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Deep learning infers clinically relevant
protein levels and drug response in
breast cancer from unannotated
pathology images

Check for updates

Hui Liu1, Xiaodong Xie1 & Bin Wang 2

The computational pathology has been demonstrated to effectively uncover tumor-related genomic
alterations and transcriptomic patterns. Although proteomics has indeed shown great potential in the
field of precisionmedicine, few studies have focused on the computational prediction of protein levels
frompathology images. In this paper,weassume that deep learning-basedpathological features imply
the protein levels of tumor biomarkers that are indicative of prognosis and drug response. For this
purpose, we propose wsi2rppa, a weakly supervised contrastive learning framework to infer the
protein levels of tumor biomarkers fromwhole slide images (WSIs) in breast cancer.We first conducted
contrastive learning-based pre-training on tessellated tiles to extract pathological features, which are
then aggregated by attention pooling and adapted to downstream tasks. We conducted extensive
evaluation experiments on the TCGA-BRCA cohort (1978WSIs of 1093 patients with protein levels of
223 biomarkers) and theCPTAC-BRCA cohort (642WSIs of 134 patients). The results showed that our
method achieved state-of-the-art performance in tumor diagnostic tasks, and also performed well in
predicting clinically relevant protein levels and drug response. To show the model interpretability, we
spatially visualized theWSIs colored the tiles by their attention scores, and found that the regions with
high scores were highly consistent with the tumor and necrotic regions annotated by a 10-year
experienced pathologist. Moreover, spatial transcriptomic data further verified that the heatmap
generated by attention scores agrees greatly with the spatial expression landscape of two typical
tumor biomarker genes. In predicting the response to drug trastuzumab treatment, our method
achieved a 0.79AUCvaluewhich ismuch higher than the previous study reported 0.68. These findings
showed the remarkable potential of computational pathology in the prediction of clinically relevant
protein levels, drug response, and clinical outcomes.

Visual inspection of histopathology slides via an optical microscope is
the routine medical examination for the clinical diagnosis of tumors.
Digital pathology makes use of automated microscopy or optical
magnification systems to scan and digitize traditional glass pathology
slides. Computer algorithms are then employed to perform high-
precisionmulti-field seamless stitching and processing of the images to
produce whole-slide images (WSIs). In recent years, computational

pathology has advanced rapidly to facilitate the automatic diagnosis of
tumors. The current approach to automatic tumor diagnosis employs
machine learning techniques to address the challenge of accurately
identifying cancerous cells1–4. This approach typically involves three
stages: identifying regions of interest (ROI), extracting pertinent fea-
tures, and training a diagnostic model. While the accuracy of the
computational methods may not be as reliable as that of experienced
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pathologists, they effectively reduce the workload of these medical
professionals.

Deep learning has made significant strides in many fields and has also
spurred advances in computational pathology. Such methods have
demonstrated impressive progress in a variety of challenging clinical
tasks5–8. For tumor diagnosis and semantic segmentation, Liu et al.9 pro-
posedMSMV-PFENet to classify breast cancer histology images. Elmannai
et al.10 combined two deep convolutional neural networks (DCNNs) to
classify breast cancer as normal, benign, in situ carcinoma, and invasive
carcinoma. Wang et al.11 developed an enhanced histology-based digital-
staining algorithm based on mask-RCNN that can perform nuclear seg-
mentation and cell classification on lung adenocarcinoma images. This
algorithm can also be applied to head and neck cancer, breast cancer, and
lung squamous cell cancer. Greenwald et al.12 developed TissueNet to seg-
ment cells and identify the boundaries of individual cells in whole-slide
images. Eklund et al.13 created an integratedmodel based on InceptionV3 to
assist pathologists in finding, identifying, and grading prostate tumors.
Wang et al.14 introduced a novel deep-learning model to improve breast
cancer histological grading. Additionally, several studies have presented
computational pathologymethods for inferring genetic alterations and gene
expression profiles. For example, Kather and colleagues15 introduced a deep
learning approach for analyzing genetic alterations across various types of
cancer. They successfully predicted the presence of CDC27 mutations in
colorectal cancer using pathological images. Wang et al.16 proposed an
approach called expression-morphology (EMO) to predict mRNA
expression in17,695genes fromwhole-slide images andvalidated the spatial
variability of intratumor expression through spatial transcriptomics pro-
filing. Several recent studieshavedemonstrated thepotential of usingweakly
supervised algorithms in computational pathology. For instance, our team
has developed Histcode17, which integrated contrastive learning-based
pretraining and weakly supervised learning to predict differential gene
expression of cancer driver genes. Mahmood et al.18 developed the CLAM
model, which used an attentionmechanism for the subtype classification of
renal cell carcinoma and non-small cell lung cancer. Schmauch et al.19

developed a model called HE2RNA to predict RNA-seq from pathological
images and identified tumors with microsatellite instability in clinical
diagnoses. Shamai et al.20 built a convolutional neural network (CNN)-
based model to predict PD-L1 expression fromH&E images. Eliceiri et al.21

developed the DS-MIL algorithm to classify WSIs as tumor or normal.
Mahmood et al.22 developed SISH, an interpretable search pipeline that
achieves high speed in searching histology images after training with only
slide-level labels.

