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A high-throughput data analysis and materials discovery tool
for strongly correlated materials
Hasnain Hafiz1,7, Adnan Ibne Khair2, Hongchul Choi3, Abdullah Mueen2, Arun Bansil1, Stephan Eidenbenz4, John Wills3, Jian-Xin Zhu3,
Alexander V. Balatsky5,6 and Towfiq Ahmed3

Modeling of f-electron systems is challenging due to the complex interplay of the effects of spin–orbit coupling, electron–electron
interactions, and the hybridization of the localized f-electrons with itinerant conduction electrons. This complexity drives not only the
richness of electronic properties but also makes these materials suitable for diverse technological applications. In this context, we
propose and implement a data-driven approach to aid the materials discovery process. By deploying state-of-the-art algorithms and
query tools, we train our learning models using a large, simulated dataset based on existing actinide and lanthanide compounds. The
machine-learned models so obtained can then be used to search for new classes of stable materials with desired electronic and physical
properties. We discuss the basic structure of our f-electron database, and our approach towards cleaning and correcting the structure
data files. Illustrative examples of the applications of our database include successful prediction of stable superstructures of double
perovskites and identification of a number of physically-relevant trends in strongly correlated features of f-electron based materials.

npj Computational Materials            (2018) 4:63 ; doi:10.1038/s41524-018-0120-9

INTRODUCTION
There is an ever-increasing need for developing new materials
with novel electronic functionalities in our technology-driven
modern society. To this end, a recent focus has been to integrate
computational and experimental techniques for the purpose of
obtaining robust, predictive tools for gaining insights into
structure–property relationships in functional materials in order
to reduce the time and cost in the materials discovery process. In
this connection, it is important to expand the search space of
materials to include compounds containing elements from the last
rows of the periodic table, which present an especially rich
playground for hosting novel functionalities that arise through the
interplay of effects of spin–orbit coupling, strong electron
correlations and interactions of highly localized f-electrons with
free-electron-like conduction electrons. Although widely known
for nuclear energy applications, actinides and lanthanides have
recently attracted attention also in connection with superconduc-
tivity,1 magnetism,2 and Kondo physics3 as well as energy-related
applications.4,5

While a “1-to-1” approach (one system—one calculation—one
experiment) has been the traditional strategy in lanthanide and
actinide research, this approach is quite inefficient due to the
large experimental cost of handling high-Z materials. Moreover, f-
electron systems have proven notoriously hard to model within
the first-principles density functional theory (DFT)6,7 framework,
while dynamical mean field theory (DMFT) methods8–10 invoke
semi-empirical correlation parameter U, which reduces their
predictive power. Here, in order to address these challenges, we
discuss a novel predictive strategy, which is based on adopting an

integrated data and theory-driven approach. In this connection,
we have built the f-electron structure database (fESD, http://
correlatedmaterials-lanl.org) that combines experimental and DFT
simulated data using state-of-the-art algorithms11–13 to train our
machine learning models. We will show how the analysis of our
database reveals new insights into the intricate electronic and
structural properties of f-electron systems.
A unique feature of the fESD is that it incorporates high-quality

simulated electronic structure data which capture the effects of
electron-correlations and spin–orbit coupling in an all-electron
environment. Many popular databases (e.g., AFLOW,14 Materials
Project,15 Organic Materials Database16) use pseudo-potentials
and plane-wave-based techniques for DFT simulations. In contrast,
we use full potential, all-electron, relativistic linearized-
augmented-plane-wave (LAPW) results,17,18 which is important
for obtaining a predictive model for strongly correlated materials,
computational cost notwithstanding.

RESULTS AND DISCUSSIONS
Database design and collection of data
Our database is primarily an electronic-structure database with
query tools that allow searches of compounds with desired crystal
and/or band structures. In addition, the database contains DFT
simulated data with a variety of query capabilities. The database
management system (DMS) is built on MySql and Java Develop-
ment platforms. Additionally, a number of Python-based scripts
are used for data parsing at various levels (e.g., crystallographic
information files (CIF), DFT output). Work toward designing an
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application-programming interface (API), which will integrate
various query tools and provide a Python-based library of
functions for programmed access to the database, is currently in
progress.
Inorganic Crystal Structure Database (ICSD)19 and Crystal-

lographic Open Database (COD)20 are our initial sources, which
currently contain 188,000 and 364,331 CIF files, respectively. There
are 54,465 structure files in ICSD and 27,502 in COD with
compounds containing lanthanide and actinide elements (e.g.,
outer shell f-orbital electrons). We started by downloading
structure information such as crystal structures, lattice parameters,
and atomic positions from these CIF files into our database. At
present, the scope of our database is limited to ground state DFT-
based electronic structures using available crystal structure data
without sensitivity to pressure and temperature dependencies or
the specifics of how the data was acquired (e.g., theoretically or
experimentally). A richer labeling with more detailed attributes of
the data, will be undertaken in future extensions of the database.

