 state and an e state, occupied by two
electrons, appear in the lower part of the band gap for both
defects (see Fig. 1b–d). In the case of divacancy, an empty e state
can also be found close to the conduction band edge, however, it
has negligible effect on the properties of the defect. Due to the
half occupied e state above the a1 state, both defects exhibit a
spin-1 ground state of 3A2 symmetry, see Fig. 2a for the NV center.
Relativistic effects, mostly dominated by the dipolar coupling of
the unpaired electron spins, split the substates of the triplet
ground states (see Fig. 2a), by ≈2.9 and ≈1.3 GHz for the NV
center54 and divacancy,55 respectively. Spin conserving optical
excitation can drive the system into the lowest optically exited
state of 3E symmetry. In single particle picture, an electron is
promoted from the a1 state to the lowest e state (see Fig. 1b–d).
Note that this electronic configuration gives rise to a dynamic

Fig. 1 a Structure and spin density of the NV center in diamond, and b–d Kohn–Sham electronic structure of the NV center in diamond and
divacancy and silicon vacancy in 4H-SiC, respectively. Green arrows represent the lowest energy optical transition in the single particle picture.
The Kohn–Sham electronic structures were obtained by convergent HSE06 hybrid functional calculations (data from refs 52,53,65)
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Jahn–Teller system with strong electron–phonon interaction and
effective C3v symmetry when the axis of the pair defect is parallel
to the high symmetry axis of the host material. Due to the
spin–orbit and spin–spin dipolar interactions, the 3E state exhibits
a complicated fine structure at low temperature.56–58 At higher
temperature, the spin–orbit interaction and off-axis components
of the spin–spin zero-field-spitting interaction average out due to
the motion of the atoms.59 The high-temperature fine structure of
the 3E state resembles the fine structure of the ground state, i.e. it
can be parameterized by the axial zero-field-splitting parameter
D.59

Due to the different occupation of the dangling bonds, the
energy minima of the ground and the optically excited states
belong to two different atomic configurations in the configuration
space (see Fig. 3). As a consequence, phonons play an important
role in optical excitation and luminescence processes. Optical
excitation from the ground state most probably ends up in a
vibronic excited state. The probability of the transition propor-
tional to the overlap of the ground and the vibronic excited states.
After excitation, the vibronic excited state quickly relaxes by
emitting phonons. A similar mechanism takes place during the
luminescence processes. Direct transition between the no-
phonon-excited ground and excited states, that give rise to the
so-called zero-phonon luminescence (ZPL) and absorption lines, is
allowed by the zero-point motion of local vibrational modes. The
energy difference of the most probable phonon-assisted absorp-
tion and the ZPL transition is the Stokes shift, while the energy
difference of the most probable phonon-assisted emission and the
ZPL is the anti-Stokes shift.

The spin selectivity of the optical excitation cycle can be
explained through shelving states that appear between the lowest
optically excited state and the ground state. The generally
accepted many particle electronic structure of the NV center
and divacancy can be seen in Fig. 2a. It includes a 1A1 and a 1E
singlet states between the triplet excited and ground states.60,61

Transitions between the singlet and triplet branches can occur
due to the interplay of local vibrational modes and spin–orbit
coupling that is called intersystem crossing.60–62 Due to the latter
interaction, different spin states of the 3E excited state exhibit
different non-radiative decay rates through the singlet states.
Consequently, different spin states have different lifetime and
different luminescence intensity as well. By applying microwave
irradiation to drive spin state transitions, this phenomenon allows
optical detection of magnetic resonance (ODMR) which is a key
technique for optical spin state read-out of point defect qubits.63

Additionally, through the non-radiative transitions between the
triplet and singlet states, there is nonzero rate for the mS= ±1→
mS= 0 transition. Therefore, it is possible to highly polarize the
electron spin of the point defect in the mS= 0 state by repeated
optical excitation.2,3

The dangling bonds of silicon vacancy form two a1 and one e
single particle states that all appear in the band gap of 4H-SiC64

(see Fig. 1d). This defect has near td symmetry, thus the higher
lying a1 and the e states are nearly degenerate and splitted only
by 80meV according to recent DFT calculations.65 In the negative
charge state, the single particle states are occupied by five
electrons that give rise to spin-3/2 ground (4A2) and optically
excited (4A2 and 4E) states (see Fig. 2b). In contrast to the NV-
center and divacancy, the ground state fine structure of silicon
vacancy exhibits a zero-field-splitting of only O 10MHzð Þ,65 while
the excited state fine structure exhibits a splitting in the order of
100 MHz.66 There are several possible doublet shelving states
between the quartet ground and excited states.67 According to
group theory considerations,67 the non-axial spin–orbit interaction
can only connect the ground and excited 4A2 states trough a 2E
doublet state (see Fig. 2b). Through this spin selective non-
radiative decay path the spin of silicon vacancay qubit can be
initialized in the mS= ±1/2 spin subspace.67

Beside the electron spin of point defects, nearby nuclear spins,
interacting with the point defects through the hyperfine coupling,
can also be utilized as quantum bits. As nitrogen has only
paramagnetic isotopes, the NV center always form a coupled
electron spin–nuclear spin two qubit system.26,68 The host
semiconductor may also contain nuclear spins that can be used
to realize hybrid qubit systems.31 Diamond contains 1.07% spin–1/
2 13C, while SiC contains 1.07% spin–1/2 13C and 4.68% spin–1/2
29Si isotopes in natural abundance.
Spin–orbit interaction at the defect site and in the bulk, and

dipolar coupling of nuclear and other point defect spins are

Fig. 2 Low energy many particle spectrum of (a) the NV center in
diamond (discussed in refs 60,61) and (b) silicon vacancy in SiC
(discussed in ref. 67)