In recent times, the field of proteomics has demonstrated exceptional
promise in the realm of precision medicine and achieved significant
advances in the treatment of various forms of cancer23–25. For example,Gao26

utilized proteomics to identify two prognostic biomarkers, PYCR2 and
ADH1A, for hepatocellular carcinoma. The reverse-phase protein array
(RPPA)27, a high-throughput and highly sensitive protein microarray that
employs antibodies to detect and quantify proteins and their modifications
in biological samples, has shown tremendous potential in the discovery of
cancer biomarkers, analysis of functional phenotypes, and elucidation of
drug mechanisms. It has been assumed that protein profile changes in
tumor cells cause functional changes, which can influence tumor cell
morphology. So, routinehistopathology tissue slides,which are ubiquitously
available, can reflect such morphological changes, thereby the clinically
relevant proteins could be inferred directly from digitized whole-slide
images.

In this paper, we introduced a weakly supervised contrastive learning
method to establish the quantitative associations between clinically relevant
proteins and histopathological features in breast cancer. Specifically, whole-
slide images were split into tiles and thenMoCo v2 was employed to extract
features at the tile-level. Attentive pooling was used to aggregate tile-level
features to generate slide latent representations, which were then applied to
various downstream tasks, including tumor diagnosis, quantification of
protein levels, prognostic risk assessment, and prediction of response to the

drug trastuzumab. Our extensive experiments showed that the proposed
methodachieved state-of-the-art performance in tumordiagnosis tasks, and
achieved high performance in quantifying the protein levels of tumor bio-
markers. To show the model interpretability, we spatially visualized the
WSIs colored by attention scores of tiles and found that the regions with
high scores are highly consistent with the tumor and necrotic regions
annotated by an experienced pathologist. Moreover, spatial transcriptomic
data further verified that the heatmaps generated by attention scores agree
greatly with the spatial expression map of tumor biomarker genes. Our
method achieved a 0.79 AUC value in predicting the response of breast
cancer patients to thedrug trastuzumab.Thesefindings showedourmethod
could effectively elucidate and quantify genotype–phenotype links in breast
cancer.

Results
Multi-instance learning accurately identified tumor slides
We first tested ourmethod for tumor diagnostic tasks on the TCGA-BRCA
cohort. The pathology images (n = 1978, see the section “Methods”) of
breast cancerwere randomly split into training, validation, and independent
test sets by 60%, 20%, and20%. It isworthnoting thatweusedonly the slide-
level labels to fine-tune the pre-trained model. Our method achieved 0.995
accuracy and 0.996 AUC values. As shown in Fig. 1a, b, we presented the
ROC curve and confusion matrix on the independent test set. This showed
that themulti-instance learningmodel can accurately discriminate whether
WSI contains tumor cells or not. During the fine-tuned stage for tumor
diagnosis, the tile-level embeddings were aggregated to build slide repre-
sentation (computational histopathological features). As the network was
trained to classify tumor and normal tissues, the computational histo-
pathological features showed two clusters corresponding to each tissue class
by PCA dimension reduction (Fig. 1c).

To verify the robustness of ourmodel, we evaluated the performance of
an external validation cohort obtained from theCPTAC-BRCAproject.The
cohort comprised 642 Whole Slide Images (WSIs) from 134 breast cancer
patients.We trained ourmodel for the tumor diagnosis task on the TCGA-
BRCA cohort and then ran predictions on the CPTAC-BRCA cohort. Our
model achieved an accuracy of 97.04% on such a cross-cohort validation
experiment.

The slide-level classification of tumor/normal labels was made based
on the attentive pooling of tile-level features, thereby the derived attention
scores are highly indicative of the localization of tumor regions. To validate
the spatial localization of tumor area by our model, we scaled the learned
tile-level attention scores to generate heatmaps by spatial deconvolution of
tiles to the original slide. For objective evaluation, an experienced pathol-
ogist was asked to annotate the tumor regions of interest (ROIs), and we
visually checked whether the high-scored area was coincident with the
annotated regions. As shown in Fig. 1d, the attention heatmaps showed
remarkable agreement between the pathologist-annotated ROIs and our
computational predictionsof tumor regions.Visual inspectionof tileswould
reflectmorehuman-readable pathological features. So,we showeda few tiles
with high or low attention scores, which are verified by the pathologist that
the low-scored tiles are mostly normal tissue, while high-scored tiles are
tumor tissue.