Data cleaning, verification, and crystal structure determination
While restructuring the data format, we developed a number of
query tools with new search features which, to the best of our
knowledge, are not available in other existing databases.14–16 In
particular, we provide extended search capabilities such as space-
group or lattice-system-based search, and search for a super-
structure of desired symmetry. As a part of this development
process, we performed the “data cleaning” step by employing
supervised learning tools. This resolved ambiguities in CIF files
resulting from missing information, and corrected the structure
files needed for generating reliable electronic structure data,
which are the core content of our f-electron database. The details
of the generation of electronic and crystal structure data are
described in the Methods section.
In our SQL database, some crystallographic features (e.g., lattice

parameters, space groups) are missing or ambiguous in many
compounds because of incomplete original CIF files that were
parsed to create the database. These compounds cause conver-
gence problems or inaccurate results in DFT simulations. We
resolve this problem by adopting a machine learning approach for
verifying and cleaning the incorrect information. Currently, our
database hosts crystal data for approximately 82,000 f-electron
compounds, out of which 8711 compounds contain missing or
incorrect lattice systems. In this connection, we discuss three
different supervised machine-learning algorithms to predict one
of the seven possible “lattice systems” as follows. (1) Logistic
Regression (LR),12 where one predicts categorical target variables

using a logistic function involving linear combinations of feature
values. (2) K-Nearest-Neighbor (KNN) algorithm,11 which predicts
category of an unknown instance based on K “similar” instances.
We use Euclidean distance as a measure of similarity and pick the
majority of the three (K= 3) most similar materials to predict the
lattice parameters of an incomplete system. (3) Multilayer
Perceptron (MLP)13 in which a forward feeding network of
perceptrons is used, as opposed to a single perceptron that is
equivalent to a LR model. We use three layers of perceptrons with
eight perceptrons in each layer.
The models were trained on a set of 275,926 labeled instances

from the COD with accurate lattice constants (a, b, c, α, β, γ),
volume, and the space group as training features. We ran a 10-fold
cross-validation, and calculated the prediction accuracy, precision,
and recall. Using the miss and hit between the predicted-class and
true-class outcome, we constructed a representation widely
known as the confusion (or error) matrix in the machine-
learning community. As shown in Fig. 1, the confusion matrices
for the three methods evaluated indicate clearly the superiority of
the MLP algorithm, which essentially is a neural network approach.
MLP yields an accuracy of 99.1% in predicting the crystal system,
see Table 1. Although computationally more complex and
expensive, we employed this algorithm for cleaning and obtaining
high-fidelity structure information for our database.
However, all three models exhibit some off-diagonal non-zero

values in the confusion matrix indicating errors in prediction.
Interestingly, we found such instances to be restricted to three
unique classes, namely, trigonal, hexagonal, and rhombohedral,
see Fig. 1a. In the crystallographic convention,21 there are two
equivalent systems, i.e., the crystal system and the lattice system.
Trigonal and hexagonal lattices belong to the crystal convention,
while the rhombohedral and hexagonal are defined in the lattice
system. We resolved such ambiguities of definition in the original
CIF files by deploying our neural-network-based MLP tool (Fig. 1a),
and thus obtained cleaner datasets for further ab initio simula-
tions. In this way, we correctly predicted the missing crystal
systems for 8711 compounds with the distribution given in Table

Fig. 1 Confusion matrices for different machine-learning algorithms. Confusion matrices for three methods: a Multilayer Perceptron (MLP), b
K-Nearest-Neighbor (KNN), and c Logistic Regression (LR). MLP, which is a neural network approach, captures the correct crystal system with
maximum accuracy

Table 1. Benchmarking the performance of three machine-learning
techniques (LR, KNN, and MLP) discussed in the text

Technique Accuracy Precision Recall

LR 90.4% 76.5% 65.6%

KNN 98.1% 87.6% 86.2%

MLP 99.1% 90.8% 91.3%

A high-throughput data analysis and materials discoveryy
H. Hafiz et al.

