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Dynamics of antipolar distortions
Kinnary Patel1, Sergey Prosandeev1,2 and Laurent Bellaiche1

Materials possessing antipolar cation motions are currently receiving a lot of attention because they are fundamentally intriguing
while being technologically promising. Most studies devoted to these complex materials have focused on their static properties or
on their zone-center phonons. As a result, some important dynamics of antipolar cation distortions, such as the temperature
behavior of their phonon frequencies, have been much less investigated, despite the possibility to exhibit unusual features. Here,
we report the results and analysis of atomistic simulations revealing and explaining such dynamics for BiFeO3 bulks being subject to
hydrostatic pressure. It is first predicted that cooling such material yields the following phase transition sequence: the cubic
paraelectric Pm3m state at high temperature, followed by an intermediate phase possessing long-range-ordered in-phase oxygen
octahedral tiltings, and then the Pnma state that is known to possess antipolar cation motions in addition to in-phase and
antiphase oxygen octahedral tiltings. Antipolar cation modes are found to all have high phonon frequencies that are independent
of temperature in the paraelectric phase. On the other hand and in addition to antipolar cation modes increasing in number, some
phonons possessing antipolar cation character are rather soft in the intermediate and Pnma states. Analysis of our data combined
with the development of a simple model reveals that such features originate from a dynamical mixing between pure antipolar
cation phonons and fluctuations of oxygen octahedral tiltings, as a result of a specific trilinear energetic coupling. The developed
model can also be easily applied to predict dynamics of antipolar cation motions for other possible structural paths bringing Pm3m
to Pnma states.
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INTRODUCTION
Trilinear energetic couplings have been recently discovered and
intensively investigated in oxides, as mostly motivated by the fact
that they can result in the formation of an electrical polarization
because of its coupling with two other physical quantities.
Examples of these two latter quantities are two different oxygen
octahedral tiltings,1–7 one oxygen octahedral tiling and one
antipolar motion,8 one Jahn-Teller mode and one antiferrodistor-
tive (or antipolar) distortion,9, 10 or even two pseudo-Jahn-Teller
motions.11 Note also that trilinear energetic couplings do not
restrain themselves to polar materials since they can also arise in
compounds possessing antipolar cation distortions via their
couplings with antiphase and inphase octahedral tiltings.12

Antipolar systems are important compounds on their own. For
instance, the Pnma state in ABO3 perovskites is known to possess
antipolar motions of its A cations and recent studies found that it
can also adopt the double polarization-vs.-electric field hysteresis
loop in some materials13, 14 that is characteristics of antiferro-
electrics15—therefore suggesting that Pnma states in some
perovskites can hold promise towards the design of energy
storage devices with high energy densities and efficiencies.16–22

Interestingly, all the aforementioned works on trilinear ener-
getic couplings have been aimed at revealing and understanding
resulting static properties. In other words, the effect of these
original trilinear couplings on dynamics have been left out so far
and are thus basically unknown, to the best of our knowledge. For
instance, one may wonder how antipolar phonons behave with
temperature when the material exhibits phase transitions leading

to an antipolar state having also antiphase and in-phase oxygen
octahedral tiltings (as the Pnma state, which is the most common
structural phase adopted by perovskites,23, 24 does). For instance,
can they be soft in any phase, including the one(s) for which the
antipolar cation motions have not adopted yet a long-range
order? Can they mix with phonons associated with fluctuations of
oxygen octahedral tiltings in any of these phases because of this
trilinear energetic coupling, or rather does this hypothetical
mixing only occurs when in-phase and/or antiphase tiltings have
condensed?
The aim of this manuscript is to provide answers to all these

questions by focusing on a specific material, namely BiFeO3 (BFO)
under hydrostatic pressure, because it is known to adopt the
Pnma state at high enough pressure25–27 and because we are in
possession of an atomistic approach that allows us to mimic its
dynamical properties at finite temperature.