Effectively predicting protein levels of tumor biomarkers
The protein expression profiles of clinically relevant biomarkers produced
by reverse-phase protein arrays (RPPAs) allow us to test whether the his-
topathological feature is predictive of protein levels of tumor biomarkers. As
these proteins are enriched indiagnostic biomarkers and therapeutic targets,
the establishment of the quantitative associations between computational
pathology and clinically relevant proteins would greatly facilitate clinically
translational applications. On the TCGA-BRCA cohort, the protein
expression profile contains 223 biomarker proteins of 860 breast cancer
patients. We transferred the computational pathological features obtained
by contrastive learning to quantitatively predict the levels of biomarker
proteins.
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We need to make it clear that we used multi-task learning to simul-
taneously predict the expression level of 223 biomarker proteins. This is
quite different from prior methods that trained a predictive model per gene
or genetic mutant15,16,28. For the evaluation of this regression task, we used
the Pearson correlation coefficient (r) between the RPPA-measured values
and predicted values as the evaluation metric. Similar to previous studies19,
we considered a prediction to be significantly different from the random
baseline value if the p-value associated with its coefficient was below 0.05,
after applying Benjamini–Hochberg (BH) correction to account for
multiple-hypothesis testing. On the TCGA-BRCA cohort, almost all pro-
teins yield significant prediction results. As shown in Fig. 2a, b, 220 out of
223 proteins (99%) were predicted with a statistically significant correlation
under BH correction. The average correlation coefficient reached 0.292, of
which 164 proteins obtained a correlation coefficient >0.2 and 16 proteins
>0.5. We have also tried to validate the model generalizability on protein
level prediction but failed to find any other cohort withmatchedRPPA data
and pathology images. As a result, we evaluated our model on the TCGA-
BRCA cohort by 5-fold cross-validation. The results showed that ourmodel
achieved consistent performance across each fold (see Supplementary Fig.
1), which we believe provides evidence of our model’s robust
generalizability.

Among the tumor biomarkers, we paid close attention to the proteins
that are clinically relevant to breast cancer, such as estrogen receptor (ER),
progesterone receptor (PR), and HER2. Expectedly, our model showed
strong predictive power on these biomarkers, as shown in Fig. 2(d). For the
estrogen receptor ER-α, positive in 70% of breast cancer and a key bio-
marker for breast cancer diagnosis29, our method got r = 0.632 correlation
coefficient. Progesterone receptor (r = 0.439) is induced by ER-α and plays
an important role in regulating ER-α protein, thereby it functions as an

important biomarker for breast cancer treatment and prognosis30. Highly
expressed PR in luminal A type breast cancer indicates a good prognosis31.
HER2 (r = 0.402) overexpression is present in 20–30% of breast cancer and
is associated with higher malignancy32. The tumor suppressor factor TP53
(r = 0.432) hasmutated in 80% of triple-negative breast cancers33. Caveolin-
1 (r = 0.568) high expression is a biomarker of more malignant tumors and
poor prognosis34. PD-L1 (r = 0.354) is an immune-related biomarker
expressed on the surface of several cell types. Its high expression means
potential response to immunotherapy, specifically PD-1/PD-L1 immune
checkpoint inhibitors35. E-cadherin (r = 0.541) and N-cadherin (r = 0.303)
are epithelial-mesenchymal transitions (EMT)-related biomarkers that
confer higher invasion, metastasis, and drug resistance36. Moreover, we
chose one-third of well-predicted proteins (n = 75) to run functional
enrichment analysis, and the result was shown in Fig. 2c, from which we
found that the well-predicted proteins are enriched in the oncogenic, drug-
resistance, and tumor-driven signaling pathways.

Self-supervised contrastive learning significantly improved
predictive performance
To verify that the pre-trained encoder by contrastive learning extracted
histologic features generalized to various downstream tasks, we compared
two popular contrastive learning models (SimCLR and MoCo v2) to the
baseline ResNet50 network. The ResNet50 was trained on ImageNet and
transferred to the prediction task of protein levels. The contrastive learning
used the ResNet50 as a backbone network. When the contrastive learning-
based pretraining finished, the ResNet50 encoder was frozen in the transfer
learning for the protein levels prediction task. For a comprehensive com-
parison, we also considered fine-tuning the pre-trained ResNet50 encoder
by appending a fully connected layer to predict the protein levels. As shown

Fig. 1 | Performance evaluation on tumor diagnostic task and spatial deconvo-
lution of tumor regions based on computational pathological feature. a, b The
confusion matrix and ROC curve for tumor diagnosis task on the test set of TCGA-
BRCA cohort. c Visualization of learned slide-level feature by PCA dimension
reduction. d Comparison between the heatmap generated by tile-level attention
scores and the tumor area annotated by a pathologist. The heatmap (upper left) is

generated by the spatial deconvolution of the tiles to the original slide (lower left),
coloring each tile according to its attention score. The area circled by the green line is
the tumor necrosis region depicted by an experienced pathologist (lower left). The
right part shows a few representative tiles with the highest and lowest attention
scores.

https://doi.org/10.1038/s41523-024-00620-y Article

npj Breast Cancer |           (2024) 10:18 3



in Fig. 3a, all the models pretrained by contrastive learning outperformed
the baseline ResNet50 model. Also, we found that fine-tuned models
achieved better predictive power than their respective frozen ones. The
experimental result demonstrated that contrastive learning effectively cap-
tures expressive and informative features that can be transferred to improve
the performance of downstream tasks.

