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Deep learning radiomics based prediction
of axillary lymph node metastasis in
breast cancer
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This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) for the
preoperative evaluation of axillary lymph node (ALN) metastasis status in patients with a newly
diagnosed unifocal breast cancer. A total of 883 eligible patients with breast cancer who underwent
preoperative breast and axillary ultrasound were retrospectively enrolled between April 1, 2016, and
June 30, 2022. The training cohort comprised 621 patients from Hospital I; the external validation
cohorts comprised 112, 87, and 63 patients fromHospitals II, III, and IV, respectively. A DLR signature
was created based on the deep learning and handcrafted features, and the DLRNwas then developed
based on the signature and four independent clinical parameters. The DLRN exhibited good
performance, yielding areas under the receiver operating characteristic curve (AUC) of 0.914, 0.929,
and 0.952 in the three external validation cohorts, respectively. Decision curve and calibration curve
analyses demonstrated the favorable clinical value and calibration of the nomogram. In addition, the
DLRN outperformed five experienced radiologists in all cohorts. This has the potential to guide
appropriatemanagement of the axilla in patientswith breast cancer, including avoiding overtreatment.

Breast cancer ranks as the second leading cause of cancer-relatedmortality in
women and has a highmetastasis rate of 20–30%1. As themost frequent site
of metastasis, the status of axillary lymph nodes (ALNs) is pivotal for
pathological staging, prognosis, and treatment guidance including deter-
mining neoadjuvant or adjuvant therapy and surgical planning for patients2.
Currently, ALN dissection and sentinel lymph node (SLN) biopsy are the
standard methods for determining the metastatic status of ALNs3–5. Never-
theless, both methods are invasive andmay lead to postoperative morbidity,
such as arm numbness and upper limb edema6,7. In addition, 70–80% of
patients who undergo SLN biopsy exhibit negative SLNs, indicating the high
probability of overtreatment with unnecessary SLN biopsy8,9. Therefore, an
accurate, non-invasive approach to predict ALNmetastasis would be part of
optimal treatment planning in patients with newly diagnosed breast cancer.

Ultrasound represents a widely used imaging tool for preoperative
assessment of ALNs in patients with breast cancer. On axillary ultrasound,

ALNs with features such as longest/shortest axis ratio < 2, cortical thick-
ening, and loss of fatty hilum in the node are suspected to be malignant10.
Previous studies suggested that integration of suspicious features on axillary
ultrasound and other clinical factors had the potential to predict ALN
metastasis11.However, the performance is unsatisfactory,with a limited area
under the receiver operating characteristic (ROC) curve (AUC) of
0.585–0.71912. Additionally, ALNs with suspicious morphology often
undergoultrasound-guidedneedle biopsy to assist in preoperative planning.
However, nearly 35% of metastatic ALNs do not show any suspicious
features13, introducing a limitation in the assessment of ALN status using
axillary ultrasound.

Several studies have developed noninvasive methods to determine the
metastatic status of ALNs, including several clinical nomograms14–16.
However, few of these studies have taken into account information derived
frompreoperative imagingof the lesion, and somehave incorporated factors
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that can only be obtained postoperatively. Recently, radiomics has been an
effective technology in clinic by converting medical image data into high-
throughput imaging features17. The latest studies have revealed improve-
ments in assessing ALN status using conventional radiomics (CR) analysis
of primary tumors with mammography, ultrasound, and magnetic reso-
nance imaging18–20. However, the limitations of handcrafted features in CR
lie in manual labeling and their inability to conform to a specific task21. In
contrast, deep learning radiomics (DLR)22 is an innovative method that can
learn end-to-end and automatically discover multiple levels of representa-
tions for the specific prediction tasks. TheDLRprocess includes feeding raw
machine data, such as medical images, and allowing them to learn feature
representations, quantify information from images, and discover vectors for
prediction tasks using multiple layers of features23. With technological
advancements, the application of DLR in breast cancer imaging has rapidly
increased, including prediction of ALN status2,24–26. However, the clinical
utility of these studies remains uncertain as they contained limited sample
sizes, lacked external validation, and neglected important clinical
information27, which are crucial for classification accuracy28. Therefore, we
planned to integrate DLR features extracted from breast ultrasound and
preoperative clinical parameters to improve the model performance with a
large sample size.