Fig. 3 a Schematic diagram of the configuration coordinate diagram of a point defect’s ground and excited states. Green arrows show the
most relevant phonon-assisted and zero-phonon (ZPL) optical transitions. b Luminescence spectrum of the NV center (data from ref. 158)
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responsible for spin relaxation mechanism in these qubit
implementations. Purification of the host material from para-
magnetic isotopes and point defects were successfully used to
elongate relaxation and coherence times.9,38

FIRST PRINCIPLES ELECTRONIC STRUCTURE CALCULATIONS
Theoretical characterization of point defects qubits and first
principles calculations of spin coupling parametes depend
crucially on the outcomes of the underlying electronic structure
calculations. Therefore, it is essential to understand the capabilities
and limitations of the latter before we discuss the results of the
calculations. Unfortunately, due to the large structural model,
which is generally needed for the accurate description of single
point defects in bulk semiconductor hosts, one must always
compromise between the accuracy and computational efficiency.
DFT is the most widely used method in the field. However, there
are numerous attempts to use more sophisticated Green's
function and wavefunction-based methods for point defect qubit
calculations, see later in this section.
Let us therefore shortly review the most relevant electronic

structure theories used in ground and excited state calculations of
point defect qubits. As a first basic approximation, one generally
assumes that the wavefunctions of the nuclei and the electrons
can be separated (the Born–Oppenheimer approximation). Relying
on this approximation, the electronic structure problem can be
solved for every fixed arrangement of the atomic nuclei. Note,
however, that when the point defect qubit has Jahn–Teller
unstable state(s), for instance, the excited state of the NV center
and divacancy, one must go beyond the Born–Oppenheimer
approximation (see Section 4).

Ground state methods
DFT69,70 in the Kohn–Sham71,72 and generalized Kohn–Sham73

formalisms are the most frequently used methods for the ground
state electronic structure calculation of cluster or supercell models
of point defects in semiconductors. In these two formalisms, the
Schrödinger problem of many-electron system is mapped onto
the problem of auxiliary non-interacting and partially interacting
Kohn–Sham particles, respectively. The mapping is constructed so
that the auxiliary system reproduces the one particle density and
the total energy of the considered system.70,72 Exact calculations
require the definition and calculation of the exchange-correlation
energy term as a functional of the density. The exact definition of
the exchange-correlation energy functional is not known in
general, thus it is approximated in practice.70,72

In first principles studies of point defects qubits in semicon-
ductors, the most widely used approximate exchange-correlation
functionals are the PBE74 functional and the HSE0675,76 hybrid
functional. The latter functional models a partially interacting
system in the framework of generalized Kohn–Sham scheme.73

HSE06 hybrid functional includes the calculation of the exact
exchange energy of the Kohn–Sham particles,75,76 which makes
this functional computationally more demanding. In conventional
semiconducting hosts, HSE06 hybrid functional provides the most
accurate results for bulk and sp-point defect-related quantities in
general,77–79 as we discuss later in this paper. There are two main
reasons for the improved performance of HSE06: (1) it exhibits a
derivative discontinuity in the exchange correlation potential80

that remedies the band gap underestimation problem of semi-
local Kohn–Sham DFT functionals in conventional semiconduc-
tors77,81 and (2) localized defect states often satisfy the general-
ized Koopman's theorem78,82 thus there is no self-interaction for
the auxiliary particles occupying the defect states.83

We note that hybrid functionals may provide quantitatively less
accurate84–86 and even qualitatively incorrect results85,87,88 for
electronic structures of varying electron localization. It is well

established that the exact exchange-semilocal exchange mixing
parameters must be reconsidered when hybrid functionals are
applied to semiconducting transition metal compounds.84 The
need for different exact exchange ratio for states of different
degree of localization can also alter the calculation of transition
metal impurity-related point defects in conventional semiconduc-
tors of sp hybridized valence and conduction bands.85 Therefore,
additional considerations are needed to find a reliable hybrid
functional when d and f orbitals play a role.84,89

Supercell structural models of point defects with periodic
boundary conditions are the most often used approaches to
investigate point defect qubits in semiconductors. In such models,
plane wave basis set is the most suitable for expressing
Kohn–Sham single particle wavefunctions in the inter-atomic
region. Interaction with the atomic cores, including the potential
of the nuclei and the core electrons, is described either by
pseudopotentials or by the projector augmented wave (PAW)
method90 in most of the calculations. The latter enables the
calculation of atomic core-related quantities, such as spin–orbit
interaction and hyperfine Fermi contact term with all-electron
accuracy, see later in Section 4.
Convergence and numerical accuracy are always important

aspects of first principles DFT calculations. The most relevant
technical parameters that determine the accuracy of the calcula-
tions are the supercell size, Brillouin zone sampling, basis set, and
the force or energy criteria used for the structural optimization. As
will be shown in Section 4, in the case of spin coupling parameter
calculations, often very high numerical accuracy is needed.
Recently, thorough numerical tests, including ground state,
optical, and hyperfine parameters calculations were carried out
for the divacancy qubit in 4H-SiC in refs 53,91.
From the ground state spin density and Kohn–Sham particle

wavefunctions most of the relevant ground state spin-dependent
properties can be approximately calculated, see Section 4.

Excited state methods
As we have seen in Section 2, spin state initialization and read-out
can be implemented through the optical cycle of point defect
qubits. This process is determined by the electronic structure of
the point defects, especially, on the excited state spectrum and
the coupling and inter-system-crossing of different states. There
are several wave-function-based quantum chemistry approaches
that can provide such spectrum from first principles, however,
majority of these methods are applicable only for small systems.
Large point defect models with the periodic boundary conditions
are challenging for such calculations. The most widely used
approaches today apply computationally less demanding DFT-
based methods, for instance, the constrained occupation DFT
method. Limited accuracy of this method however motivated
development of efficient, still more advanced computational
approaches.