We were also interested in the effect of different resolutions of the
scanned pathology images on the predictive performance. We have tested
the ×40, ×20, ×10, and ×5magnification, and the experimental results show
that higher magnification achieved better performance in the prediction of
protein levels. Figure 3b shows the boxplots of correlation coefficients at
different resolutions, the ×40, ×20, ×10, and ×5 magnification yield 0.292,
0.259, 0.246, and 0.209, respectively. For intuitive proof, we visually checked

a few exemplar tiles from different resolution slides, as shown in Fig. 3c–f,
and found that higher resolution slides convey more detailed information
about the morphological structure and histopathological feature. We
speculated that highermagnification enables themodel to better capture the
molecular phenotypic feature of pathological tissues.

Prognosticscoresbasedoncomputationalpathological features
effectively stratify patients
After aggregation of tile-level features by attentive pooling strategy, we
obtained the latent representation of a whole slide image. Following the
feature aggregation, we further tested whether the computational patholo-
gical feature is indicative of the prognosis of breast cancer patients. For this
purpose, a Cox proportional hazards regression model was developed to

Fig. 2 | Performance evaluation on the prediction
of protein levels of tumor biomarkers. a, b Showed
the histogram of the Pearson correlation coefficients
between predicted values and true values of 223
clinically relevant proteins, and the histogram of p-
values. c Showed the KEGG pathways the one-third
of well-predicted proteins enriched in (left), and the
boxplots of the Pearson coefficients of proteins
involved in each signal pathway (right). Boxplot box
edges and center line indicate quartiles (25th, 50th,
and 75th percentile) of Pearson correlation coeffi-
cients, the whiskers represent the range of the data.
d Scatter plots of the proteins closely associated with
targeted therapy and immunotherapy in breast
cancer.
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estimate the survival risk (see the section “Methods”). According to the
established prognostic risk score, the breast cancer patients (n = 836) of the
TCGA-BRCA cohort were stratified to the high-risk group and the low-risk
group, and the survival analysis curve was shown in Fig. 4a. The result
showed that the 5-year survival time of the high-risk groupwas significantly
lower than that of the low-risk group (HR = 3.63, p-value < 0.05), and the
concordance index (C-index) of the survival model was 0.64. Moreover, we
compared the histopathological difference between the high-risk and low-
risk pathology images.As shown inFig. 4b, it can be found that the high-risk
slide contains more tumor regions (high attention score regions in the

heatmap) and conveys more invasive histologic features, compared to the
low-risk slide. These results showed that ourmethodautomatically captured
histologic features that were indicative of patient prognosis, which was
different from other methods based on manually annotated ROIs. We
performed univariate Cox regression on the computational histopathology
feature and clinical variables, including tumor staging, molecular subtype,
gender, and age, and calculated their hazard ratios on prognosis. Figure 4c
demonstrated that the risk score of the pathological feature derived
by our model was significantly superior to the values of other clinical
variables.

Fig. 4 | Assessment of the established prognostic
risk model based on computational histopathol-
ogy feature. a Survival analysis for the stratified
breast cancer patients of TCGA-BRCA cohorts
using the risk scores based on computational
pathological features. b Shows two representative
pathology images with high-risk score and low-risk
score and their corresponding attention heatmaps,
as well as some exemplar tiles. c The forest plots of
univariate Cox regression based on the computa-
tional histopathology feature and clinical variables
on the TCGA-BRCA cohort. The forest plot showed
the hazard ratios and confidence intervals of each
factor, including the prognostic score, age, gender,
TCGA subtypes, immune subtypes, and clinical
stages.

Fig. 3 | Performance comparison among different
contrastive learning methods and multiple image
magnification. a Boxplots of the Pearson correla-
tion coefficients between the real and predicted
protein levels using the tile features extracted by
ResNet50, SimCLR, MoCo v2, as well as their fine-
tuned versions, respectively. b Boxplots of the
Pearson correlation coefficients were acquired using
the tiles at magnification of ×5, ×10, ×20, and ×40.
Boxplot box edges and center line indicate quartiles
(25th, 50th, and 75th percentile) of Pearson corre-
lation coefficients, the whiskers represent the range
of the data, with outliers (defined as values beyond
1.5 times the interquartile range) plotted as a black
rhombus. c–f Show some representative tiles at
magnification of ×5, ×10, ×20, ×40.
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Computational pathology predicted trastuzumab treatment
response
We went further to explore the capacity of computational pathology in
predicting the drug response of breast cancer. The Yale trastuzumab
response cohort37 allows us to run this exploratory experiment. This cohort
included the patients with a pre-treatment breast core biopsy with HER2
positive invasive breast carcinoma who then received neoadjuvant targeted
therapy with trastuzumab ± pertuzumab prior to definitive surgery. A case
was designated as responder if the pathological examination of surgical
resection specimens did not report residual invasive, lympho-vascular
invasion or metastatic carcinoma, and otherwise non-responders. After
removal of theH&E imageswithout enoughdetectable foreground tissue by
redefined area threshold, we obtained 75 cases (34 responders and 41 non-
responders) from the Yale trastuzumab response cohort.