In this study, we developed a deep learning radiomics nomogram
(DLRN) based on breast ultrasound, which is a convenient, radiation-free,
and favorably repeatable examination for breast cancer29,30, to access ALN
status preoperatively. The predictive performance of the DLRN was vali-
dated using three external validation cohorts (EVCs). Ultimately, the results
indicated thatDLRNcoulddetect themetastatic risk ofALNsbetter than the
clinical model and radiologists, enable individualized surgical approaches
for the axilla, and minimize overtreatment.

Results
Baseline characteristics
Table 1 summarizes the clinical parameters of the 883 patients with breast
cancer in the four hospitals. According to the results of SLN biopsy or ALN
dissection, theALNmetastatic rateswere 34.6%, 40.2%, 40.2%, and50.8% in
TC,EVC1, EVC2, andEVC3, respectively. ThemedianBMIwere 26.3, 25.7,
25.2, and 25.7 in the four cohorts, respectively. The Kappa values of the BI-
RADS category were 0.957 and 1 for inter- and intra-observer agreements,
respectively (bothP < 0.001). ForUS-ALN, theKappavalueswere 0.936 and
1, respectively (both P < 0.001). The metastatic status of ALN showed a
significant difference between the TC and EVC3 (34.6% vs. 50.8%,
P < 0.001). Other detailed differences in specific clinical parameters are
described in Supplementary Notes.

DLR signature construction and validation
In total, 544 handcrafted and 2048 deep learning features were extracted for
each patient. Of these, 519 and 1847 features with high reproducibility and
stability (ICC > 0.80), respectively, were subsequently combined and ana-
lyzed using LASSO logistic regression. Finally, 4 handcrafted and 45 deep
learning featureswith nonzero coefficients in LASSOwere selected to derive
the DLR signature (Supplementary Fig. 1). A detailed description of the
selected features is provided in Supplementary Table 1. The signature
achieved the AUCs of 0.886 (95% CI, 0.815–0.958), 0.854 (95% CI,
0.778–0.931), and 0.917 (95% CI, 0.854–0.980) in the three EVCs, respec-
tively. The signature was significantly higher in themetastasis group than in
the non-metastasis group in all cohorts (P < 0.001) (Supplementary Fig. 2).
The accuracy, sensitivity, specificity, PPV, and NPV of the signature are
presented in Table 2.

DLR nomogram construction and performance evaluation
The result of univariate logistic regression analysis of the clinical parameters
is presented in Supplementary Table 2. The clinical model was developed
based on age, BI-RADS category, nuclear grade, and US-ALN by multi-
variate logistic regression (Table 3). These four independent clinical para-
meters were significantly correlated with ALN metastasis. The DLRN

combined with the DLR signature and independent clinical parameters is
shown inFig. 1.Theoptimal cutoff of theALNmetastatic rate forDLRNwas
0.407, based on the TC.

The DLRN demonstrated significantly better predictive performance
than the corresponding clinical model, with AUCs of 0.914 (95% CI,
0.858–0.971), 0.929 (95%CI, 0.877–0.980), and0.952 (95%CI, 0.906–0.997)
in the EVCs (DeLong P < 0.001). The AUCs of the DLRN in different
surrogate molecular subtypes are presented in Supplementary Table 3. The
accuracy, sensitivity, specificity, PPV, and NPV of the clinical model, DLR
signature, and DLRN are presented in Table 2. The confusion matrices of
the DLRN across all cohorts are shown in Supplementary Fig. 3, and the
ROC curves demonstrating the comparative results of the AUCs are dis-
played in Fig. 2a–c.

In all theEVCs, 25.3%(38/150)of thenon-metastaticALNshadat least
one suspicious feature on ultrasound imaging, and 22.7% (34/150) were
misdiagnosed asmalignant ALNs by experienced radiologists. Nonetheless,
79.4% (27/34) of them were correctly classified as negative ALNs by the
DLRN. A detailed comparison of performance of the DLRN and radi-
ologists is presented in Table 2. The result of ALN status assessment by each
radiologist is summarized in Supplementary Table 4, and the typical cases
evaluated by human experts and the DLRN are shown in Fig. 3.

The IDI,NRI, andC-index indicated superior classification accuracy of
the DLRN compared with the clinical model and DLR signature (Supple-
mentary Table 5). Decision curve analyses (Fig. 2d–f) demonstrated that the
DLRN provided a higher net benefit than the clinical model over a wide
range of threshold probability. The calibration curves verified that the
predicted ALN status by the DLRN was in good agreement with the actual
status (Fig. 2g–i). Additionally, a total of 37 patients were included for
reproducibility evaluation of the DLRN. The clinical parameters of the 37
patients are presented in Supplementary Table 6. The inter-observer ICC
among the three doctors was 0.82, indicating good reproducibility of the
DLRN according to Cicchetti’s guideline.

