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Predicting response to neoadjuvant chemotherapy with liquid
biopsies and multiparametric MRI in patients with
breast cancer
L. M. Janssen1, M. H. A. Janse 1, B. B. L. Penning de Vries2, B. H. M. van der Velden1, E. J. M. Wolters-van der Ben3, S. M. van den Bosch4,
A. Sartori5, C. Jovelet6, M. J. Agterof7, D. Ten Bokkel Huinink8, E. W. Bouman-Wammes9, P. J. van Diest10, E. van der Wall11, S. G. Elias2 and
K. G. A. Gilhuijs 1✉

Accurate prediction of response to neoadjuvant chemotherapy (NAC) can help tailor treatment to individual patients’ needs. Little is
known about the combination of liquid biopsies and computer extracted features from multiparametric magnetic resonance
imaging (MRI) for the prediction of NAC response in breast cancer. Here, we report on a prospective study with the aim to explore
the predictive potential of this combination in adjunct to standard clinical and pathological information before, during and after
NAC. The study was performed in four Dutch hospitals. Patients without metastases treated with NAC underwent 3 T
multiparametric MRI scans before, during and after NAC. Liquid biopsies were obtained before every chemotherapy cycle and
before surgery. Prediction models were developed using penalized linear regression to forecast residual cancer burden after NAC
and evaluated for pathologic complete response (pCR) using leave-one-out-cross-validation (LOOCV). Sixty-one patients were
included. Twenty-three patients (38%) achieved pCR. Most prediction models yielded the highest estimated LOOCV area under the
curve (AUC) at the post-treatment timepoint. A clinical-only model including tumor grade, nodal status and receptor subtype
yielded an estimated LOOCV AUC for pCR of 0.76, which increased to 0.82 by incorporating post-treatment radiological MRI
assessment (i.e., the “clinical-radiological” model). The estimated LOOCV AUC was 0.84 after incorporation of computer-extracted
MRI features, and 0.85 when liquid biopsy information was added instead of the radiological MRI assessment. Adding liquid biopsy
information to the clinical-radiological resulted in an estimated LOOCV AUC of 0.86. In conclusion, inclusion of liquid biopsy-derived
markers in clinical-radiological prediction models may have potential to improve prediction of pCR after NAC in breast cancer.

npj Breast Cancer           (2024) 10:10 ; https://doi.org/10.1038/s41523-024-00611-z

INTRODUCTION
Neoadjuvant chemotherapy (NAC) is often used in the treatment
of patients with early-stage breast cancer. Benefits of the
neoadjuvant strategy include the possibility for more conservative
surgery of breast and axilla, while resulting in comparable rates of
distant recurrence and overall survival (OS) when compared to
adjuvant chemotherapy1–3. The neoadjuvant approach leaves the
tumor in situ, allowing assessing the effectiveness of treatment.
The degree of response to NAC is known to vary between the
different breast cancer subtypes and treatments, with rates of
pathologic complete response (pCR) ranging from 8% to 68%4–6.
Achieving pCR is related to better overall outcome (hazard ratio
for OS for pCR versus no pCR: 0.36 (95% confidence interval (CI)
0.31–0.42), as reported by ref. 4. However, the prognostic value of
pCR can vary depending on the definition of pCR and the tumor
subtype.
During NAC, the response of the tumor to treatment can be

assessed by imaging methods such as magnetic resonance
imaging (MRI). According to clinical guidelines, radiological
assessment of MRI by Response Evaluation Criteria in Solid
Tumors (RECIST)7 only leads to treatment changes if a clear

progression is visible8. Because residual disease cannot be reliably
ruled out by radiological assessment of MRI alone9, an unmet
clinical need exists for non-invasive methods to guide treatment
decisions. A promising approach for obtaining more information
from MRI is to use computer-extracted features to predict
treatment response in addition to traditional radiological
assessment10–13.
Another approach to assess response to NAC that is currently

the focus of intensive research is the use of liquid biopsies, in
which body fluids such as blood are analyzed for the presence of
cell-free DNA (cfDNA) that can be characterized as circulating
tumor DNA (ctDNA) using various methods. The detection of
ctDNA before, during and after NAC has previously been shown to
be useful in predicting and monitoring response to NAC14–16.
There has been little research on the combination of computer
extracted MRI features and liquid biopsies for predicting response
to NAC, especially in addition to traditional predictors of response,
such as tumor grade, nodal status, receptor subtype and
radiological response.
Chemotherapy can lead to serious adverse effects17,18. In the