As the HER2 status is used as the clinical biomarker for trastuzumab
response to breast cancer, we used only the RPPA-level of HER2, rather than
the clinical treatment outcomes, to fine-tune the model pretrained by con-
trastive learning.Thereafter, thefine-tunedmodelwasdirectly used topredict
the trastuzumab treatment response. This would empower our method to
approachclinicalpractice andoutput actionable suggestions.As showninFig.
5a–c, ourmethod achieved a 0.79AUCvalue for the prediction of responders
and non-responders, which is much better than the 0.68 obtained by the
previous study37. Of note, our model was trained by unannotated slides but
achieved comparable performance to the previous model trained using
pathologist-annotated slides with invasive tumor cells area. Again, we
visualized aheatmapgenerated by the learned attention scores and compared

the highly scored regions to the tumor regions annotated by the pathologists
of Yale University. Figure 5d demonstrated high consistency between them,
and the tiles randomly picked out from high- and low-scored regions agree
remarkably with the regions marked as normal and tumor. These results
supported the feasibility of image-based biomarkers to predict trastuzumab
treatment and the ability of the deep learning model to recognize morpho-
logical changes related to treatment results.

Spatial transcriptomics validated spatial localization of tumor
biomarkers
Spatial transcriptomics measures the RNA abundance at a high spatial
resolution enable us to evaluate ourmodel capacity in the spatial localization
of tumor biomarkers. For this purpose, we used the RPPA-measured pro-
tein levels of two typical biomarkers, HER2 and TP53, to fine-tune our
model. Next, we generated the heatmaps using the learned tile-level atten-
tion scores. Correspondingly, we visualized the spatial expression of HER2
andTP53genes. As shown in Fig. 6, these heatmaps showed that the highly-
scored regions were notably consistent with the high expression region of
the spatial transcription for bothHER2 andTP53. This finding showed that
our method effectively performed spatial deconvolution of tumor bio-
markers based on conventional H&E staining sections.

Discussion
Proteomics plays a crucial role in cancer research and translationalmedicine
by identifying key biomarkers for treatment and prognosis. Variations in
protein expression levels are indicative of alterations in gene expression,

Fig. 5 | Prediction performance of drug response
on Yale trastuzumab response cohort. a and
b showed the confusion matrix and ROC curve of
the predicted drug response on theYale trastuzumab
response cohort. c Shows the AUC values achieved
by our method and Farahmand et al.37 (d) showed
two pathology images with labeled tumor regions by
a Yale pathologist and the heatmaps generated by
our model (left), as well as some tiles randomly
selected from the manually annotated regions
(right). The tiles with black and red borders repre-
sent the tumor area, blue represents the normal area,
and green represents the junction area.

Fig. 6 | Spatial visualization of spatial tran-
scriptomics and attention score-derived heatmaps
of two biomarker genes. a Original pathological
section used for spatial transcriptome sequencing.
bHeatmaps showing the ERBB2 and TP53 spatially
expressed landscapes generated by our model and
spatial transcriptomic data.
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which correspond to changes in cell and tissue phenotypes. By examining
these variations, researchers can gain insights into the underlyingmolecular
mechanisms of cancer and develop more effective diagnostic and treatment
strategies. Proteomics also has the potential to improve the accuracy of
personalized medicine by providing more comprehensive information
about an individual unique molecular profile. With the rapid advancement
of computationalpathology, it hasbeen found thathistopathological features
are predictive of genemutations andmicrosatellite instability. However, few
studies have focused on inferring protein levels from pathology images.

While comprehensivemolecular tests, such as immunohistochemistry,
are difficult to scale to hundreds of biomarkers, tissue sections stained with
hematoxylin and eosin are ubiquitously available. Therefore, we set about to
predict the protein levels of tumor biomarkers via computational pathology.
We hypothesized that these routine tissue sections contain information
about established and candidate biomarkers so that molecular biomarkers
could be inferred directly from digitized whole-slide images (WSIs). The
rationale for this hypothesis is that protein level changes in cells cause
changes in cellular function, which influence cell morphology. The under-
lyingmolecular profiles eventually dominate the histological characteristics,
resulting in higher-order genotype-phenotype correlations. In fact, our
experiments have demonstrated that pathological features faithfully
reflected the protein levels in the specimen. In our practice, we collaborated
with two pathologists in an attempt to discover visual morphological fea-
tures related to specific protein expression, such as HER2 protein (see
Supplementary Fig. 2 for representative tiles). Although our analysis has not
yielded significant results supporting the correlation between the mor-
phological features and protein expression levels, we believe that deep
learning can extract features, which are higher-order and beyond human
visual capabilities, closely related to specific protein expression levels.