Discussion
Currently, ALN dissection and SLN biopsy are the standard methods for
ALN staging. However, both operations carry varying degrees of post-
operative complications and morbidities. Recent researches have con-
centrated on minimizing unnecessary axillary procedures and avoiding
overtreatment for breast cancer. TheAmerican Society ofClinicalOncology
(ASCO)31 has recommended that SLN biopsy can be omitted for clinically
node-negative women aged≥70with early-stage invasive breast cancer, that
is HER2-negative and hormone receptor-positive. The Sentinel Node vs
Observation After Axillary Ultra-Sound (SOUND) trial32 concluded that
SLN biopsy can be safely spared in patients with small breast cancer
(diameter≤2 cm) and a negative result on axillary ultrasonography. Addi-
tionally, several ongoing clinical trials are exploring the possibility of SLN
biopsy omission for early breast cancer patients receiving neoadjuvant
systemic therapy33 or breast-conserving surgery34. In our study, we suc-
cessfully developed a DLRN to assess ALN status preoperatively for breast
cancer. The DLRN exhibited satisfactory performance in all EVCs, with
AUCs of 0.914, 0.929, and 0.952 and accuracies of 88%, 87%, and 89% in
EVC1, EVC2, and EVC3, respectively. This represents a promising
approach to predict ALN status and avoid unnecessary axillary treatment.

Among the three EVCs, 22.7% (34/150) of the non-metastatic ALNs
were misdiagnosed by the five experienced radiologists. However, 79.4%
(27/34) of them were correctly classified by the DLRN. On the other hand,
42.0% (47/112) of the metastatic ALNs showed no suspicious features on
axillary ultrasound, which is in accordance with the results of another
study13. Nonetheless, 72.3% (34/47) of the cases were successfully detected
by the DLRN. In addition, the AUC of the DLRN was significantly higher
than that of the experienced radiologists (0.665–0.703), consistent with the
AUCs of radiologists in other studies (0.585–0.735)10,12,26. The false-negative
rate ofDLRNwas also comparable to that of SLNbiopsy, ranging from7.8 to
27.3%35. Therefore, for patients with a low risk of ALN metastasis by the
nomogram, an observational strategy could be recommended instead of
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invasive axillary treatment. For patients with a high risk of ALNmetastasis,
axillary operation might be required during management.

Previous studies reported various clinical models for predicting ALN
metastasis. Isaac et al. 36 developed a promising multiparametric score to
assess the status of nonsentinel lymph nodes in clinically node-negative
breast cancer with positive SLNs after systemic therapy. In addition, a
representative Memorial Sloan Kettering Cancer Center nomogram14 was
developed and commonly used in different populations. Nevertheless,
certain variables in this nomogram, such as histological tumor size and
lymphovascular invasion, could only be obtained postoperatively, poten-
tially impeding its clinical applicability. In this study, all the factors included
in the DLRN can be achieved preoperatively, and the predictive perfor-
mance was satisfactory when validated in three external hospitals.

Various scholars have explored the additional value of DLR in pre-
dictingALNmetastasis.Ding et al. 37 developed a deep learningmodel based
on core needle biopsy specimen to identify ALN status. However, themodel
performance was expected to be further enhanced (AUC= 0.725) when
validated externally. Moreover, biopsy specimens were incapable of cap-
turing the heterogeneity of the entire tumor, and the acquisition of speci-
mens was largely operator-dependent. Consequently, an evaluation of
model reproducibility is warranted. Zheng et al. 26 developed a DLR model
based on ultrasound and shear wave elastography for breast cancer. The
DLR model could predict ALN status (N0 vs. N+[≥1]) and discriminate
metastatic burden (N+[1, 2] vs. N+[≥3]) of ALNs with favorable perfor-
mance. However, the model faced limitation in clinical application due to
the nonroutine use of elastography. Compared with the studies, our DLRN
was constructed based on a large sample size and with good reproducibility
verified by a prospective trial. In addition, to relieve overfitting38 – a com-
monpitfall thatmay constrain the clinical utility of deep learningmodels,we
initially incorporatedhandcrafted features to complementDLR features and
then utilized LASSO to reduce feature dimensionality. This approach could
effectively minimize the risk of overfitting caused by excessive features. The
stable and good performance of the DLRN in three external hospitals
demonstrated that model overfitting had been mitigated in this study.