RESULTS
We employ the effective Hamiltonian28 approach to perform first
Monte-Carlo (MC) simulations and to compute finite-temperature
properties of BFO bulk under a simulated hydrostatic pressure of
about 17.2 GPa in 12 × 12 × 12 supercells using 40,000 MC sweeps.
The comparison between experimental measurements25 and
similar computations showed that this simulated pressure likely
corresponds to an experimental pressure of about 8.2 GPa,
probably because of the typical underestimation of the lattice
constant by first-principles techniques and to correct for the fact
that the parameters of the effective Hamiltonian of BFO were all
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determined from ab-initio calculations at atmospheric pressure.
Note that BFO is known to acquire a Pnma space group at high
enough temperature at atmospheric pressure28, 29 while it is R3c
at lower temperatures30 or even to be the ground state of BFO
under high-enough pressure (see refs. 25–27 and references
therein).
We also performed here Molecular Dynamics (MD) calculations

in the frame of the same effective Hamiltonian method (see the
Methods Section and Supplemental Materials), and we used the
results of these calculations to compute frequency-dependent
responses related to different order parameters, as described by
using the following general formula31–33

χAAαβ νð Þ ¼ AαðtÞAβðtÞ
� �þ i2πν

Z1

0

dt ei2πνt AαðtÞAβð0Þ
� �

(1)

where ν is the frequency, while α and β define Cartesian
components. A(t) is an order parameter at time t, and “ ::h i”
indicates thermal average.
For instance and since we are interested in antipolar phonons, A

will be chosen to be the uX vector characterizing the Xþ
5 antipolar

Bi displacements at the X-point of the Brillouin zone, and that is
given by uX ¼ 1

N

P
i ui �1ð ÞnzðiÞ, where N is the number of the Bi

ions in the supercell, and nz(i) is an integer locating the cell i along
the z-axis34; here ui is the local mode in unit cell i, which is
centered on a Bi site (see Method Section). As we will see below, it
is also worthwhile to investigate χAAαβ νð Þ for which A are the
following two vectors: (i) The antiphase oxygen octahedral tilting
Rþ4 mode, ωR ¼ 1

N

P
i ωi �1ð ÞnxðiÞþnyðiÞþnzðiÞ , where34 nx(i), ny(i), and

nz(i) are integers locating the cell i in x, y, and z directions,
respectively; here ωi is an Fe-centered pseudo-vector that
characterizes the oxygen octahedral tilting in unit cell i (see
Method Section); and (ii) The in-phase oxygen octahedral tilting
around the Fe sites associated with the Mþ

3 mode,
ωM ¼ 1

N

P
i ωi �1ð ÞnxðiÞþnyðiÞ . Note that these three quantities are

coupled via a trilinear energy, which can be inferred from the
seventh atomistic term of Eq. (9) indicated in the Method Section,
and that can take the following form12:

Etrilinear ¼ D uX;xωR;xωM;z þ uX;yωR;yωM;z
� �

(2)

where D is a coefficient characterizing the strength of the
interaction and where the second subscript indicated in the
involved physical quantities refers to the corresponding Cartesian
component of uX, ωR and ωM. In the continuous approximation,
this trilinear energetic coupling of Eq. (2) can be expressed as
Etrilinear = D [u ⋅ ∇ × (ωR ×ωM) + (ωR ×ωM) ⋅ ∇ × u], which can be
used to develop novel phenomenologies incorporating trilinear
couplings. In this equality, ∇ × (ωR ×ωM) is the (Bi-sites-centered)
curl of the cross-product of the R- and M-tilting modes’ pseudo
vectors and ∇ × u is the (Fe-sites-centered) curl of the local mode.
These two curls can be computed from atomistic simulations via
finite differences by considering the eight Fe sites nearest to the
Bi-site center of the local mode and the eight Bi sites nearest to
the Fe-site center of the tilting modes, respectively. (note also that
this trilinear energy coupling is finite in, e.g., the Pnma state while
it vanishes in, e.g., the R3c phase).
Interestingly, χAAαβ νð Þ can be considered to be a complex

“susceptibility” related to A, that is it represents the response of
A to its conjugate field. Such “susceptibility” is not measurable
(unlike the dielectric susceptibility) when A is chosen to be uX, ωR

or ωM (because their conjugate fields are staggered fields).
However, the peaks of the imaginary part of the susceptibilities
associated with uX, ωR and ωM, respectively, occur at the natural
frequencies of phonons associated with antipolar motions,
antiphase tiltings, and in-phase tiltings, respectively. It is precisely
the determination of these natural frequencies we are interested
in, which explains why we decided to compute these χAAαβ νð Þ

responses and which also explains why we do not incorporate the
factor31–33 1

ε0VkBT
into Eq. (1), because it is not important in our

problem, where V is the volume of the chosen supercell, kB is the
Boltzmann constant and ε0 defines the vacuum permittivity. Note
that these phonon frequencies may be experimentally obtained
by hyper Raman scattering techniques.35

Moreover, for any investigated temperature, we typically fit the
three different aforementioned types of computed χAAαβ νð Þ
susceptibilities (associated with the dynamics of the Xþ