There is increasing evidence that solid tumors exhibit significant tumor
heterogeneity, namely, each tumor cell has distinct molecular genetic and
phenotypic characteristics. This heterogeneity results in differences in
growth rate, invasiveness, and drug sensitivity among tumor cells. Targeted
drugs can only kill cells expressing specific target proteins, while a small
number of drug-resistant tumor cells survive and proliferate, leading to
tumor recurrence and progression. Although single-cell sequencing pro-
vides high-resolution data to reveal tumor heterogeneity, its high cost and
long turnaround time hinder its widespread adoption in routine clinical
examinations. In this work, whole slide images were divided into a large
number of small tiles, each assigned a weight reflecting the importance of
molecular expression levels within different regions of the tumor. This
actually provides a fast and inexpensive alternative method for exploring
tumor heterogeneity and drug response. Our method demonstrated the
potential in predicting the response of breast cancer patients to specific
targeted drugs. In predicting the drug response on the Yale trastuzumab
response cohort, our image encoder tuned by protein levels data promoted
the performance by 11% compared to the original study. Although the
current method based on pathological images has not reached clinically
applicable standards, we believe that with the accumulation of data, espe-
cially the development of spatial transcriptomics, the new computational
pathology-based methodology will emerge to provide new insights into
tumor heterogeneity from a spatial perspective.

Notwithstanding, our study is not without its shortcomings. First, the
quality of our work was impeded by missing data and other related issues.
The retrospective cohort we used was plagued with specific information
biases and data omissions. For instance, some cases in the TCGA-BRCA
cohort lacked clinical data, necessitating the imputation of missing values,
which may introduce noise information. Also, due to the paucity of large-
scale RPPAdata in the external validation cohort, we are unable to ascertain
the generalizability of our method in predicting protein levels on external
independent datasets. Second, there existed a significant discrepancy
between different H&E staining and digitization systems. We conducted
color normalization during image preprocessing, but thismay have resulted
in the loss of information. Third, when establishing the prognostic model
and predicting drug response, we did not take into account clinical variables

such as clinical staging, which reflects the degree of tumor invasion and
metastasis. We believe the inclusion of clinical variables would effectively
improve the accuracy of our predictions. Fourth, we did not establish the
correlation between protein expression levels measured by fluorescence in
situ hybridization or immunohistochemistry (IHC) and those assayed by
RPPA. This imposed limitations on the interpretability and clinical trans-
lational application of ourmethod. Finally, the number of samples included
in our study was relatively small. To enhance the robustness of our model,
we need larger and more diverse samples with matched pathology images,
protein expression levels, and other clinical variables that are currently
unavailable. Despite these limitations, our method still demonstrated the
potential in the quantitative estimation of protein expression levels of tumor
biomarkers and their clinical applications.

In summary, we proposed a weakly supervised contrastive learning
framework to infer protein levels of tumor biomarkers from breast cancer
whole-slide images (WSIs). By pre-training the model on large-scale unla-
beled breast cancer WSIs, the computational pathological features showed
remarkable performance in various downstream tasks. The method per-
formed well in tumor diagnosis and achieved high performance in pre-
dicting clinically relevant protein levels. The model interpretability is
demonstrated through spatial visualization of WSIs colored by attention
scores. Especially, our method also achieved notable accuracy in predicting
the response of breast cancer patients to the drug trastuzumab.

Methods
Whole slide images
All digital slides of fresh frozen tissue stained with hematoxylin and eosin
(H&E) were obtained from TCGA via the Genomic Data Commons Data
Portal. From the TCGA-BRCA cohort, we collected 1978 WSIs of 1093
breast cancer patients, comprising 1579 tumor slides and 399 normal slides.
The pathology diagnoses provided by the TCGA database were used as
ground truth labels for classification tasks. In our practice, we have also
experimentedwith using Formalin-Fixed Paraffin-Embedded (FFPE) slides
of the TCGA-BRCA cohort for protein level prediction.However, we found
that the performance using FFPE slides was inferior to fresh frozen slides,
and thus chose to use fresh frozen slides in our study.

The CPTAC-BRCA cohort, comprising 642 fresh frozen WSIs from
134 breast cancer patients, was used as an external validation cohort.