In this study, the DLR signature comprised 4 CR and 45DLR features,
which were significantly correlated with ALN status. The four key CR fea-
tures were local binary pattern (LBP) features, characterized as straight-
forward, resilient, and efficient texture descriptors39. Some studies have
reported that LBP features could promote faster diagnosis of breast malig-
nancies imaged by shear wave elastography40 and the classification of var-
ious types of breast lesions based on optical coherence microscopy41.
According to these findings, LBP features may reflect different patterns of
heterogeneity of breast masses, whichmay be involved in the occurrence of
ALN metastasis.

In the clinical model, young age, high BI-RADS category, high nuclear
grade, and positive US-ALN were associated with increased risk of ALN
metastasis. The relationship between these variables and ALN status has
been confirmed in earlier studies10,14,42. However, these correlationswere not
consistent across all the studies, and the results were not stable for the EVCs
in our study. For example, multivariate analysis in the TC identified age as

Table 1 | Participant baseline characteristics in four cohorts

Characteristic TC (n = 621) EVC1
(n = 112)

EVC2 (n = 87) EVC3
(n = 63)

Age (years) 54.50 ± 11.51 55.19 ± 10.65 53.93 ± 11.94 54.78 ± 9.83

Ultrasound
size (cm)

2.24 ± 1.06 2.26 ± 1.12 2.17 ± 1.21 2.22 ± 0.98

BMI

<25 237 (38.16%) 36 (32.14%) 26 (29.89%) 21 (33.33%)

25–30 172 (27.70%) 36 (32.14%) 27 (31.03%) 22 (34.92%)

>30 174 (28.02%) 35 (31.25%) 32 (36.78%) 14 (22.22%)

Not appliable 38 (6.12%) 5 (4.46%) 2 (2.30%) 6 (9.52%)

BI-RADS category

4A 172 (27.70%) 18 (16.07%) 6 (6.90%) 13 (20.63%)

4B 144 (23.19%) 35 (31.25%) 12 (13.79%) 21 (33.33%)

4C 133 (21.42%) 8 (7.14%) 12 (13.79%) 18 (28.57%)

5 172 (27.70%) 51 (45.54%) 57 (65.52%) 11 (17.46%)

Tumor location

UOQ 130 (20.93%) 21 (18.75%) 25 (28.74%) 31 (49.21%)

LOQ 61 (9.82%) 12 (10.71%) 6 (6.90%) 12 (19.05%)

UIQ 163 (26.25%) 38 (33.93%) 25 (28.74%) 6 (9.52%)

LIQ 66 (10.63%) 26 (23.21%) 13 (14.94%) 13 (20.63%)

Central 201 (32.37%) 15 (13.39%) 18 (20.69%) 1 (1.59%)

Nuclear grade

I 96 (15.46%) 5 (4.46%) 13 (14.94%) 10 (15.87%)

II 298 (47.99%) 67 (59.82%) 49 (56.32%) 37 (58.73%)

III 227 (36.55%) 40 (35.71%) 25 (28.74%) 16 (25.40%)

Tumor classification

Noninvasive
carcinoma

59 (9.51%) 4 (3.57%) 7 (8.05%) 2 (3.17%)

Invasive carcinoma

NST 489 (78.74%) 97 (86.61%) 71 (81.61%) 60 (95.24%)

ST 43 (6.92%) 8 (7.14%) 6 (6.90%) 0 (0.00%)

Rare carcinoma 30 (4.83%) 3 (2.68%) 3 (3.45%) 1 (1.59%)

ER

Positive 451 (72.62%) 83 (74.11%) 64 (73.56%) 35 (55.56%)

Negative 170 (27.38%) 29 (25.89%) 23 (26.44%) 28 (44.44%)

PR

Positive 402 (64.73%) 78 (69.64%) 52 (59.77%) 42 (66.67%)

Negative 219 (35.27%) 34 (30.36%) 35 (40.23%) 21 (33.33%)

HER2

Positive 520 (83.73%) 34 (30.36%) 66 (75.86%) 48 (76.19%)

Negative 101 (16.26%) 78 (69.64%) 21 (24.14%) 15 (23.81%)

Ki-67

Positive 514 (82.77%) 90 (80.36%) 66 (75.86%) 47 (74.60%)