5 , R
þ
4 and

Mþ
3 modes) by a sum of Damped Harmonic Oscillators (DHO),

given by the formula

χ ¼ S2

ν2r � ν2 � iνγ
(3)

where νr, γ, and S are the resonant frequency, damping constant,
and oscillator strength, correspondingly. Note that the number of
DHOs involved in this summation precisely corresponds to the
number of the peaks found in the MD simulations of χAAαβ νð Þ.
Let us first report and discuss the temperature dependency of

uX, ωR or ωM, as shown in Fig. 1, when cooling BFO under
hydrostatic pressure from 1600 to 900 K by steps of 20 K. One can
see that these three vectors are all vanishing above 1280 K, which
is representative of the cubic paraelectric Pm3m phase. On the
other hand, the z-component of ωM becomes finite and strength-
ens when the temperature is reduced below 1280 K and down to
1240 K, while uX and ωR remain null in this rather small
temperature interval. Such behaviors indicate that our studied
BFO system is predicted to adopt the P4/mbm ground state
between ≃1280 and ≃1240 K. Further cooling the system results in
the x- and y-components of uX becoming finite, equal to each
other and increasing in magnitude when decreasing the
temperature below 1240 K, exactly as the x- and y-components
Cartesian components of ωR also do. Moreover, the z-component
of ωM continues to be non-null and to get enhanced when the
temperature is reduced below 1240 K. Our investigated BFO
system therefore now adopts the Pnma ground, for which
spontaneous uX, ωR or ωM exist and lie along the pseudo-cubic
[110], [110] and [001] directions respectively, below this latter
critical temperature (note that the three lattice vectors of the
Pnma state lie along the pseudo-cubic [110], [110] and [001]
directions, respectively).
In order to determine how these phase transitions affect the

dynamics of antipolar mode, Fig. 2a–c display the imaginary part
of χAAxx νð Þ, χAAyy νð Þ and χAAzz νð Þ respectively, when A = uX, for a
temperature of 1560 K—that is within the Pm3m state. Figure 3a–c
report similar data but for a temperature of 1260 K, that is now for

Fig. 1 Predicted temperature dependence of the antipolar uX vector
a, in-phase tilting ωM pseudo vector b and antiphase tilting ωR
pseudo-vector c in our BFO system subject to hydrostatic pressure.
The dashed vertical lines delimit three different structural phases
(see text)
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the P4/mbm phase. Figure 4a–c also show these susceptibilities of
the antipolar degree of freedom but at 1040 K, i.e. inside the Pnma
state. Different narrow peaks can be clearly seen at 1560 K: one
peak occurring at around 105 cm−1 in both the xx and yy
components of the susceptibility, which thus corresponds to an
antipolar phonon that is doubly degenerate and associated with
oscillations of uX along the x or y direction. Such frequency will be
denoted as νXþ

5 ;x;Pm3m, adopting the convention that the three
subscripts refer to the type of mode, the direction of the
fluctuations of its order parameter and the macroscopic phase,
respectively. The zz component of the susceptibility shown
in Fig. 2c has also another peak at a frequency that is close to
166 cm−1 and that will be coined νXþ

5 ;z;Pm3m (since it is associated
with oscillations of uX along the z axis).
Furthermore, Fig. 3a–c reveal that, at 1260 K, the antipolar

susceptibility continues to have a zz component possessing a
single peak, and for which the frequency is now denoted as
νXþ

5 ;z;P4=mbm and that is equal to 172 cm−1. On the other hand, its xx
and yy components, while still being very similar to each other,
have now two peaks rather than a single one. These two peaks
occur at frequencies of about 15 and 120 cm−1 at 1260 K and that
are coined νXþ

5 ;x;P4=mbm;LF and νXþ
5 ;x;P4=mbm;HF respectively, where

“LF” and “HF” stand for low-frequency and high-frequency,
respectively.
Interestingly, a further increase of the number of peaks occurs

in the xx and yy components of the antipolar susceptibilities in the
Pnma state. As a matter of fact, Fig. 4a, b now show three peaks
there, that are centered around 80, 115 and 144 cm−1 at 1040 K,

and that will be denoted as νXþ
5 ;x;Pnma;LF , νXþ

5 ;x;Pnma;MF (with “MF”
standing for “middle frequency”) and νXþ

5 ;x;Pnma;HF , respectively.
Note that computing the susceptibility of uX in a different basis
indicates (not shown here) that νXþ

5 ;x;Pnma;LF and νXþ
5 ;x;Pnma;MF both

mostly correspond to oscillations of antipolar motions along the
direction of the spontaneous, long-range-ordered uX in the Pnma
state, while νXþ