Another independent cohort came from the Yale trastuzumab
response cohort and was used to evaluate the model’s ability in pre-
dicting drug response. The Yale cohort contained 75 FFPEWSIs of 75
cases of breast cancer (34 responders and 41 non-responders). A case
was designated as responder if the pathological examination of sur-
gical resection specimens did not report residual invasive, lympho-
vascular invasion or metastatic carcinoma, and otherwise non-
responders. Note that only the slides with a magnification greater
than 20* were included in this study. Supplementary Fig. 3 outlined
the process of filtering the data in our study. The study was performed
in accordance with the ethics standards of the participating institu-
tions and the tenets of the Declaration of Helsinki.

RPPA dataset
All RPPA data were downloaded from The Cancer Proteome Atlas
(TCPA)38. The database collects the RPPA-assayed protein levels of samples
that mainly came from TCGA (The Cancer Genome Atlas) tumor tissue
sample sets. TheRPPAdata containsmore than 200proteins coveringmost
cancer signaling pathways such as PI3K,MAPK,mTOR, TGF-b, andWNT
pathways. In total, there are 893 RPPA samples came from the TCGA-
BRCA cohort. After the removal of the sample without matched WSIs, we
obtained 860 matched samples that are used to train the protein level
prediction model.

Spatial transcriptomic data
Weacquired the spatial transcriptomicdataof abreast cancer specimenusing
theVisiumSpatialGeneExpressionprotocol fromthewebsite.Toexplore the

https://doi.org/10.1038/s41523-024-00620-y Article

npj Breast Cancer |           (2024) 10:18 7



spatialmap of gene expression, we utilized the 10x Loupe Browser, a desktop
application that offers interactive visualization capabilities for various 10x
Genomics solutions. This enabled us to visualize the spatial landscape of
specific biomarker gene expression upon the pathology image.

Weakly-supervised contrastive learning framework
Our learning framework consisted of four steps, as illustrated in Fig. 7. The
first step is the preprocessing of whole slide images (WSIs). We eliminated
the regions without sufficient pathological tissue and background, and then
split each slide into 256*256 px tiles, yielding a total of 17,020,990 tiles with
an average of 8706 tiles per slide.

The second stage is the contrastive learning-based feature extraction
for unlabeled tiles. Contrastive learning employs self-supervised pretext
tasks to learn image embedding and has demonstrated exceptional per-
formance onquite a few tasks.We evaluated two typical contrastive learning
algorithms, MoCo v2 and SimCLR, and found that they learned more
informative features in comparison to the ResNet50 baseline.

In the third stage, we utilized protein expression levels measured by
Reverse Phase Protein Array (RPPA) assays to fine-tune the pre-trained
encoder via weakly supervisory signals. Due to the too large number of tiles,
we sampled 20% tiles (m = 398,426) from 200 randomly selected slides to
run thefine-tuning task. Finally, we employed attentive pooling to aggregate
tile-level features into slide features ready for downstream tasks, including
tumor diagnosis, prediction of biomarker gene expression levels and drug
treatment outcome, and establishment of prognostic score. Supplementary
Fig. 3 shows the consort diagramdescribing the detailed number of samples
of each cohort, and Supplementary Fig. 4 illustrates the cohorts and features
used in downstream tasks.

Preprocessing of whole slide images
Due to the ultra-high resolution of pathological images, which can reach up
to gigapixels, they are not immediately suitable for input into a deep-
learning model. As a result, we divided each whole slide image into small

squares known as tiles or patches. The Python package OpenSlide was
utilized to read a slide into memory, and the Otsu algorithm was then
employed todifferentiate between tissue andbackground regions. Following
segmentation, the tissue area was divided into 256*256 px tiles.

Contrastive learning for feature extraction
Given a large scale of unlabeled tiles, we leveraged the contrastive learning-
based pretraining to learn an encoder to produce latent representations for
the tiles. In this study, we usedMoCo v2 for the pretraining.We also tested
another contrastive learning method, SimCLR, and found that MoCo v2
achieved better performance in downstream tasks.

Formally, contrastive learning learns to extract features by minimizing
the distance between the representations of positive pairs (e.g. image and its
augmentation) and maximizing the distance between representations of
negative pairs (e.g. different images). Suppose a tile x has its augmentation x0.
We use aCNNnetwork as the backbone encoder f to obtain their embedding
h and h0, where h = f(x). Subsequently, h goes through a projection head g
composed of two fully connected layers to produce vector z and z0, where
z = g(h). The contrastive loss in a minibatch was defined as follows:

L ¼ �log
expðsimðzi; z0iÞÞPK

k¼1 expðsim zi; zk
� �Þ ð1Þ

in which sim() is the similarity function, and K is the number of negative
samples cached inmemory bank.We adopted a simple similarity defined as
below:

sim zi; zj
� �

¼ zTi zj
τjzijjzjj

ð2Þ

where τ is an adjustable temperature parameter. Once the pretraining was
finished, we discarded the projection head and used the trained encoder to
obtain the feature of tiles.