Negative 107 (17.23%) 22 (19.64%) 21 (24.14%) 16 (25.40%)

Surrogate subtype

Luminal A-like 248 (39.94%) 16 (14.29%) 6 (6.90%) 1 (1.59%)

Luminal B-like 216 (34.78%) 71 (63.39%) 58 (66.67%) 39 (61.90%)

HER2-
overexpression

127 (20.45%) 11 (9.82%) 20 (22.99%) 15 (23.81%)

Triple negative 30 (4.83%) 14 (12.50%) 3 (3.45%) 8 (12.70%)

US-ALN

Suspicious 242 (38.97%) 37 (33.04%) 44 (50.57%) 22 (34.92%)

Non-suspicious 379 (61.03%) 75 (66.96%) 43 (49.43%) 41 (65.08%)

Table 1 (continued) | Participant baseline characteristics in
four cohorts

Characteristic TC (n = 621) EVC1
(n = 112)

EVC2 (n = 87) EVC3
(n = 63)

ALN metastasis

Positive 215 (34.62%) 45 (40.18%) 35 (40.23%) 32 (50.79%)

Negative 406 (65.38%) 67 (59.82%) 52 (59.77%) 31 (49.21%)

TC training cohort, EVC external validation cohort, BMI body mass index, UOQ upper outer
quadrant, LOQ lower outer quadrant, UIQ upper inner quadrant, LIQ lower inner quadrant, NST no
special type, ST special type, ER estrogen receptor, PR progesterone receptor, HER2 human
epidermal growth factor receptor-2, US-ALN axillary lymph nodes status reported by axillary
ultrasound.
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an independent predictor of ALN status (P = 0.002). However, the corre-
lationwas not robust in the EVCs (P = 0.860 for EVC1, 0.737 for EVC2, and
0.287 for EVC3). On the other hand, some studies have identified tumor
size, tumor classification,Ki-67, ER, andPRstatus as independentpredictive
factors of metastatic ALNs in breast cancer14,43. However, these findings
were not observed in the present study. The reason for these inconsistent
results may be that clinical parameters only reflect limited aspects of the
lesions. Therefore,we integrated theDLR signaturewith clinical parameters
to construct the DLRN and achieved far better predictive performance than
the clinical model (P < 0.001) in all cohorts.

Our study still has some limitations. First, inherent variations and
shortages were inevitable. For instance, the quality of ultrasonography

varied because the operations were performed by different radiologists.
Second, the two-dimensional image cannot represent the entire tumor and
the information in three-dimensional lesions might be missed. Third, our
study exclusively included patients with unifocal breast lesions because it
was difficult to identify the lesion responsible for ALN metastasis among
multifocal and multicentric lesions. Non-mass-type lesions were also
excluded in our study due to the difficulty of ROI segmentation. Fourth,
although various researchers have identified the association between dif-
ferent molecular subtypes and ALN status, our study encountered limita-
tions in constructing models for each subtype individually, given the
restricted sample size for each subtype. Therefore, further improvements
must be made with a more comprehensive analysis in the future.

In summary, we established a deep learning radiomics nomogram to
preoperatively evaluate axillary lymph node status in patients with unifocal
breast cancer. The nomogram outperformed both the clinical model and
radiologists. Therefore, with favorable specificity and sensitivity, this model
can offer a potential non-invasive approach to identify lymph node
metastasis and guide clinical decision making.

Methods
Patients
This studywas approved by the institutional review board ofNanjingDrum
Tower Hospital (approval no. 202214201) and compliant with the ethics
standards of the regulations of theDeclaration ofHelsinki. The requirement
for informed consent was waived owing to the retrospective nature in
this study.

The inclusion criteria were listed as follows: (a) women with histolo-
gically diagnosed unifocal breast cancer, (b) patients with confirmed ALN
status by ALN dissection/SLN biopsy, and (c) patients received ultrasound
examination within 1 week before surgery. The exclusion criteria were as
follows: (a) patients received neoadjuvant radiotherapy, chemotherapy, or
other therapies preoperatively, (b) patients with ultrasound-invisible or
non-mass-type lesions, (c) patients with multifocal lesions or insufficient
image quality, (d) patients with metastatic breast cancer, and (e) patients
with incomplete clinical or histopathological information. Noteworthily,
multifocal lesions were excluded due to the difficulty of distinguishing the
responsible lesion which caused metastasis from various masses.