5 ;x;Pnma;HF is mostly associated with fluctuations of
antipolar motions along the in-plane direction that is perpendi-
cular to this spontaneous uX. On the other hand, the zz
component of this antipolar susceptibility remains singly peaked
at a frequency of about 175 cm−1 at 1040 K, to be denoted as
νXþ

5 ;z;Pnma .
νXþ

5 ;z;Pnma , νXþ
5 ;z;P4=mbm and νXþ

5 ;z;Pm3m can be considered to be
continuation of each other within the phase transition sequence
since they are all associated with fluctuations of antipolar motions
along the z-axis. On the other hand, it is not straightforward to
understand the microscopic origin of the increase of the number
of peaks occurring in the xx and yy susceptibilities associated with
the Xþ

5 mode when passing phase transitions (note that group
theory can, of course, predict the increase of the number of
phonon modes when changing structural phases, but does not
provide the microscopic origin of such increase). For instance, one
may wonder what atomistic feature is responsible for the
occurrence of two peaks in these susceptibilities in the P4/mbm
phase (rather than a single one as in Pm3m) while the antipolar
vector still does not adopt any long-range ordering there. We will
come back to this point later on.

Fig. 2 Frequency dependence of the imaginary part of the χAAαα νð Þ “susceptibilities” in our BFO system subject to hydrostatic pressure, for A=
uX a–c, ωM d–f and ωR g–i at a temperature of 1560 K (that is, for the Pm3m cubic state). For each physical quantity A, the left, middle and right
panels correspond to α= x, y or z coordinate, respectively. The black line displays the MD data while the red line represents their fit by DHOs
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Meanwhile, let us concentrate on Fig. 5a that shows the
temperature dependencies of all aforementioned resonant
frequencies associated with the dynamics of Bi motions within
the Xþ

5 antipolar mode. Several important results can be inferred
from this Figure. First of all, both νXþ

5 ;z;Pm3m and νXþ
5 ;x;Pm3m are

nearly independent on temperature within the entire stability
region of the cubic state. As a result, neither of these two
frequencies softens when approaching the Pm3m—to—P4m/bm
transition from above, implying that this transition is dynamically
driven by a physical quantity that has nothing to do with antipolar
cation motions—as consistent with the sole condensation of the
z-component of ωM below 1280 K (see Fig. 1). On the other hand,
one specific antipolar mode, namely νXþ

5 ;x;P4=mbm;LF , is very soft
within the entire P4/mbm state. Figure 5a also tells us that
νXþ

5 ;x;Pnma;LF significantly softens too when heating the system
within the Pnma state towards the Pnma-to-P4/mbm transition. In
order to understand all these effects, we first decided to turn our
attention to the “susceptibilities” of Eq. (3) that are associated with
the ωR and ωM physical quantities.
For that, Fig. 2d–f (respectively, Fig. 2g–i) display the imaginary

part of χAAxx νð Þ, χAAyy νð Þ and χAAzz νð Þ respectively, when A =ωM

(respectively, A =ωR) for a temperature of 1560 K, i.e. within the
cubic Pm3m state. Figures 3d–f and 4d–f (respectively, Figs. 3g–i
and 4g–i) provide similar data for the susceptibility associated
with the in-phase (respectively, out-of-phase) tiltings at 1260 and
1040 K, respectively, that is for P4/mbm and Pnma states. At 1560 K,
the antiphase octahedral tilting Rþ4 mode presents a single peak in
either the xx, yy or zz susceptibility with the corresponding natural
frequency being identical between the different components of
this susceptibility and being coined νRþ4 ;x;Pm3m here. It is about 43
cm−1 at 1560 K, is therefore triply degenerate and corresponds to
fluctuations of ωR along the x, y or z axes. On the other hand, the

susceptibilities of the in-phase octahedral tilting Mþ
3 mode exhibits

two different types of peaks in the cubic state: one at a higher
frequency of about 138 cm−1 at 1560 K, to be denoted as
νMþ

3 ;x;Pm3m and that is associated with oscillations of ωM along
the x or y axes (it is doubly degenerated, as evidenced by the peak
occurring at the same frequency in the xx and yy susceptibilities
associated with the in-phase tilting); and a second lowest
frequency, νMþ

3 ;z;Pm3m, close to 38 cm−1 at 1560 K and which
corresponds to fluctuations of ωM along the z axis (since it is
evidenced in the zz component of the susceptibility associated
with ωM). Furthermore, Fig. 5b reports νRþ4 ;x;Pm3m and νMþ

3 ;z;Pm3m, as
a function of temperature in the Pm3m cubic state. These two
frequencies soften when approaching the critical temperature of
1280 K, with νMþ