Fig. 7 | Illustrative flowchart of the proposed wsi2rppa pipeline. The first step
preprocessed the WSIs by eliminating regions without sufficient tissue and splitting
the slide into tiles. The second step leveragedMoCo v2 contrastive learning to extract

tile-level features. The third step tuned the pre-trained encoder using protein levels
measured by RPPA assays. Finally, the tile-level features were aggregated using
attentive pooling to obtain slide-level features for downstream tasks.
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We used ResNet5039 as the backbone network and loaded the pre-
trained weights on ImageNet. The SGD optimizer was used, the learning
rate of the backbone network was set to 0.03, the weight decay rate was
0.0001, and the momentum was 0.9.

Feature aggregation
For downstream tasks, we need to aggregate individual tile-level features
into slide-level features. We employ gated-attention pooling40. Suppose a
slide has N tiles S={p1, p2, . . . pN}, we got the feature hi using the pretrained
encoder for tile pi, the gated-attention pooling is essentially the instance-
level weighted average pooling:

S ¼
XN
i¼1

aihi ð3Þ

and

ai ¼
expðwTðtanhðVhiÞ � sigmðUhiÞÞÞPN
j¼1 expðwTðtanhðVhjÞ � sigmðUhjÞÞÞ

ð4Þ

where U and V are trainable parameter matrices, ⋅ denotes element-wise
multiplication. The introduction of learnable parameters that are updated
iteratively during the training process makes the model highly flexible and
adaptable to various downstream tasks. Furthermore, after training, the
attention weights reflect the significance of tile-level features for the
downstream task, rendering the model interpretable.

Tumor diagnosis
We formulated the tumor diagnosis as the binary classification task. The
ground truth labels (tumor or normal) came from theTCGA-BRCAcohort.
We employed a fully connected layer plus a softmax layer as the prediction
model that took the slide feature as input. The cross-entropywas used as the
loss function for the classification task.

Protein level prediction
The protein level estimation for 223 tumor biomarkers was formulated as a
multi-task regression task. Taking as input the slide features, we adopted a
multi-task learning model with a fully connected layer and an output layer.
Theoutput layerhad223nodesandeachof themcorrespond to the level of a
protein. In our practice, we have also tested multiple hidden layers archi-
tecture and found that a single hidden layer could achieve superior per-
formance in the regression task. Themean squared error (MSE)was used as
a loss function:

L ¼ 1
N

XN
i¼1

ðyi � y0iÞ2 ð5Þ

where yi is themeasured level of protein i byRPPAassays, y0i is the predicted
level, and N is the total number of proteins.

Drug response prediction
The Yale trastuzumab response cohort was used to evaluate the model’s
capacity to predict drug response. As a case was designated as responder or
non-responder, we formulated the prediction of drug response from
pathological features as binary classificationproblemsand the cross-entropy
loss function was used.

Prognosis model
Weused slide-level features to predict prognostic risk for each breast cancer
patient. Given the slide feature x, time period T, and event indicator E, we
used a Cox proportional hazard regressionmodel based on deep learning to

estimate prognostic risk. The hazard function is defined as:

hðtjxÞ ¼ lim
4t!0

Prðt ≤O≤ t þ4tjO≥ t; xÞ
4t

ð6Þ

s It estimates the instantaneous death rate of individual x at time t. The Cox
proportional hazard regression models it as

hðtjxÞ ¼ h0 tð Þ expðθTxÞ ð7Þ

whereh0 represents the baseline risk functionat time t, which is estimatedby
the Breslow estimationmethod.Our prognosticmodel was constructed and
trained using the Pycox Python package. During training, the follow-up
status and survival time are used to compute censored data and risk sets. To
estimate the parameters θ, weminimized the negative log partial likelihood:

LðθÞ ¼ �
X
i:Ei¼1

θTxi � log
X
j2RðtiÞ

expðθTxjÞ
0
@

1
A ð8Þ

R(ti) is the risk set of time ti, which represents the set of patients whomay be
at risk at time t, and Ei = 1 indicates the death event.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The whole slide images and corresponding labels of the TCGA-BRCA
cohort from the TCGA database are available at https://portal.gdc.cancer.
gov/. The CPTAC-BRCA whole-slide with corresponding labels and the
matched RNA-seq data are available from the NIH cancer imaging archive
(https://cancerimagingarchive.net/datascope/cptac). All RPPA data from
The Cancer Proteome Atlas (TCPA) database is available at https://www.
tcpaportal.org/tcpa/. The whole slide images and drug response data from
the Yale trastuzumab response cohort are available at the TCIA database
https://wiki.cancerimagingarchive.net/. The spatial transcriptomic data of a
breast cancer specimen from 10x genomics are available at https://www.
10xgenomics.com/. All other data supporting the findings of this study are
available from the corresponding author upon reasonable request. Source
data are provided in this paper.

Code availability
All code was implemented using PyTorch as the primary deep-learning
library. The complete pipeline for processing WSIs as well as training and
evaluating our model are available at https://github.com/hliulab/wsi2rppa.
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