In total, 883 patients with histologically confirmed primary breast
cancer from four hospitals were included in this study. A flowchart of the
patient recruitment process is shown in Fig. 4. Finally, 621 patients with
breast cancer from Hospital I (Nanjing Drum Tower Hospital) between
April 1, 2016, and June30, 2022,were reviewed and identifiedas the training
cohort (TC). From December 30, 2017, to November 1, 2021, 112 patients
fromHospital II (JinlingHospital)were recruited as EVC1. FromDecember

Table 2 | Performance summary of radiologists and different models for prediction of ALN metastasis

Methods AUC ACC(%) SENS(%) SPE(%) PPV(%) NPV(%) P value

Pooled Radiologists 0.703 (0.672-0.735) 72 (69-75) 63 (58-69) 77 (74-81) 62 (57-67) 78 (74-82) <0.001*

EVC1 CLI 0.769 (0.677-0.860) 75 (66-83) 53 (38-68) 90 (80-96) 77 (59-90) 74 (63-83) <0.001*

Signature 0.886 (0.815-0.958) 87 (79-92) 87 (73-95) 87 (76-94) 81 (67-91) 91 (81-96) 0.169

DLRN 0.914 (0.858-0.971) 88 (80-93) 87 (73-95) 88 (78-95) 83 (69-92) 91 (81-97)

EVC2 CLI 0.783 (0.687-0.880) 75 (64-83) 69 (51-83) 79 (65-89) 69 (51-83) 79 (65-89) <0.001*

Signature 0.854 (0.778-0.931) 72 (62-81) 100 (90-100) 54 (39-68) 59 (46-72) 100 (88-100) 0.011*

DLRN 0.929 (0.877-0.980) 87 (79-94) 86 (70-95) 88 (77-96) 83 (67-94) 90 (79-97)

EVC3 CLI 0.700 (0.570-0.830) 68 (55-79) 62 (44-79) 74 (55-88) 71 (51-87) 66 (48-81) <0.001*

Signature 0.917 (0.854-0.980) 83 (71-91) 91 (75-98) 74 (55-88) 78 (62-90) 88 (70-98) 0.188

DLRN 0.952 (0.906-0.997) 89 (78-95) 81 (64-93) 97 (83-100) 96 (81-100) 83 (67-94)

EVC external validation cohort,CLI clinicalmodel,DLRNdeep learning radiomic nomogram,AUC the area under the receiver operating characteristic curve,ACC accuracy,SEN sensitivity,SPE specificity,
PPV positive prediction value, NPV negative prediction value.
Statistical quantifications were demonstrated with 95% confidential interval (CI), when applicable. The P value indicates the comparison between AUCs of each method and the integrated DLRN by the
DeLong test in different cohorts.

Table 3 |Multivariate logistic regression analysis ofALNstatus
in the training cohort

Characteristics Coefficient Odds ratio (95% CI) P value

Age −0.0184 0.9818 (0.9663-0.9972) 0.002*

BI-RADS category 0.3811 1.4638 (1.2499-1.7194) <0.001*

Nuclear grade 0.3896 1.4764 (1.1394-1.9230) 0.003*

US-ALN 0.7001 2.0140 (1.4050-2.8901) <0.001*

CI confidence interval, US-ALN axillary lymph nodes status reported by axillary ultrasound.

Fig. 1 | Deep learning radiomics nomogram. Integrated nomogram for axillary
lymph nodemetastasis prediction combined with deep learning radiomics signature
and clinicopathological factors. US-ALN, axillary lymph node status reported by
axillary ultrasound; DLR deep learning radiomics, ALN axillary lymph node.
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1, 2019, to June 30, 2022, 87 patients from Hospital III (Jiangbei Hospital)
and 63 patients from Hospital IV (Taizhou Hospital) were enrolled as two
EVCs (EVC2 and EVC3).

Clinical parameters
The preoperative clinical parameters collected for analysis included
clinicopathological characteristics and ultrasound findings of the breast
and axilla. Clinicopathological characteristics included age, body mass
index (BMI), estrogen receptor (ER) status, progesterone receptor (PR)
status, human epidermal growth factor receptor 2 (HER2) expression,
Ki-67 expression, nuclear grade, tumor classification, and surrogate
subtype44. The pathological characteristics were obtained from needle
biopsy, which is the standard preoperative procedure for breast cancer.
According to the 2017 St Gallen International Expert Consensus45, ER-
positive status was identified when ER-positive rate ≥1%, and PR-
positive status was identified when PR-positive rate ≥1%. HER2 posi-
tivity was identified by an immunohistochemical score of 3+ or a score of
2+ with gene amplification. Cases failing to meet the criteria were

classified as HER2-negative. In terms of Ki-67, cases withmore than 14%
positive nuclei were categorized as highKi-67 expression, whereas others
were classified as low Ki-67 expression.