3 ;z;Pm3mbeing always smaller than νRþ4 ;x;Pm3m for any
temperature. Such features are responsible for the occurrence of
long-range-ordered in-phase tiltings below 1280 K (see Fig. 1), and
therefore to the transition from Pm3m to P4/mbm. It is also
interesting to realize that the facts that νMþ

3 ;z;Pm3m is different from
νRþ4 ;x;Pm3m and that ωM condenses at a slightly higher temperature
than ωR (see Fig. 1) imply that phenomenologies having the same
harmonic coefficient in front of in-phase and anti-phase tiltings
(see, e.g., ref. 3) have to be revised and generalized as mentioned
in the method section.
Let us now pay attention to the peaks of the susceptibilities of

the antiphase and in phase tiltings, but now in the P4/mbm state.
In particular, comparing Fig. 3g, h with Fig. 2g, h tells us that the xx
and yy susceptibilities associated with ωR, while still being similar
to each other, have now two peaks each, in P4/mbm (unlike in the
cubic state), with the corresponding frequencies being close to
the aforementioned antipolar frequencies we denoted as
νXþ

5 ;x;P4=mbm;LF and νXþ
5 ;x;P4=mbm;HF . Such facts strongly hint towards

Fig. 3 Same as Fig. 2 but for a temperature of 1260 K (which corresponds to the P4/mbm state)
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a very specific dynamical coupling between the fluctuations of the
x- and y-components of uX and ωR within the P4/mbm state. Such
hint is reinforced when realizing that νXþ

5 ;x;P4=mbm;LF corresponds to
the weakest peak of χAAxx νð Þ for A = uX (see Fig. 3a) while being
associated with the strongest peak for the xx-component of the
susceptibility of ωR (cf Fig. 3g), while the reverse behaviors are
seen for νXþ

5 ;x;P4=mbm;HF (i.e., it is now the xx-susceptibility of the
antipolar motions rather than of the antiphase tilting that has the
strongest peak). This mixing also explains why νXþ

5 ;x�y;Pnma;LF is soft
within the P4/mbm state, since the antiphase octahedral tilting is
already very soft in the cubic state (see the temperature behavior
of νRþ4 ;x;Pm3m in Fig. 5b), and why a phase transition from P4/mbm
to Pnma occurs at around 1240 K, below which both the antipolar
motions and antiphase tiltings adopt long-range order (in addition
to the continuous spontaneous value of the in-phase tilting).
It is also interesting to realize that the zz-component of the

susceptibility associated with the in-phase-tilting-related ωM con-
tinues to have a single peak in the intermediate P4/mbm state (to
be denoted as νMþ

3 ;z;P4=mbm which is at a much higher frequency
that the corresponding νMþ

3 ;z;Pm3m of the cubic phase, see Figs. 2f, 3f
and 5b) but suddenly exhibits three peaks in the Pnma phase as
evidenced in Fig. 4f. Very interestingly, these three peaks have
resonant frequencies that are basically identical to the aforemen-
tioned antipolar νXþ

5 ;x;Pnma;LF , νXþ
5 ;x;Pnma;MF and νXþ

5 ;x;Pnma;HF . More-
over, these three resonant frequencies can also be seen within the
Pnma state in the xx and yy susceptibilities of the antiphase-tilting-
related ωR (see Fig. 4g, h). Such features suggest different mixings
of antipolar and AFD modes in the Pnma state, all involving in-plane
fluctuations of both uX and ωR and out-of-plane oscillations of ωM.
This suggestion is also consistent with the magnitude of the peaks,
since, e.g., the maximal peaks of χAAαβ νð Þ susceptibilities for A =ωR,
ωM and uX occur at three different frequencies, namely νXþ

5 ;x;Pnma;LF

(see Fig. 4g), νXþ
5 ;x;Pnma;MF (see Fig. 4f) and νXþ

5 ;x;Pnma;HF (see Fig. 4a),
respectively. This mixing also explains why νXþ

5 ;x;Pnma;LF softens
when approaching the Pnma-to-P4/mbm transition since we
demonstrated that oxygen octahedral titings are very soft above
such transition.
Let us now try to understand why uX and ωR can be dynamically

coupled in the P4/mbm state while the fluctuations of uX, ωR and
ωM can all dynamically mix in the Pnma state, and that no such
dynamical couplings exists in the cubic phase. Let us also explain
why only very specific components of these three order
parameters dynamically couple to each other in the P4/mbm
and Pnma phases.