Constrained occupation DFT. In constrained occupation DFT,92

the total energy of a point defect excited state configuration is
approximated by the DFT total energy of a Kohn–Sham system,
where one of the occupied Kohn–Sham defect states is
depopulated, while a higher lying unoccupied Kohn–Sham state
is populated (see Fig. 1b–d). The constrained occupation of the
orbitals is kept fixed during the self-consistent solution of the
Kohn–Sham equations. Note that structural optimization of the
systems is still possible within this approach as the total energy is
well-defined. Consequently, besides the absorption energy, which
requires the same ground and excited state atomic configuration
in the Franck–Condon approximation, the emission and zero-
phonon energy, as well as the Stokes and anti-Stokes shifts can be
calculated in the constrained occupation DFT (see Fig. 3). In Table
1, one can see these quantities for the NV center. Remarkable
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accuracy was reported for the optical properties calculated by
HSE06 functional.92 For more details on first principles calculation
of optical properties see ref. 93

The constrained occupation DFT inherently assumes that the
Kohn–Sham orbitals of the defect states have a true physical
meaning, thus the change of the occupancies can indeed mimic a
realistic excitation process. According to the generalized Koop-
mans' theorem,94,95 or in other context the ionization potential
theorem,80,96 this is only fulfilled for the highest occupied state
when its Kohn–Sham single particle energy is equal to the
negative of the ionization potential,

εho þ Δεcc ¼ � EN � EN�1 þ ΔEccð Þ; (1)

where εho is the energy of the highest occupied Kohn–Sham
orbital and EN is the total energy of the N electron system. Note
that due to the periodic boundary condition, finite size effects can
be strong for charged supercells, both in terms of the Kohn–Sham
eigenenergies and the total energies, and they must be corrected
by appropriate charge correction terms, Δεcc and ΔEcc, respec-
tively.97

Recent theoretical studies78,82 demonstrated that defect states
described by HSE06 functional often fulfill Eq. (1). Thus the
constrained occupation DFT may describe realistic excitation
processes, which explains the remarkable accuracy seen in Table
1.
The constrained occupation DFT describes excitation processes

in terms of a single Slater determinant of the Kohn–Sham
particles. The constraint occupation DFT method, however, often
fails to provide accurate total energies of states that are highly
correlated, or in the language of Hartree–Fock theory, are
multideterminant in nature. Open shell singlet states fall into this
category. This limitation greatly hinders the computational
description of the spin selective non-radiative decay process that
may include transition through open shell singlet states.

Excited state calculation beyond constrained occupation DFT. In
order to calculate highly correlated states, several alternative
methods have been proposed and tested for the NV center in
diamond. Parameters of the excited state spectrum obtained by
different first principles methods are summarized and compared
with the experimental values in Table 2.
The most widely used method to describe excited state

phenomena in solids is the GW approximation to the Hedin
equations98 in the framework of many-body perturbation theory.
The method can be combined with the colution of the
Bethe–Salpeter equation (BSE)99 to include electron–hole interac-
tions and to describe singlet states. GW+BSE method was applied
in simulations of the NV center by Ma et al. in ref. 100, where three
singlet states, 1E, 1A1, and

1E′ states, were found between the
triplet 3E excited and 3A2 ground states. This result is in
contradiction with the currently accepted energy structure of
the NV center discussed in Section 2. Furthermore, the calculated
0.59 eV ZPL energy of the 1A1→

1E transition is approximately half

of the experimental value, suggesting that G0W0+ BSE method
fails to accurately describe important static correlation effects in
the singlet states.
Quantum Monte Carlo configuration interaction (QMC CI)

calculation on small cluster models101 and generalized Hubbard
model-based approaches,102,103 on the other hand, are able to
qualitatively reproduce the accepted energy level structure of the
NV center, i.e. they predict only two shelving states that can be
connected to the nonradiative decay process of the NV center (see
Table 2).
In the QMC CI approach on a C42H42N

− cluster, Delaney et al. 101

reported that the higher lying 1A1 shelving state appears slightly
above the 3E states. This result suggests higher energy inter
system crossing and thus lower decay rate. Furthermore, the
1A1→

1E transition energy is overestimated (see Table 2). The
discrepancies can most probably be attributed to the very small
cluster model used in the calculations.
In the third-type of approaches extended Hubbard model

Hamiltonians were diagonalized for the electrons occupying the
dangling bonds of the NV center

H ¼ P
ijσ

tijc
y
iσcjσ

þP
i
Uini"ni#

þ 1
2

P
i≠j;σσ0

Vijniσnjσ0

þ 1
2

P
ijlm;σσ0

Xijlmc
y
iσc

y
jσ0cmσ0clσ;

(2)

where i, j, l, and m are dangling bond indexes, σ and σ′ are the
spin indexes, c, c†, and n† are the annihilation, creation, and
number operators, t is the hopping and ionic term, U and V are the
intra and intersite Coulomb repulsion, and X is the exchange
interaction term. In ref. 102, Ranjbar et al. calculated the hopping
and interaction parameters from the defect orbitals obtained by
DFT calculations with B3LYP functional104 on a C71H85 cluster. This
method somewhat overestimates the 3E→ 3A2 transition energy,
while substantially underestimates the 1A1→

1E ZPL energy (see
Table 2). In ref. 103, Choi et al. applied a different approach to
paramaterize a Hubbard Hamiltonian that neglected the exchange
interaction term in Eq. (2). In order to determine U and V, they
compared quasi particle energies as obtained from GW calculation
and from the diagonalization of the Hubbard Hamiltonian.
Through this fitting, the screening effect of the delocalized
semiconductor states was included to some extent. Despite
omitting the exchange interaction term, this approach provides
accurate excited state spectrum parameters.
In a very recent work,105 Bockstedte et al. combined constrained

random phase approximation (CRPA)106 and CI calculations to
simultaneously include local static correlation effects of the
dangling bonds and dynamic screening effects of the delocalized
electronic states of the host semiconductor. In particular, CI

Table 1. Optical properties of the NV center from first principles
constrained occupation DFT

PBE HSE06 Exp.