2

npj Computational Materials (2018)    63 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



2. Note that our main purpose in determining crystal system
information was to illustrate the viability of our machine learning
tools. However, the correct coding of the crystal system and the
space group for materials in the database can be of interest in
searching the database for materials belonging to a given space
group or a crystal system. For example, certain space groups and
crystal systems have proven useful in successful searches of viable
topological materials.22 Moreover, useful physical insights can
often be obtained by comparing and contrasting the evolution of
properties of materials within a space group or a given crystal
system as well as by comparisons across different or related space
groups or crystal systems.

Perovskite heterostructure prediction
In the recent years, there has been considerable theoretical and
experimental interest in creating layered compounds and super-
structures by design due to their enormous potential for achieving
various emergent functionalities (e.g., superconductivity,23,24

multiferroics25,26). A common strategy employed in synthesis
efforts is to attempt the creation of a new superstructure with
desired electronic properties by overlaying two or more com-
pounds with different chemical compositions but similar crystal
symmetries. In this connection, we investigated a set of perovskite
compounds in our database with the goal of identifying
compounds that would be most likely to form stable super-
structures. We used lattice information and chemical intuition
related to “ionic radii and Goldschmidt tolerance factors”27 as our

primary screening tools for the initial narrowing-down of the
search space for perovskite heterostructures. We then performed a
data-mining query, and identified sets of paired superstructure
combinations with the highest likelihood of forming super-
structures. The next stage would then involve a more careful
computational analysis of the small number of promising
candidate systems so identified before it will be appropriate to
encourage an experimental synthesis and validation cycle.
Generally, we should expect that the
prediction–synthesis–validation loop may well require more than
one iteration to successfully identify a viable new material.
Figure 2 shows the results of a compatibility test for the

ordering of superstructures of a number of double perovskites
with chemical formula AA′BB′C3C

0
3. Here, A/A′-site cations are

either rare earths or actinides, B/B′ cations are transition metal
elements, and C/C′ anions are mostly oxygen or halogens. Using
the ionic radii28,29 of the two existing single perovskites ABC3 and
A′B′C0

3 (see the inset in Fig. 2b), we assess the geometric stability
of a possible double perovskite AA′BB′C3C

0
3 by calculating the

Goldschmidt tolerance factor,27,30 t = rAþrCffiffi
2

p
rBþrCð Þ, where rA, rB, and rC

are the average ionic radii of (A, A′), (B, B′), and (C, C′), respectively;
here, we have neglected other contributing factors such as the
effects of octahedral tilting. We considered both ordered and
disordered compounds on B and B′ sites, and following the
method described by Vasala et al.,30 we treat all compounds with
the same chemical formulae regardless of the ordering at the B-
sites. Note that Goldschmidt tolerance factor is a good measure
for testing the stability of AA′BB′C3C

0
3 type perovskite compounds,

where B or B′-site cations can be ordered or disordered.30

Considering each data point as a paired combination of a double-
perovskite superstructure, we plot the associated tolerance factor t
and the lattice-parameter-ratios a1

a2 and
c1
c2 in Fig. 2a, where (a1, c1)

and (a2, c2) are lattice parameters of ABC3 and A′B′C0
3 perovskites,

respectively. Clustering of the data in Fig. 2a reflects the
correlation between the type of anion/cation involved and the
space group of the individual perovskites with the tolerance and
lattice parameters. High tolerance factors can be achieved when a1

a2
and c1

c2 are close to unity, i.e., when the difference in ionic radii of A
(rA− rA′) or B (rB− rB′) site cations is small. We also see the
important role of space groups here such as two cubic perovskites
usually result in a stable double perovskite in contrast to the cases

Table 2. Distribution of the crystal systems, which were predicted
correctly by using MLP tools