DISCUSSION
For that, let us first write the equation of motion associated with
the x or y component of uX:

mX d
2uX;α
dt2

¼ � dEtotal
duX;α

þ γXα
duX;α
dt

(4)

Where α = x or y; mX is the mass of this antipolar mode; γXα is the
damping constant; Etotal is the total energy provided our effective
Hamiltonian; and t is the time. In the harmonic approximation and
using the trilinear energy given by Eq. (2) as well as Equations of
the effective Hamiltonian described in the Method Section, Eq. (4)
becomes:

P
β

2πνXα
� �2 � ð2πνÞ2 � 2iΓXαπν þ BXαMβ

ω2
M;β þ BXαRβω

2
R;β

h i
uX;α

¼ �DωM;zωR;α

(5)

Fig. 4 Same as Fig. 2 but for a temperature of 1040 K (which corresponds to the Pnma state)
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Here νXα is the natural frequency of the antipolar mode,
ΓXα ¼ γXα=m

X , D is the trilinear coupling strength between uX, ωR

and ωM, β runs over the Cartesian components, and B are the
parameters involved in the biquadratic coupling between u2X and
ω2
M and between u2X and ω2

R . D and B here contain a factor of 1/mX.
Neglecting fluctuations of ωM,β and ωR,β with time on the left-

hand site of Eq. (5) yields

P
β

2πνXα
� �2 � ð2πνÞ2 � 2iΓXαπν þ BXαMβ

ω2
M;β

D Eh

þBXαRβ ω2
R;β

D Ei
uX;α ¼ �DωM;zωR;α

(6)

where the “ ¼h i” symbol refers to spontaneous values. Note that
the existence of ω2

M;β

D E
and ω2

R;β

D E
on the left-hand side of Eq. (6)

implies that the resonant frequencies of the antipolar modes are
naturally quantitatively affected by the condensation of oxygen
octahedral tiltings because of the aforementioned biquadratic
couplings.
Introducing now the time fluctuations of ωM,z and ωR,α on the

right hand-side of Eq. (6) gives:

X
β

2πνXα
� �2 � ð2πνÞ2 � 2iΓXαπν þ BXαMβ

ω2
M;β

D E
þ BXαRβ ω2

R;β

D Eh i
uX;α ¼

� D ωM;z
� �

ωR;α
� �� D ωR;α

� �
δωM;z � D ωM;z

� �
δωR;α

(7)

for α = x or y, and where δωM,z and δωR,α represent the fluctuations
of ωM,z and ωR,α with respect to their spontaneous ωM;z

� �
and

ωR;α
� �

values.

Interestingly, averaging over time Eq. (7) will give on the left-
hand side a quantity that is directly proportional to uX;α

� �
and on

the right-hand side a quantity that is simply �D ωM;z
� �

ωR;α
� �

(since
δωM;z
� � ¼ δωR;α

� � ¼ 0, by definition). As a result, the time-
integration of Eq. (7) explains why, in our simulations depicted
in Fig. 1, uX;α

� �
becomes finite only after both ωM;z

� �
and ωR;α

� �
are nonzero. Note that if uX;α

� �
condenses we are to take

into account also the anharmonic contribution to the left part of
Eq. (7).
Moreover, Eq. (7) also successfully explains why the oscillations

of the x (respectively, y) component of uX can couple with the
fluctuations of the z-component of ωM and with the fluctuations of
the x (respectively, y) component of ωR in the Pnma state, because
of the existence of the last two terms on its right-hand side. Such
dynamical mixing gives rise to the three peaks seen in each of
Fig. 4a, f, g, and originates from the trilinear energy coupling since
the D constant is involved in these last two terms. This mixing
exists in Pnma but not in the cubic state because ωR;x

� �
, ωR;y
� �

and ωM;z
� �

are finite in the former while vanishing in the latter
state. In fact, the last two terms of Eq. (7) provide a deep insight
into the mechanism of this mixing: the x-component (respectively,
y-component) of uX is able to dynamically couple with (i) the
fluctuations of the z-component of ωM as soon as ωR;x

� �
(respectively, ωR;y

� �
) is non-zero; and (ii) the oscillations of the

x-component (respectively, y-component) of ωR when ωM;z
� �

adopts a finite spontaneous value. These last two terms of Eq. (7)
therefore also explain the mixing between antipolar and antiphase
tilting modes in the P4/mbm state, for which only in-phase tiltings
have condensed, i.e. even if there are no long-range ordered uX
and ωR. In that case, item (ii) is valid, unlike item (i), which
therefore explains why only two (and not three) peaks can be seen
in Fig. 3a, g. In that situation, two modes, which where denoted as
νXþ