Absorption energy 1.910 2.213 2.180

Zero-phonon line energy 1.706 1.955 1.945

Emission energy 1.534 1.738 1.760

Stokes shift 0.204 0.258 0.235

Anti-Stokes shift 0.172 0.217 0.185

Theoretical values were calculated by PBE and HSE06 functionals in ref. 92

Experimental values are reported in ref. 154

Table 2. Parameters of the electronic structure of the NV center in
diamond as calculated by different theoretical approaches

Method 3E→ 3A2
1A1→

1E 3E→ 1A1

* GW+ BSE100 2.09 0.59 1.10

CI on C42H42N
101 1.93 1.43 −0.1

Ext. Hubb.+DFT par.102 2.38 0.62 1.35

* Ext. Hubb.+GW fit.103 2.0 0.96 0.6

* CI+ CRPA105 2.05 0.89 0.69

Experiment 1.945154 1.19155 ≈0.4132

Methods marked by * include structural relaxation effects as well
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calculation was carried out on a small basis of hybrid-DFT
Kohn–Sham orbitals that included both in-gap defect states and
a few states at the valence and conduction band edges. Instead of
the bare Coulomb potential, a screened potential, Veff ¼ ε�1

CRPAV ,
was used. The CRPA dielectric function ε�1

CRPA was calculated by
excluding transitions within the CI basis in order to avoid double
counting of correlation effects.
As can be seen in Table 2, accurate results can be achieved by

the last two considered methods, i.e. by GW parameterized
Hubbard Hamiltonian and CI+CRPA approaches. Both of these
methods include static correlation effects via an appropriately
screened interaction potential, indicating the importance of taking
both effects into account.

FIRST PRINCIPLES SPIN COUPLING PARAMETER CALCULATION
Standard DFT calculations on supercell point defect models can
achieve numerical accuracy as good as 1 meV. Even in this case,
the energy scale of the spin coupling parameters can be orders of
magnitude smaller (in the μeV range), which could make the
impression that DFT would not be suitable for calculating these
quantities. As we demonstrate in the following, it is not the case.
Most of spin-related coupling parameters are small only due to the
factors in front of the integrals of the Kohn–Sham particles. As the
integral itself can be highly accurate, the relative numerical
accuracy of the spin coupling parameters can be as good as the
total energy.

g-tensor
Magnetic field is traditionally used to control the splitting of the
spin states of point defect qubits, and vice versa, it is possible to
detect magnetic field variations by measuring the splitting of the
spin states. The spin Hamiltonian operator for defect spins with
S ≤ 1 and for negligible first-order ground state spin–orbit
interaction can be written as

ĤZeeman ¼ μBBgbS; (3)

where μB is the Bohr magneton, B is the magnetic field vector, bS is
the electron spin vector operator, and the g is the g-tensor that
includes different higher order relativistic material dependent
contributions to the ge g-factor of the free electron. The Cartesian
elements of the g-tensor can be obtained from the second
derivative of the relativistic many electron energy E, as107

gab ¼ 1
μB

∂2E
∂Ba∂Sb

����
B¼0;S¼0

; (4)

which give rise to three additional non-negligible terms beside the
ĤZ�free Zeeman term of the free electron

ĤZeeman ¼ ĤZ�free þ ĤZ�KE þ ĤZ�SO þ ĤZ�SOO; (5)

where ĤZ�KE is the electron Zeeman kinetic energy correction, and
ĤZ�SO and ĤZ�SOO are the spin–orbit and spin–other-orbit
corrections to the Zeeman energy. The definition of these terms
can be found in the literature, for instance in refs 107–109 The
effective g-tensor of the system is defined as

g ¼ geI þ ΔgZ�KE þ ΔgZ�SO þ ΔgZ�SOO; (6)

where I is the 3 × 3 identity matrix, and ΔgZ-x are the
corresponding correction tensors.
Implementations that are suitable for point defect g-tensor

calculations in periodic models were provided by Sebastiani et al.
110 and Pickard et al. 109 In the former approach pseudopotentials
were used without correction terms in the core region that
resulted in limited applicability of the method. Later, this
limitations was relaxed by extending the method in ref. 111 On
the contrary, Pickard et al. 109 used gauge including projector
augmented wave approach112 (GIPAW), which allowed for all-

electron g-tensor calculations. Later, implementations using
atomic orbitals in periodic boundary conditions were also
presented.113 g-tensor calculations were recently applied in the
identification of the microscopic configuration of the nitrogen
substitutional-silicon vacancy pair defect in different polytypes of
SiC.114 This new family of spin-1 point defects was recently
suggested as a potential new platform for implementing point
defect qubit in technologically mature SiC hosts.115

So far we considered only bi-linear terms in the Zeeman spin
Hamiltonian. For defects with S > 1, higher order magnetic field
interaction terms are possible.108,116 In Table 3, we collected the
possible higher order magnetic field interaction terms up to S= 5/
2. Note, that Table 3 does not contain higher order terms in B.
Such terms are also possible, however, most often they can be
safely neglected.116

Theoretical formulas for the higher order interaction terms can
be found in the literature,116,117 however, less attention has been
paid to the implementation and calculation of corresponding
higher order g-tensor parameters so far. On the other hand, in
recent experiment on the spin-3/2 silicon vacancy qubits in 4H-SiC
forbidden electron spin transitions were observed in the ODMR
spectrum.118 To explain this result, higher order Ŝ3B like terms had
to be taken in the considerations. The g-tensor elements
corresponding to these third-order terms were found to be
considerable, i.e. g3⊥+ g3|| ≈ 1.0 and g3⊥− g3|| ≈ 0.2. These results
indicated that implementations of higher order magnetic field
interaction term calculation may be desirable in the future to
understand forbidden transitions.