Label Count

Cubic 1355

Hexagonal 4577

Monoclinic 1428

Orthorhombic 23

Tetragonal 2

Trigonal 1326

Total 8711

Fig. 2 Superstructure compatibility test for double-perovskites AA′BB′C3C
0
3. Each data point is a paired combination of two single perovskite

systems as shown in the inset to (b). Different colors imply different combinations of C and C′ as shown in the legend in (b). Space group for
each C/C′ type is given in the parenthesis in the legend in (b)
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where the space groups are mixed. This is to be expected because
similar crystal structures of the two contributing perovskites lead
to lesser cation size mismatch or smaller differences in ionic radii
of the cations of individual sites and result in higher tolerance
factors. This is why we would expect the most abundant double-
perovskite systems to be formed from two cubic systems, as
demonstrated in Fig. 2b. We see a linear trend in Fig. 2b where the
data points are plotted in the a1

a2 and c1
c2 plane. The central line

indicates that the most abundant double-perovskite systems
would be formed from ABC3 and A′B′C0

3 cubic systems. Other
trend lines in Fig. 2b show the cases in which mixed systems can
be formed from cubic and other (non-cubic) crystal structures. For
this reason, we allowed a mixture of anions to identify various
possibilities in the stability trend lines. We generally see the trend
of high stability (t) when both C and C′ anions are oxygen or
hydrogen compared to the case when both anions are halogens
(see Fig. 2a). This indicates that the most stable structures are
formed when both anions are identical, which should be
contrasted with the situation where anions are allowed to mix.
In this way, we were able to cluster possible candidate perovskites
with respect to anion mixing and distinguish them in terms of
their stability.
We turn now to address the effects of octahedral distortion of

the ideal cubic structure, which is very common in the
perovskites.30,31 Octahedral distortion induces changes in the B-
O-B' bond angle away from 180°, and affects the B-O and B-O'
bond lengths to produce elongation or contraction along the c-
axis. Figure 3a shows that there is a linear trend between the
tolerance factor and the average value of the B-O-B' bond angle.
Systems with higher 〈B-O-B'〉 bond angles possess smaller
octahedral distortions, yielding higher tolerance factors that favor
stability. An inspection of our data indicates that 〈B-O-B'〉 bond
angle gets closer to being linear when the B/B' cation has a small
number of d electrons. However, B and B' sites with Jahn–Teller
active cations such as Mn3+ and Cu2+ lead to higher distortions
with the bond angle 〈B-O-B'〉 ≈ 142°. Majority of perovskite
structures we considered showed an elongation of the c-axis,
which results in shorter average B-O and B'-O bond lengths, see
Fig. 3b. We thus adduce that, for a given type of A-cation, the
average bond length decreases linearly as the amplitude of the
distortion decreases. This linear relationship, however, may not
hold when two different A-site cations are involved, which
accounts for the scatter in the data of Fig. 3b.

It is also important to consider the effects of ordering of the B/
B'-site cations. When the B and B' cations occupy the correct sites,
we take the arrangement to be ordered. Following Vasala et al.,30

we consider two types of cation disorder, namely, anti-site (AS)
defect and anti-phase boundary (APB). Here an AS defect is
defined as the interchange of B and B' cations, while APB involves
the boundary of two ordered domains where occupancies of B
and B' sites are reversed. Specifically, we identified 105 ordered
rock-salt and 50 disordered double perovskite structures of the
form A2BB'O6 in the ICSD database. Figure 4a shows the difference
in B and B' cation oxidation state (ΔZB = ZB0 � ZBj j) as a function of
the corresponding ionic radius difference (ΔrB = rB0 � rBj j). We
observe that smaller ΔZB values favor the disordered arrangement.
This makes physical sense because B and B' cations in this case are
chemically similar, and therefore, these cations will tend to occupy
various sites interchangeably. We can also understand this result
in terms of the competing effects of electrostatic repulsion and
entropy. When B and B' cations are similar, the system will have a
tendency to become disordered to increase its entropy. On the
other hand, in ordered systems which tend to have higher ΔZB
values (top red dots in Fig. 4a), highly charged B' cations always
have less charged B cations as nearest neighbors, so that the
Coulomb energy in the ordered state is lowered compared to the
disordered state.30,32 The difference in ionic radii, ΔrB, also
provides a good descriptor for obtaining a handle on the viability
of ordered vs disordered arrangements. It is known32,33 that a
larger ΔrB enhances lattice strain, which favors ordered phases.
Keeping the aforementioned trends involving ΔZB and ΔrB in