5 ;x;Pm3m and νRþ4 ;x;Pm3m in the cubic phase (that are pure antipolar
and antiphase tilting modes, respectively), now interacts with each
other in the P4/mbm phase to give rise to the mixed νXþ

5 ;x;P4=mbm;LF
and νXþ

5 ;x;P4=mbm;HF modes.
Note that Eq. (7), as well as some of our numerical findings

depicted in Figs. 2, 4 and 5, can also be used to predict the
behavior of the phonon associated with the oscillations of uX
along the x (or y)-axis when the antiphase octahedral tiltings
condense before the in-phase tilting in the structural path
bringing the cubic state to Pnma (that is, if the phase transition
sequence is Pm3m, then Imma and finally Pnma when decreasing
the temperature, which is another possible symmetry-allowed
structural path to connect Pm3m and Pnma, in addition to
Pm3m–P4/mbm–Pnma, according to ref. 36). Equation (7) and our
aforementioned numerical data then suggest that results will be
very similar to those shown in Fig. 5a, that is (1) one hard
νXþ

5 ;x;Pm3m should exist in the cubic state; (2) there will be one soft
phonon (to be denoted here as νXþ

5 ;x;Imma;LF ) and one hard phonon
(to be coined νXþ

5 ;x;Imma;HF ) in the Imma state; and (3) one soft
phonon at νXþ

5 ;x;Pnma;LF and two harder phonons at νXþ
5 ;x;Pnma;MF

and νXþ
5 ;x;Pnma;HF in the Pnma state. The main anticipated

difference between these predicted results and those shown in
Fig. 5a is that νXþ

5 ;x;Imma;LF will arise from the mixing of the
fluctuation of the x-component of uX with the oscillation of the z-
component of ωM that is mediated by the condensation of the x-
component of ωR, while νXþ

5 ;x;P4=mbm;LF of Fig. 5a involves the
dynamical coupling between the x-component of uX and the x-
component of ωR that is allowed when the z-component of ωM

has adopted a long-range-order. Interestingly, symmetry argu-
ments36 further indicate that the Pm3m-to–Imma phase transition
should be of first-order. As a result, we expect that the
susceptibilities measured in the temperature interval for which
these two phases can co-exist will have the features of both of
these phases.

Fig. 5 Temperature dependence of natural frequencies of some
phonon modes that have antipolar cation character a and/or
oxygen octahedral tiltings character b. The vertical dashed lines
delimit the different phases obtained in the calculations for our BFO
system subject to hydrostatic pressure. See text for the notations on
this figure
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It is also worthwhile to realize that the present work and model
most likely are not fully applicable to PbZrO3 (which is often
considered to be the prototype of antiferroelectrics), even if a
trilinear energy coupling has been documented there as well.37, 38

This is because it was recently proposed39 that the unusual Pbam
ground state of PbZrO3 arises from an original bilinear coupling
between antipolar motions and oxygen octahedral tiltings. As a
result, Eqs. (4)–(7) should be generalized to further include such
bilinear coupling too, when tackling dynamics of PbZrO3 (note
that refs. 40, 41 also suggested that flexoelectric effects can play
some role in PbZrO3 as well, which further emphasizes the need
for a generalization of Eqs. (4)–(7) for that complex material).
In summary, we studied here BiFeO3 bulk subject to hydrostatic

pressure, as an example of perovskite materials having the
paraelectric cubic Pm3m state at high temperature while adopting
the antipolar Pnma phase at lower temperature. Our simulations
first indicate that an intermediate state (of P4/mbm symmetry
here) can exist for a narrow temperature range located in-
between the temperature stability regions of Pm3m and Pnma—
as also consistent with symmetry analyses.36 We also reveal that
antipolar modes have rather high resonant frequencies that are
nearly independent of the temperature within Pm3m, while they
can become very soft in the intermediate state and in the Pnma
phase because of very specific dynamical mixings with (the soft)
oxygen octahedral tiltings. Such mixings increase the number of
phonon modes possessing antipolar character when passing
through the Pm3m–P4/mbm and P4/mbm–Pnma transitions.
Moreover, a simple model is developed allowing to not only
explain all these features but also to reveal that they arise from a
trilinear energy coupling antipolar motions, in-phase and anti-
phase tiltings. This model can also be used to predict dynamics of
antipolar modes in case of the Pm3m–Imma-Pnma transition. We
hope that the present study is of large importance for the
scientific community, especially when realizing that (i) Pnma is the
most abundant ground state of perovskites23, 24; and (ii) trilinear
energetic couplings can also give rise to the formation of electrical
polarization in the so-called hybrid improper ferroelectrics,1–7

implying that our present study is a good starting point to tackle
and understand polarization dynamics in these particular systems
that are intensively currently investigated too.