Spin–spin contribution to zero-field splitting
Due to intra-defect interactions, the spin sublevels of the point
defect qubits may split even at zero magnetic field. There are two
major contributions to the, so-called, zero-field-splitting (ZFS): the
spin–spin and the spin–orbit dipole interactions. In this section,
we discuss first principles calculations of the former interaction,
which is generally the most relevant interaction in the ground
state of the considered solid state qubits.
When a point defect has more than one unpaired electron, each

pair of the electrons spins bSi and bSj interact thorough the
dipole–dipole interaction, described by the following Hamiltonian:

ĤSS;ij ¼ μ0
4π

g2eμ
2
B

bSibSj
r3

�
3 bSir� � bSjr� �

r5

0
@

1
A; (7)

where r is the vector between the two electron spins, r= |r|, and
μ0 is the vacuum permeability. Note that, for simplicity the g-
tensor of the electron spin is replaced with the ge g-factor of the
free electron.116 The spin–spin contribution to the zero-field-
splitting spin Hamiltonian can be obtained by introducing the
total spin operator vector, bS ¼ P

i
bSi , and integrating over the

spatial degrees of freedom. Note that this is possible when the

Table 3. Possible electron spin–electron spin and electron
spin–magnetic field terms in the spin Hamiltonian116

S Terms

0.5 ŜB

1 ŜB Ŝ2

1.5 ŜB Ŝ2 Ŝ3B

2 ŜB Ŝ2 Ŝ3B Ŝ4

2.5 ŜB Ŝ2 Ŝ3B Ŝ4 Ŝ5B

Here, Ŝ represents any linear combination of the spin Cartesian operators,
while B represents any linear combination of the Cartesian magnetic field
components
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spatial and spin wavefunctions are separable, i.e. no spin–orbit
interaction mixes these two degrees of freedom. The spin
Hamiltonian can be written as

ĤSS;ZFS ¼ bSDbS; (8)

where D is the 3 × 3 zero-field-splitting tensor. Components of the
zero-field-splitting tensor can be calculate from the two particle
spin density matrix ρ2 (r1, r2) as

Dab ¼ 1
2
μ0
4π

g2eμ
2
B

Z
ρ2 r1; r2ð Þ r

2δab � 3rarb
r5

dr1dr2; (9)

where ra and rb are the Cartesian coordinates of r= |r1− r2|. In
axial symmetric cases the splitting of the spin states can be
parameterized by a single parameter, D ¼ 3

2Dzz , and the ZFS spin
Hamiltonian simplifies to

Ĥaxial sym:
SS;ZFS ¼ D Ŝ2z �

S Sþ 1ð Þ
3

� �
; (10)

where S is the total spin and Sz is the eigenvalue of the
component along z quantization axis.
The two particle spin density matrix can be obtained in different

wave function-based approaches, as it is generally carried out in
quantum chemistry calculations for molecules.119 However, it is
only approximated in point defect calculations with periodic
boundary conditions.120 In DFT only density-related quantities can
be determined in a consistent way. The density matrix can be
approximated by using the Slater determinant of the Kohn–Sham
eigenstates of the considered system. This approximation is
suitable only when the ground state wave-function is accurately
represented by a single Slater determinant120,121

Dab ¼ 1
2
μ0
4π

g2eμ
2
B

S 2S� 1ð Þ
Xoccupied

i>j

χ ij

Z
Φij r1; r2ð Þ�� ��2r2δab � 3rarb

r5
dr1dr2;

(11)

where Φij r1; r2ð Þ ¼ 1ffiffi
2

p ϕi r1ð Þϕj r2ð Þ � ϕj r1ð Þϕi r2ð Þ� 	
the Slater

determinant of Kohn–Sham states i and j and χij is either 1 or
−1 for KS states of the same or different spin channels,
respectively. Note that in DFT the Kohn–Sham states are not spin
restricted, i.e. the states in the two spin channels are independent
from each other. Consequently, not only the unpaired Kohn–Sham
states but also the rest of the occupied states can contribute to
the spin density and the ZFS.120,121 In order to account for these
effects, the summation in Eq. (11) includes all pairs of the occupied
states.
To the best of our knowledge, the first implementation and

point defect calculations were carried out by Rayson et al. 120,121.
In the latter publication an efficient implementation was
presented for the plane wave basis set, which was later utilized
in other publications too.122,123 In all of these early implementa-
tions pseudopotentials and pseudowavefunctions were used. The
theory of Rayson et al. was recently extended to the PAW method
to include corrections from the core region.124,125

We would like to draw attention to the fact that the
dipole–dipole interaction is long ranged, i.e. it goes with 1/r3, thus
the finite size effect can be present in periodic supercells.
Biktagirov et al. 125 observed notable effect for point defects in
diamond and cubic 3C-SiC. Note that ZFS is a tensor quantity, thus
the interaction with the periodic images depends not only on the
distances but on the arrangement of the replicas, or equally, on the
shape and symmetry of the supercell. To investigate these
important aspects that influence the numerical accuracy and to
propose possible correction schemes, additional studies are
required.
Recently, the ground state ZFS tensor calculations were

successfully applied in point defect configuration identification
studies,53,65,115 where 1–20% error were observed when the

values are compared with experimental results (see Table 4). In all
of these applications PBE exchange-correlation functional was
used. Note that the results obtained from pseudowavefunctions
without PAW contributions compare best with the experimental
values. This surprisingly good results must be a consequence of
error cancellations in these calculations.123 Note also that the
current implementations may not be suitable for defects with S2,
where higher order terms are expected (see Table 3), and when
the g-tensor deviates considerably from geI of the free
electron.116