mind, we infer that perovskites such as La2CoFeO6 (ΔZB= 0 and
ΔrB= 0.035 Å) are likely to be stable even in disordered
arrangements.34 In contrast, a compound like La2NaIrO6 (ΔZB= 4
and ΔrB= 0.45 Å) will be expected to be stable only in ordered
configurations35 (see Table 3). In this way, ΔZB and ΔrB can be
good descriptors for identifying ordered vs disordered super-
structures. Figure 4a shows that systems with ΔZB= 0 and ΔrB ≤
0.1 Å are always disordered, while systems with ΔZB= 4 and ΔrB ≥
0.1 Å are always ordered. Coexistence of ordered and disordered
structures for ΔZB= 2 presumably reflects the competition
between Coulombic and entropic effects. In order to gain a
deeper understanding of the underlying energetics, we have
computed ground state energies of various structures as shown in
Fig. 4b. While the disordered configurations can achieve high
tolerance factors (t > 0.85), they are seen to be energetically less
favorable compared to the corresponding ordered systems in

Fig. 3 Descriptors for octahedral distortion in perovskite superstructures. a Tolerance factor (t) is plotted against the average bond angle 〈B-
O-B'〉. t is seen to correlate with decreased octahedral distortion as the bond angle 〈 B-O-B'〉 gets closer to linear. b A plot of the average 〈B–O〉
bond length against the bond angle 〈B-O-B'〉. The bond length is seen to correlate with decreasing distortion (increasing bond angle). For
various B' cations, average bond angles and bond lengths have been obtained by considering all six neighboring B cations. The inset in (b)
shows neighboring BO6 and B'O6 octahedra where B, B', and O ions are marked with grey, yellow, and red spheres, respectively
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most cases, consistent with our analysis above based on the
descriptors ΔZB and ΔrB. Notably, however, some ordered systems
exhibit higher energy (>−75 Ry/a.u.3) and stability (t > 0.85), which
is possible when Coulombic and entropic effects become
comparable.
Our analysis discussed above based on using ionic radii, bond

angles, oxidation states, lattice parameter ratios, ground state
energies, and Goldschmidt tolerance factors as descriptors
correctly predicts several existing double perovskites, see Table
3 (top eight rows). These compounds have high tolerance factors
and have indeed been synthesized at ambient pressure.30,34–43 We
also predict four new double perovskites with high tolerance

factors (bottom four rows in Table 3), which will be interesting to
explore experimentally.

Electronic structure calculations and orbital-resolved electronic
structure search
Interpretation of specific features in band structures can be
complicated in the presence of various competing effects,
particularly in the strongly-correlated f-electron systems of interest
to this study. In this connection, contributions of various atomic
sites and different orbital angular momentum channels to the
Bloch wave functions associated with the band structure near the
Fermi energy can provide key information for understanding the
electronic behavior of the material. Keeping this in mind, we have
implemented a unique search capability based on identifying
different atomic orbitals contributing to various bands at k-points
along the high-symmetry directions. As an example, Fig. 5 shows
an advanced band structure query on Uranium Nitride (UN) that
has dominant f-orbital contributions near the Fermi energy. Such
information is helpful for gaining insight into the complex
electronic, magnetic, and optical properties of f-electron materials,
and for developing machine-learning models and predictive tools.
Note that local dynamical correlation effects are missing in the
simulated DFT results in our database. We address this aspect in
the following section.

A search for strongly correlated actinides
We have computed frequency-dependent hybridization functions
for all the compounds in our database to supplement our ground
state DFT calculations. Our earlier work44 has shown that
hybridization is a good descriptor for detecting localization trends,
although an accurate description of localization phenomenon will
require self-consistent DMFT calculations.9,10 However, our find-
ings44 indicate that a high-throughput, local Green’s function
based hybridization can at least qualitatively capture physically-
relevant trends in the localization of the f-states. Our analysis with
the present f-electron database using ≈350 Ce-based binary
compounds shows that the maximum hybridization value near the
Fermi energy decreases with increasing lattice spacing.
We comment briefly on technical aspects of our frequency-

dependent hybridization function computations. In the Anderson
impurity model,45 when an impurity electron is immersed in a sea
of itinerant electrons, it hybridizes with the Bloch states of the

Table 3. Predicted double perovskites obtained via our
superstructure compatibility test

Perovskite Tolerance (t) ΔrB = rB0 � rBj j (Å) ΔZB = ZB0 � ZBj j Ref.