The ultrasound findings of the breast and axilla included tumor
location, ultrasound size of the breast lesion, Breast Imaging
Reporting and Data System (BI-RADS) category, and ALN status
reported by axillary ultrasound (US-ALN). On axillary ultrasound,
suspicious metastatic ALNs were identified if any of the following
features were present: (1) longest/shortest axis ratio < 2, (2) cortical
thickening > 3 mm, or (3) loss of the fatty hilum in the node. Non-
suspicious ALNs were identified when no suspicious features were
found. The BI-RADS category and US-ALN were evaluated by two
experienced radiologists (B.J. and X.J., with 8 and 9 years of breast US
experience, respectively) blinded to pathological results. The inter-/
intra-observer agreement of BI-RADS category and US-ALN was
evaluated using the Kappa test (detailed in Supplementary Method
1). Landis and Koch’s evaluation46 was utilized to interpret the
Kappa value.

Fig. 2 | Model performance evaluation. a–c Receiver operating characteristic area
under the curves for the proposed clinical model and DLRN in EVC1, EVC2, and
EVC3, respectively. d–f Decision curves of the clinical model and DLRN in EVC1,
EVC2, andEVC3, respectively. g–iCalibration curves ofDLRN in EVC1, EVC2, and
EVC3, respectively. EVC, external validation cohort; CLI, clinical model; DLRN,
deep learning radiomics nomogram. Note: In Fig. 2d–f, the purple and blue lines

represent the DLRN and clinical model, respectively. The orange line represents the
assumption that all cases underwent ALN dissection or SLN biopsy. The green line
represents the assumption that no cases underwent ALN dissection or SLN biopsy.
The decision curve reveals that the DLRN exhibits better performance than the
clinical model over a wide range of threshold probabilities.
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Ultrasonography examination and image preprocessing
According to the Guidelines of the American Institute of Ultrasound in
Medicine practice47, ten radiologistswith at least 5 years of breast ultrasound
experience from the four hospitals performed preoperative breast and
axillary ultrasound. Patientswere kept in the supine position, and thefieldof
view was set to contain the pectoralis muscle at the deepest aspect of breast
ultrasound. The detailed equipment for the ultrasound examination is listed
in Supplementary Table 7, and the procedures of ultrasound examination
are detailed in SupplementaryMethod 2. For each patient, one single image
of the target breast mass was selected at the maximum diameter plane for
further analysis.

To compare the performance of ALN status assessment between
radiologists and the model, five radiologists with more than 10 years of
experience evaluated the ALN status according to breast and axillary
ultrasound examinations. Every radiologist assessed the ALN status of all
patients independently and was blinded to histopathological status. The
consensus or prevailing viewpoint of the five radiologists served as the result
of human experts.

The region of interest (ROI) of the primary breast lesion for each
ultrasound image was segmented by reader 1 (W.T., with over 15 years
of breast US interpretation experience) using the ImageJ software
(http://imagej.net). Onemonth later, 60 random patients were selected
and delineated again by readers 1 and 2 (H.Y., with 8 years of breast US
interpretation experience). The inter- and intra-observer reproduci-
bility of tumor segmentation and DLR/CR feature extraction were
analyzed using breast ultrasound in 60 randomly selected patients for
ROI-based feature extraction in a blinded manner by the two readers.
An inter-/intra-class correlation coefficient (ICC) of the features > 0.80
indicates good agreement with the tumor segmentation and feature
extraction, according to Cicchetti’s guidelines48. Based on the ROI of
each lesion, the top, bottom, left, and right boundary points were

automatically generated to create the bounding box. The rectangular
bounding box was then cropped from the original image, resized to
224 × 224 pixels, normalized, and fed into the convolutional neural
network as an input layer.