ZFS of point defect qubits is a key quantity to measure
variations of the external degrees of freedom. Recently, pres-
sure,122,123 strain,126 electric field,127 and temperature depen-
dence122 of the ZFS were successfully studied by first principles
calculations.
So far less attention has been paid to the excited state ZFS

calculations, where additional considerations are required. As we
mentioned in Section 2, ZFS tensor can be obtained only when
the spin and spatial degrees of freedom are separable, i.e.
spin–orbit interaction is negligible, and the considered states can
be described by a single Slater determinant. None of these
conditions are satisfied in the low-temperature fine structure of
the 3E optically excited state of the NV center60,62 and divacancy,58

thus spin–spin coupling alone cannot describe the low temperate
fine structure. On the other hand, according to the accepted
theory of the 3E states of these defects, at high temperature the
spin–orbit interaction and non-axial component of the spin–spin
interaction averages out due to the atomic motion of the dynamic
Jahn–Teller excited state configuration,62 and thus one can obtain
states that are good eigenstates of Ŝz and Ŝ2z . The ZFS of the NV
center and divacancy qubits can be approximated by Kohn–Sham
orbitals in constrained occupation DFT and subsequent symme-
trization of the D matrix to mimic the motion averaging and
obtain effective C3v symmetry.
In Table 5, we collected the results of excited state ZFS

calculations using PAW pseudowavefunctions obtained by PBE
exchange correlation functional.128. Except for the NV center in
diamond, the theoretical values substantially overestimate the
experimental ones. A possible source of this discrepancy can be
the neglect of electron–phonon coupling and the vibrational part
of the wavefunction. These results as well as the enormous
temperature dependence of the excited state ZFS of silicon
vacancy66 evidence the need for extending the theory of excited
state ZFS calculations.

Spin–orbit coupling parameters
Spin–orbit interaction, due to the relativistic coupling of electron
angular motion and the electron spin, has already appeared in

Table 4. First principles and experimental ground state ZFS values D
of selected point defects that are used or proposed as qubits in
semiconductors

Host defect DONCV DPAW-ps DPAW Dexp.

Diamond NV− 3.03123 2.90123, 2.854122 3.08125 2.8863

4H-SiC hh divacancy 1.682123 1.387123,
1.358127

– 1.33649

4H-SiC VSi(−) at k-
site

– 0.033365 – 0.035156

3C-SiC NCVSi(−) – 1.409115 1.74125 1.303115

ONCV, PAW-ps, and PAW superscripts stand for calculations with norm-
conserving pseudopotentials, PAW potential with only pseudowavefunc-
tion contributions to the ZFS, and PAW potential with PAW core corrections
to the ZFS, respectively. All values are given in GHz
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previous discussion of the g-tensor and zero-field-splitting. In this
section, we discuss first principles calculation of spin–orbit
coupling parameters of point defect qubits in semiconductors
that can be used to analyze the fine structure of the states and to
investigate possible spin-selective transitions between different
defect states.
The spin–orbit interaction Hamiltonian in zero-order approx-

imation can be written as60

ĤSO ¼ 1
2

1
c2m2

e

X
i

∇iV ´ bpið ÞbSi; (12)

where V is the nuclear potential energy, me is the electron mass,
and bpi and bSi are the momentum and spin of electron i. The
elements of the orbital operator vector bO ¼ ∇iV ´ bpi can be
calculated from the Kohn–Sham orbitals. Note that the crystal field
of a solid breaks the spherical symmetry of the spin–orbit
interaction. In low symmetry case the interaction Hamiltonian
can be rewritten as60

ĤSO ¼
X
i

λx L̂i;x Ŝi;x þ λy L̂i;yŜi;y þ λz L̂i;zŜi;z; (13)

where λa for a∈ {x, y, z} are the spin–orbit interaction parameters.
In C3v symmetry λ⊥= λx= λy and λ||= λz are the basal or non-axial
and axial parameters of the interaction, respectively. The former
parameter is dominantly responsible for the mixing of different
spin states, e.g. triplet and singlet states, while axial parameter is
mainly responsible for the splitting and shift of different spin–orbit
coupled states. Note that the most frequently used λbLbS form is
only recovered in higher symmetry cases when λ= λ⊥= λ||. Note
also that the above formula inherently includes the assumption
that ∇iV is identical for all the electronic states. This may be
violated when systems of different atomic species are considered.
In standard implementations available in first principles codes no
such approximation is taken, however, the anisotropy of the
spin–orbit interaction is generally neglected.129–131

In light element hosts, such as diamond and SiC, the spin–orbit
coupling energy can be very small for localized point defect states,
generally in the order of 10–100 μeV (≈GHz). Furthermore, axial
spin–orbit interaction is non-zero for states of non-zero effective
spin and orbital momentum. Most often, the ground state of point
defect qubits have no effective angular momentum, thus no axial
spin–orbit contribution can be observed in the ground state
ZFS.50,60,62,67

Spin–orbit interaction calculations for the NV center and for
other potential qubits, group-IV-vacancy color centers in diamond,
have been pioneered by Thiering et al. 132,133 The axial spin–orbit
interaction strength in the excited state can be obtained both
from total energy difference calculations and from the splitting of
Kohn–Sham states in constrained occupation non-collinear DFT
calculations.132 To accurately determine small values of the axial
spin–orbit interaction, the calculations require high numerical
convergence and accuracy. Finite size effect turned to be crucial
for spin–orbit interaction calculations132 (see Fig. 4). Thiering et al.
132 attributed the observed finite size effect to the overlap of the
defect states and used an exponential fit to eliminate supercell

size dependence of the λz. Note that axial spin–orbit coupling
parameter calculations are only possible in the Γ-point of the
Brillouin zone, as the dispersion and splitting of the defect states
in low symmetry k-points may be larger than the axial spin–orbit
splitting.
It is important to mention that due to the dynamic Jahn–Teller

nature of the excited states of the considered defects, the
calculated axial spin–orbit parameter cannot be directly compared
with the experimental values.132 The efficient electron–phonon
coupling reduces the angular momentum of the electrons in the
excited state. By taking into account this damping effect, the
calculated axial spin–orbit parameters compare well with the
experimental values.132,133 On the other hand, the calculation of
the non-axial component of the spin–orbit interaction requires
further investigation and development.132