La2NaIrO6 0.89 0.45 4 35

La2LiMoO6 0.94 0.15 4 40

Nd2NaRuO6 0.87 0.45 4 41

La2CoMnO6 0.96 0.215 2 36,37

La2CrCoO6 0.97 0.005 0 38

La2CoFeO6 0.98 0.035 0 34,39

La2FeMnO6 0.95 0 0 42

Nd2MnRhO6 0.92 0.02 0 43

Ce2AlCrO6 0.98 0.08 0 This work

Ce2GaCrO6 0.96 0.005 0

CeSmAlCrO6 0.96 0.08 0

LaCeAlMnO6 0.98 0.11 0

The four compounds in the top four rows of the table show large values of
both ΔrB and ΔZB, and these are identified as ordered perovskites. Single
crystals of these four compounds have been synthesized using the
conventional solid-state methods.35,36,40,41 The four compounds in the
middle portion of the table have ΔZB= 0 with very small values of ΔrB. We
predict these four compounds to harbor disordered B cation arrange-
ments. These four compounds have indeed been synthesized as solid
solutions;34,38,39,42,43 notably, as expected, these compounds achieve very
high tolerance factors. The bottom four compounds in the table are
predicted as possible superstructures, which would be interesting to
explore experimentally

Fig. 4 Descriptors of cation ordering in double perovskites. a Difference in B and B' cation oxidation states, ΔZB = ZB0 � ZBj j, is plotted against
the corresponding difference in ionic radii, ΔrB = rB0 � rBj j. A combination of smaller values of ΔrB and ΔZB is seen to favor disordered
arrangements, while a higher value of these descriptors favors ordered arrangements. b Tolerance factor (t) vs ground state energy per unit
cell volume. Ground state energy is seen to be higher for disordered cases even though the associated tolerance factors can be quite large
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surrounding electron sea.46 The interaction of the impurity cluster,
which in our case are the f-electrons, with its surrounding bath can
be monitored via the energy-dependent hybridization function Δ
(E). Using Dyson equation, we can formulate an expression for Δ(E)
as9,44,47

G�1
0 ¼ E � EQI

� �� ΔðEÞ ¼ E � Hð Þ � ΔðEÞ (1)

where G0 is the site projected Green’s function obtained from DFT
and H is the hybridization-free impurity Hamiltonian correspond-
ing to the quantum impurity energy EQI. A bigger overlap of f-
states with the surrounding itinerant electrons will produce a
larger hybridization function, which can thus serve as a descriptor
for the localization/delocalization of f-electrons.
Figure 6 presents the calculated hybridization functions Δ(E) for

4f and 5f monopnictides LnX and AnX (Ln= Ce, An= Th, U, Pu,
and X= N, P, As, Sb, Bi) with space group Fm3m and a structure
similar to NaCl. We reproduce previously reported results on Δ(E)
for CeX44 and the established trends in similar compounds,48,49

indicating the high fidelity of our calculations. Our analysis further
identifies a number of similarities and trends in Δ(E) features in
various 4f and 5f monopnictides as follows. (1) A distinct peak in Δ
(E) is found between 2 and 3.5 eV below the Fermi level in both
LnN and AnN. The size of this peak decreases monotonically (with
small variations) as we scan from the top to the bottom of group
15 of the periodic table. The reduced width of Δ(E) peak in Sb and
Bi compounds indicates a more localized nature of f-electrons,
whereas a sharp corresponding peak in N compounds with two
times larger area under the curve shows a greater degree of
delocalization. (2) Figure 7 (top panel) shows that there is an
overall increase in the value of the hybridization function at the
Fermi energy in going from 4f to 5f monopnictides, reflecting the
more extended nature of the 5f shells compared to their 4f
counterparts. (3) Within the 4f and 5f shells, if we move from the
left to the right of the periodic table, we see an increase in
localization with an increase in f-electron count. (4) The bottom
panel in Fig. 7 shows an anti-correlation between the degree of
localization and lattice constant for both the LnX and AnX series.