Deep learning radiomics (DLR) feature extraction and signature
construction
A flowchart of the study is shown in Fig. 5. Handcrafted features
including textural and BI-RADS features were extracted in MATLAB
2021b using the Breast Ultrasound Analysis Toolbox49. Deep learning
features were extracted using ResNet5050 (Supplementary Fig. 4) and
the detailed procedure was presented in Supplementary Method 3. In
brief, the fully connected layer and softmax layer of ResNet50 were
removed, and the output values of the nodes in last layer were identified
as the deep learning features. Subsequently, the handcrafted and deep
learning features were combined. The least absolute shrinkage and
selection operator (LASSO) logistic regression algorithm51 was used to
select the key features related to ALN status and compile the DLR
signature.

DLR nomogram construction
The clinical parameters were integrated into the DLRmodel to improve
predictive performance. In the TC, univariate logistic regression ana-
lysis was used to identify candidate factors among the clinical para-
meters. Furthermore, multivariate logistic regression was employed to
select independent clinical parameters and construct a clinical model.
We then integrated the DLR signature and independent clinical para-
meters usingmultivariate logistic regression to construct a combination
model. The combination model was finally converted into an indivi-
dualized DLRN.

Model performance
Integrated discrimination improvement (IDI), net reclassification
improvement (NRI), and C-index were used to demonstrate the prediction
ability. ROC curve analysis and the AUC with a 95% confidence interval
(CI) were used for interpretation. AUCs were compared using the DeLong
test52. The AUCs of the DLRN in predicting ALN metastasis for different
surrogatemolecular subtypes were also calculated. The optimal cutoff value
of the DLRN was determined using the Youden index of the TC. Boxplots
and confusion matrices were used to visualize the performance of the DLR
signature and DLRN, respectively. The accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) with
95% CIs were also evaluated. Decision curve and calibration curve analyses
were performed to assess the clinical value and calibration of each model,
respectively.

Reproducibility of the DLRNwas assessed in 37 patients who were
prospectively enrolled from Hospital I between January 8, 2024, and
January 19, 2024. The workflows of the patient recruitment and
reproducibility evaluation are shown in Supplementary Fig. 5. Three
doctors with varying experience in breast ultrasound (3, 7, and 12
years, respectively) independently performed predictive procedures,
including imaging acquisition, ROI segmentation, feature extraction,
DLR signature acquisition, clinical data input, and probability calcu-
lation for the same lesion in each patient. The inter-observer ICC was
calculated to assess model reproducibility.

Statistical analysis
Two-tailed P < 0.05 denoted a significant difference. All statistical
analyses were conducted in R 4.1.2, Python 3.6, andMATLABR2021b.
Differences in continuous data were compared using the independent
sample t-test or Mann–Whitney exact U test. Categorical variables
were compared using the chi-squared or Fisher’s exact test. The code of
predicting procedure can be available in https://github.com/
ZouLiwen-1999/ALN_metastasis_Pred.

Fig. 3 | Breast and axillary ultrasonography of two typical cases. a Breast ultra-
sound and b axillary ultrasound of a patient with positive ALN metastasis. The
patient was wrongly considered as non-metastatic by the radiologists because there
were no suspicious ALNs on axillary ultrasound. In addition, benign characteristics
of the primary lesion, including a relatively oval shape, smooth margin, homo-
geneous hypoechoic matrix, and parallel orientation, added the diagnostic difficulty.
However, this case was accurately identified as positive ALN metastasis by the
DLRN, with a metastatic possibility of 87%. c Breast ultrasound and d axillary
ultrasound of a patient with negative ALN metastasis. The patient was wrongly
considered as metastatic type by the radiologists based on the malignant features of
the ALN (cortical thickening > 3 mm andmicrocalcification) and the primary lesion
(irregular shape, indistinct margin, heterogeneous echo pattern, and vertical
orientation). However, the case was correctly evaluated by the DLRN, with a
metastatic possibility of 27%. ALN axillary lymph node, DLRN deep learning
radiomics nomogram.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Access to the original images and clinical data in this study are available
from the corresponding author on reasonable request.

Fig. 5 | Flowchart of deep learning radiomics nomogram construction.Workflow
of deep learning radiomics nomogram construction for predicting axillary lymph
node metastasis in patients with breast cancer. BUSAT Breast Ultrasound Analysis

Toolbox; LASSO least absolute shrinkage and selection operation; DLR, deep
learning radiomics.

Fig. 4 | Flow diagram of the study population. In total, 883 of the 1530 patients with breast cancer were included according to the selection criteria.
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Code availability
The code for prediction of lymph node metastasis is publicly available in
https://github.com/ZouLiwen-1999/ALN_metastasis_Pred.
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