Hyperfine tensor calculation
The hyperfine interaction tensor describes the coupling of nuclear
spin to the electron spin density of the point defect. As spin
density is generally a unique feature of paramagnetic point
defects, the hyperfine structure is an important fingerprint that
can be utilized in point defect configuration identification. Indeed
hyperfine interaction is probably the most frequently calculated
spin-dependent quantity of point defects in semiconductors.
Considering only linear term in spin operators, the hyperfine

spin Hamiltonian of a single electron spin–nuclear spin pair can be
written as

Hhyp ¼ bSAbI; (14)

where A is the hyperfine tensor and bI is the nuclear spin vector
operator. When the electron spin density is non-zero at the place
of the considered nuclear spin, the hyperfine tensor elements are
defined by the sum of two terms

Aab ¼ 2μ0
3 geμBgNμN

σ Rð Þ
S

þ μ0
4π geμBgNμN

1
S

R 3rarb�r2δab
r5 σ rð Þdr;

(15)

where σ(r) is the electron spin density, r is the vector between the
electron spin and nuclear spin at R, gN is the nuclear g-factor, and
μN is the nuclear magneton. The first term on the right-hand side
of Eq. (15) is the Fermi contact term that describes isotropic
magnetic interaction between the spins, while the second term on

Table 5. First principles and experimental excited state ZFS values D
of selected point defects qubits

Host Defect DPAW-ps Dexp.

Diamond NV(−) 1.71128 1.43157

4H-SiC hh divacancy 1.33128 0.8427

4H-SiC VSi(−) at the k-site 2.19128 0.215–0.50366

PAW-ps denotes calculations of PAW potential with only pseudowavefunc-
tion contributions to the ZFS. All values are given in GHz unit

Fig. 4 Convergence of the axial spin–orbit coupling parameter λ in
the excited state of NV center. Horizontal axes shows the supercell
size and the number of carbon atoms in the defect-free supercells.
The figure is reprinted with permission from ref. 132 Copyright (2017)
by the American Physical Society
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the right-hand side of Eq. (15) is the anisotropic, long-ranged
dipole–dipole interaction term. Note that in Eq. (15), we
approximated the electron spin g-tensor with ge.

116

In case of an axial symmetric hyperfine interaction, i.e. when the
nuclear spin is located on the symmetry axis of the systems, which
becomes the quantization axis as well, the hyperfine tensor is
diagonal with diagonal element Axx= Ayy= A⊥ and Azz= A||. These
parameters can be expressed by the Fermi-contact term a and a
simplified dipolar coupling term b as A⊥= a− b and A||= a+ 2b.
In the first implementation for DFT calculations with periodic

boundary conditions by Van de Walle et al. 134,135, pseudopoten-
tials were used and only the axial symmetric hyperfine interaction
parameters were calculated. This approach was successfully
applied in the identification of electron paramagnetic resonance
(EPR) centers in semiconductors, see for example the citations of
ref. 135 Later, the theory was extended to Greens’ function136

calculations and PAW full hyperfine tensor calculations.79,137

According to recent numerical tests, HSE06 hybrid functional
hyperfine calculations including core polarization correc-
tion79,138,139 provides the most accurate results.79

Hyperfine interaction calculations have been carried out for the
most important point defect qubits, such as the NV center,79,140

divacancy,27 and silicon vacancy.65,79 Recently, hyperfine tensors
were calculated not only for the first and second neighbor nuclei
sites, but also for more distant nuclei sites that are usually not
resolvable in experiments.65,141

Similarly to the case of electron spin–electron spin dipolar
interaction, finite size effects are expected in the hyperfine values
that are calculated with periodic boundary conditions. Indeed,
using the implementation provided in ref. 79, considerable finite
size effects where reported in ref. 53 (see Fig. 5). As can be seen,
the relative error increases for nuclei sites located farther away
from a divacancy point defect qubit. Importantly, both the Fermi
contact and the dipole–dipole interaction terms exhibit finite size
effects, which however rapidly reduce with increasing supercell
size.53 These observations suggest that the overlap of the defects
states is responsible for the reported finite size effects. Conse-
quently, accurate calculation of hyperfine tensor of distant nuclei
sites is only possible in large supercells, where the overlap of the
defect states is negligible.

As a final remark on hyperfine tensor calculations in periodic
codes, we mention that finite size effects caused by the long-
ranged dipole–dipole interaction term could be eliminated to a
large extent by employing real space integration in Eq. (15). In
practice, momentum space integration is commonly utilized, since
a six-dimensional real-space integral can be simplified to a three-
dimensional integral after Fourier transformation. In the case of
hyperfine tensor calculations, the real space integral is only three-
dimensional due to the point-like localization of the nuclei.
Consequently, efficient calculations can be carried out on a real-
space grid to substantially reduce the artificial effect from the
periodic images.
The simulations of shallow donor qubits in silicon quantum dots

are especially challenging142 due to the delocalization of the
defect states and the substantial finite size effects. To overcome
some of these problems and, at the same time, to investigate the
quantum confinement effects, cluster models are frequently used
in hyperfine parameter calculations of these qubits.143,144

Other coupling parameters
In the previous sections, we discussed first principles calculations
of the most important spin-related quantities of point defect
qubits. At the same time, there are numerous further coupling
terms and coupling parameters that can be derived from
relativistic perturbation theory.145 Restricting ourselves to terms
ofO α0ð Þ andO α2ð Þ, where α ≈ 1/137 is the fine-structure constant,
the following spin and orbital momentum-related interaction
terms can appear: (i) nuclear quadrupole interaction O α0ð Þð Þ, (ii)
electron orbital–orbital dipole interaction, (iii) spin–spin contact
interaction, (iv) orbital hyperfine interaction, and (v) magnetic
field-dependent corrections terms to the spin–orbit, spin–other-
orbit, nuclear Zeeman, and orbital–hyperfine interactions. There
are available implementations for the nuclear quadruple146,147 and
orbital hyperfine interaction terms.148–150 However, to the best of
our knowledge these terms have not been considered in the
context of first principles point defect qubit calculations.
Investigation of higher-order terms may be important for highly
accurate first principles calculations and for studying exotic spin
state couplings.