And, finally, (5) moving from the top to the bottom of group 15,
we observe that a higher unit-cell volume produces a smaller Δ(EF)
value. This can be understood from the fact that a larger ligand
distance will reduce the interaction of the f-electron atom with the
neighboring atoms, and thus yield a more localized band
structure. Along this line, the 4f monopnictides exhibit higher
volumes overall and increased localization compared to the
corresponding 5f compounds.
Although we have focused on identifying trends in terms of the

hybridization functions, such an analysis could also be carried out
based on an examination of features in DOS and/or band
structures in conjunction with lattice symmetry information. We
emphasize that any predictive search must first narrow down the
search space by using domain-specific knowledge by using
hybridization and/or other appropriate descriptors as a prelude
to deploying more sophisticated techniques (e.g., charge self-
consistent DMFT and/or structure relaxation). In this way, practical
schemes can be obtained for robust theory-guided discovery of
new correlated functional materials.
In conclusion, we have presented the design of our newly

developed f-electron structure database and discussed the
associated high-throughput tools for analyzing structural and
electronic properties of materials, including query tools for
identifying orbital characteristics of electronic states near the
Fermi energy. fESD currently contains data on about 80,000 f-
electron compounds. All structure data in fESD have been cleaned
and corrected using machine-learning tools. We have included
DFT-based high-quality electronic structure data using all-electron
self-consistent computations on the large number of compounds
in fESD as its core content. Potential for materials discovery via
fESD is illustrated by considering a stability search of super-
structures composed of two perovskite compounds. Using ionic
radii, bond angles, oxidation states, ground state total energy,
lattice parameter ratios, and Goldschmidt tolerance factors as
descriptors, we show how stable double-perovskite superstruc-
tures can be predicted, and how insight into the roles of anion
types and space groups involved for achieving higher structural

Fig. 5 Web interface for band structures. As an example, we show the band structure of UN displaying f-orbital characters near the Fermi
level. The different drop-down boxes at the top show that an energy window of −7 to 7 eV is chosen for uranium and that the f orbital
characters are being considered
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stability can be obtained. We also demonstrate that our database
can be used to gain a handle on the strongly correlated aspects of
f-electron materials. For this purpose, we have carried out
calculations of hybridization functions to supplement our DFT
results that provide a descriptor for the strength and nature of
interactions between the localized f-electrons and itinerant
conduction states. In this way, a number of trends in the
lanthanide and actinide based series of compounds are identified,
including an anti-correlation between the hybridization strength
at the Fermi energy and the volume of the unit cell. fESD is thus
well equipped to spur the discovery of next generation f-electron-
based materials with novel functionalities.

METHODS
Generation of electronic and crystal structure data
Electronic ground states were obtained within the DFT framework using
full-potential LAPW scheme as implemented in the WIEN2k package.18

Exchange-correlation effects were accounted for by using the generalized
gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) func-
tional.50 Calculations start with the transformation of CIF files into WIEN2k
input files using the tool “cif2struct”. During this preparation stage, the
space group symmetry of the system is correctly captured based on all
atomic positions. Computations were carried out using a large plane wave
cut-off (RKmax= 9.0), and a 10 × 10 × 10 k-mesh in the first Brillouin zone
(BZ) in order to obtain well-converged energies and electronic structures.
Band structure calculations were carried out along the standard high-

symmetry lines in the BZs. Density of states (DOS) was obtained over a
uniform energy mesh and resolved into the basis of real orbitals.
Hybridization functions Δ(E) for 4f and 5f electrons were calculated by
solving the local Green’s function on the real axis.9,10 Since we are only
interested in total Δ(E), we used a real harmonic basis with spin but
without any symmetry to project the local Green’s function. In order to
obtain an accurate estimate of Δ(E), the energy window was set to −20 to
+10 eV around the Fermi level with a large k-mesh and a Lorentzian
broadening of 0.25 eV. All calculations were maintained at the same level

Fig. 6 Trends in f-orbital hybridization function. The calculated hybridization function Δ(E) for the series of 4f and 5f monopnictides, LnX and
AnX (Ln= Ce, An= Th, U, Pu, and X=N, P, As, Sb, Bi). The ICSD identification numbers are shown in brackets
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Fig. 7 Volume vs hybridization function at the Fermi level. The value
of hybridization function at the Fermi level, Δ(EF) (top), and the
volume per unit cell (bottom) for the series of monopnictides
considered in Fig. 6, shows an anti-correlation between the degree
of localization and lattice constant
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of numerical accuracy, so that trends over large datasets can be captured
correctly.

DATA AVAILABILITY
The f-electron structure database (fESD) is available at http://correlatedmaterials-lanl.
org. The datasets generated during and/or analyzed during the current study are
available from the corresponding authors on reasonable request.
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