METHODS
Here, the effective Hamiltonian approach of refs. 28, 42–44 is used in order
to investigate properties of BiFeO3 (BFO) at finite temperatures and under
hydrostatic pressure. The degrees of freedoms of this Hamiltonian are (i)
the local soft mode ui centered on the Bi sites (such centering allows, e.g.,
to reproduce the Bi-driven antipolar motions associated with the Pnma
phase of BFO28); (ii) the η− homogenous strain tensor; (iii) the pseudo-
vector ωi, which is centered on Fe ions and characterizes oxygen
octahedral tiltings34 (also known as antiferrodistortive (AFD) distortions)
in unit cell i. For instance, ωi = 0.1 z, where z is the unit vector along
the z-axis, indicates that the oxygen octahedron centered around the Fe
site i tilts about 0.1 radians about the z-axis; (iv) the magnetic dipole
moment mi, which is Fe-centered too and whose magnitude is equal to
4μB, as consistent with first principles45 and measurements46; and (v) the
inhomogeneous strain characterized by dimensionless variable vi.

47, 48

The total effective Hamiltonian is the sum of the following three main
terms

Etotal ¼ E1 uif g; fηg; fvigð Þ þ E2 mif g; uif g; fηg; fvig; fωigð Þ
þ E3 uif g; fηg; vif g; fωigð Þ;

(8)

where E1 represents the energy associated with the local modes, elastic
strain interactions, and coupling between the local modes and strain; E2
ensembles the energies correlated with the magnetic degrees of freedom
and their couplings with the local modes, strains and AFD distortions; and
E3 describes the energetics involving the AFD interactions and their
couplings with the local modes and strains. Analytical expressions for E1
and E2 are provided in refs. 47, 48 and ref. 42, respectively. The expression

for E3 has been described in ref. 28 and is as follows:

E3 uif g; ηf g; vif g; ωif gð Þ ¼ P
i

κAω
2
i þ αAω

4
i þ γA ω2

ixω
2
iy þ ω2

iyω
2
iz þ ω2

ixω
2
iz

� �h i

þP
ij

P
αβ

Kijαβωiαωjβ þ
P
i

P
α
K 0ω3

i;α ωiþα;α þ ωi�α;α

� �

þP
i

P
αβ

ClαβηlðiÞωiαωiβ

þP
i;j

P
α;β

Dij;αβuj;αωi;αωi;β þ
P
i;j

P
αβγδ

Eαβγδωiαωjβujγuiδ

(9)

where the sum over i runs over all Fe-sites, and where α and β are
Cartesian components along the x−, y−, and z-axes coinciding with the
pseudocubic [100], [010], and [001] directions respectively. Moreover, ηl(i)
is the l-th component of the total strain (in Voigt notation), including the
homogeneous and inhomogeneous strain, at site i. The first three energies
of Eq. (9) were proposed and/or used in refs. 28, 42–44 and characterize
onsite interactions of the AFD distortions. The fourth and fifth energies
represent AFD short-range interactions and were provided in ref. 43 and
ref. 28, respectively. Note that, in this fifth energy, ωi+α,α is the α-
component of the AFD mode at the site shifted from the Fe site i to its
nearest Fe neighbor along the axis α. The sixth energy describes the
coupling between oxygen octahedral tiltings and strains. The seventh
energy was introduced in ref. 28, and represents an anharmonic (trilinear)
interaction energy between the local mode u centered on a Bi site and two
AFD distortions centered on Fe sites. Finally, the eighth energy of Eq. (9)
characterizes bi-quadratric interactions between oxygen octahedral tiltings
and local modes, as given in ref. 43. More details about E1 and E3, including
the values of parameters, are provided in the Supplementary Materials.
We employ such effective Hamiltonian to conduct Monte-Carlo

simulations of BFO under pressure. Note that we simulate the effects of
applying a pressure by adding an energy that involves the products
between the hydrostatic pressure and strain tensor elements. We then
perform MD calculations by using 4 × 105 MD steps with a time step of 0.5
fs as similar to what was done in ref. 49, except that the effective
Hamiltonian used here has local modes that are centered on Bi ions (and
not on Fe ions like in ref. 49). As a result, the fifth and seventh terms of Eq.
(9) are presently incorporated into the dynamics of BFO.

Data availability
All data are provided in full in the Results section of this paper.
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