Role of electron–phonon coupling
Although, electron–phonon coupling is not a spin-dependent
phenomena, it still can indirectly affect the expectation values of
spin-dependent observables, as we have already seen in the case
of spin–orbit interaction in Section 4. In general, when the
adiabatic approximation is violated, mixed electronic, and vibronic
wavefunctions are required to accurately calculate orbital-
dependent spin coupling parameters such as g-tensor, zero-
field-splitting, and spin–orbit interaction parameters. Therefore,
here we shortly review relevant works on the description of
electron–phonon coupling in point defect qubits.
Ground or excited states of point defects often exhibit different

Jahn–Teller instabilities. In the dynamic Jahn–Teller effect, when
the zero-point motion or thermally occupied phonon modes have
sufficient energy to continuously drive the system between
different Jahn–Teller distorted states, the electron states and
phonon modes strongly couple. Recently, model Hamiltonian
approach was applied to investigate the triplet excited state of the
NV center in diamond, which is a dynamic Jahn–Teller system,
where the partially occupied e single particle state couples to a
localized E vibrational mode. Abtew et al. 151 and Thiering et al. 132

applied a so-called e ⊗ E model, in which a model potential
energy surface of the e electronic states over generalized
coordinate space of the E vibrational mode is parameterized by
constrained occupation DFT calculations. The electron–phonon
coupling potential established this way is added to the
Hamiltonian of the e ⊗ E model system and solved by exact

Fig. 5 Relative error of the calculated Fermi contact hyperfine
interaction strength for various nuclei sites around a hh divacancy in
4H SiC (data from ref. 53). On the horizontal axis the distances from
the silicon vacancy site of the divacancy are given. Calculations are
carried out in 72, 128, and 576 atom supercell using PBE functional.
Deviations in the hyperfine values are measured from the
parameters obtained in the absolutely convergent 2400 atom
supercell
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diagonalization. Even in the vibrational ground state, different
electronic states of different angular momentum are mixed with
vibronic states. As a consequence, the L= 2 angular momentum
of the excited state electronic configuration is quenched down by
70% in the vibronic ground state, resulting in theoretical axial
spin–orbit coupling parameter compares well with the experi-
ment.132 Note that similar theory should be applied to the g-
tensor calculation in the excited state. The zero-field-splitting of
the vibronic ground state has not been investigated yet.

SUMMARY AND OUTLOOK
Point defect quantum bits in semiconductors are among the most
recent inventions of solid-state physicists and material scientists
that may serve as building units for room temperature controlled
quantum systems in semiconductors. Additionally, point defect
quantum bits provide an interface for investigating materials and
molecules with nanoscale spatial resolution. As these elementary
solid state quantum devices can be directly and quantitatively
studied by first principles calculations, theoretical studies hold a
great promise for fast development of these areas.
As we have shown here, methodology and implementations for

the calculations of the most important ground state spin-
dependent quantities have already been demonstrated in the
literature. In general, applications of these methods show
considerable accuracy and predictive power, which is encouraging
for broadening the range of simulations. On the other hand, there
is a great need in further developments. In some cases, the
limitations of the currently used method or technical requirements
of completely convergent calculations are still unknown. Further-
more, higher-order coupling term calculations might be consid-
ered in the future.
Calculations of excited state spin-dependent properties, how-

ever, still remain quite challenging. The reason to this is twofold.
First, proper excited state electronic structure calculations require
to go beyond conventional applications of the DFT. Second, the
electron–phonon coupling tends to play an important role in
some properties of the excited states. Calculation of the spin-
dependent quantities will become significantly more reliable upon
overcoming the above-mentioned methodological challenges.

Future applications
Finally, we would like to call attention to two possible future
applications for the existing and required first principles methods
mentioned in this Review Article.

First principles predictions of point defect qubits. There are
numerous two-dimensional and three-dimensional semiconduct-
ing materials that have been synthesized so far and their number
is increasing day by day. Many of these materials can host
paramagnetic point defects that may exhibit potential for
implementing novel point defect qubits. Using first principles
calculations is the most suitable approach for fast investigation of
this vast unexplored field. Requirements for systematic point
defect search have been discussed in the literature.53 Moreover, it
has been shown that computationally efficient methods can be
used for high-throughput screening of point defect by calculating
the defects spin states and basic optical properties.53,152 The
evaluation of candidate paramagnetic point defects real potential
for qubit applications, however, requires more detailed studies by
using methods summarized in this paper. For such systematic
point defect qubit search, appropriate highly automated search
algorithms are yet to be developed.

Ab initio support for predictive spin dynamic simulations. Simula-
tions in the framework of model spin Hamiltonian for qualitative
understanding of basic functionalities of point defect qubits is an

other emerging direction for theoretical studies. These simulations
generally rely on spin coupling and other system-specific
parameters that at present are usually obtained from experimental
measurements. Accurate measurement of all of the required
parameters is cumbersome and not always possible, thus spin
Hamiltonian models frequently contain free parameters as well.
Consequently, quantitative predictive power and transferability of
these methods are highly limited.
On the other hand, first principles calculations of spin-related

parameters of point defect qubits may take over the role of
experimental measurements. Combining ab initio calculations
with model spin Hamiltonian approaches may results in novel
methodologies that allow for parameter free quantitatively
predictive spin dynamic simulations. Such method would be
highly important not only for quantitative understanding of the
physics of point defect spins but also for modeling the operation
and applications of point defect qubit candidates.
Indeed, in recent spin dynamic simulations for optical dynamic

nuclear polarization (ODNP) thorough divacancy quantum bits, ab
initio hyperfine tensors were used in the simulations that allowed
the prediction of fine structures in the magnetic field dependence
of the nuclear spin polarization, which were confirmed in
experiment.153 This example demonstrates the potential of ab
intio theory-supported spin Hamiltonian approaches.
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