treatment of early-stage breast cancer, physicians must, therefore,
find the balance between risks of overtreatment with its
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associated side effects and undertreatment with the potential for
inadequate disease control. Improving the ability to predict a
patients response to treatment is essential for tailoring the
treatment to the needs of each patient and de-escalate treatment
while maintaining oncological safety.
An opportunity that comes with neoadjuvant treatment is the

adaptation of treatment based on the observed response of the
tumor that remains in situ during therapy. This may involve switching
to another treatment when the tumor regresses insufficiently, de-
escalating or even discontinuing treatment when a complete
response occurs. Accurate, non-invasive methods for predicting
treatment response are essential in each of these scenarios.
The current explorative study aims to investigate the potential

of combining computer-extracted MRI features and liquid biopsies
derived before, during and after NAC with traditional markers for
response to NAC in a prospective multicenter clinical study.

RESULTS
Patient characteristics
The first patient was included on January 2nd, 2020, and the last
visit of the last patient was on May 16th, 2022. A total of 61
patients enrolled instead of the intended 100 patients, which was
due to the COVID-19 pandemic as well as the time constrains
pertaining to the funding conditions.
The characteristics of these patients and their tumors are

summarized in Table 1. Twenty-three of 61 (38%) patients
achieved pCR after completion of NAC.
A total of 493 blood samples were collected (Supplementary Fig.

1). Ten mutations and five HER2 amplifications were found in 286
samples evaluable for mutation analysis (Supplementary Table 1).

Prediction models based on clinical and clinical-radiological
features
Table 2 lists the performance of each model, expressed by the
area under the curve (AUC), including their 95% naïve CI,
calculated by L1-penalized maximum likelihood estimation
(LASSO) and Receiver Operator Characteristic (ROC) curve analysis
and internally validated by leave-one-out cross validation
(LOOCV). The mean squared error (MSE) can be found in
Supplementary Table 2, coefficients of each model in Supple-
mentary Table 3 and ROC curves and calibration plots in
Supplementary Figs. 2 and 3.
In the pre-treatment clinical-radiological model, the maximum

tumor diameter on MRI did not contribute enough and was
therefore removed from the optimal model. As a result, the pre-
treatment clinical and the clinical-radiological models were
identical, yielding an estimated LOOCV AUC of 0.76 (95% CI
0.62–0.88).
The estimated LOOCV AUC of the on-treatment clinical-

radiological model increased to an estimated LOOCV AUC of
0.83 (95% CI 0.71–0.93). The performance of the post-treatment
model did not increase further, the estimated LOOCV AUC
remaining at 0.82 (95% CI 0.71–0.92).

Prediction models based on computer extracted MRI features
In the optimal pre-treatment prediction model, based only on MRI
features, no variables were selected. In the on-treatment model,
only the ensemble of volume features remained in the model,
resulting in an estimated LOOCV AUC of 0.66 (95% CI 0.51–0.81).
The predictors contributing to the optimal post-treatment model
were ensembles of tumor volume features, T2 features and tumor
diameter features, yielding an estimated LOOCV AUC of 0.69 (95%
CI 0.53–0.81).

Prediction models based on liquid biopsies
No liquid biopsy predictors were informative enough to contribute
to a pre-treatment model. The on-treatment liquid biopsy model
included the ensemble of the total amount of cfDNA, resulting in
an estimated LOOCV AUC of 0.51 (95% CI 0.34–0.67). The post-
treatment model incorporated ensembles of both the total
amount of cfDNA and methylation, resulting in an estimated
LOOCV AUC of 0.76 (95% CI 0.63–0.88). Specifically, increases in
methylated AKR1B1, HIST1H3C and TM6SF1 during treatment were
found to be correlated with a higher Residual Cancer Burden (RCB)
(Supplementary Fig. 4).

Table 1. Characteristics of 61 included early-stage breast cancer
patients and their tumors, treated with NAC and surgery in 4 Dutch
hospitals.

Total (N= 61)

Age (years) Median (Min, Max) 50.0 (25, 72)

Histology Invasive carcinoma NST 53 (86.9%)

Ductolobular carcinoma 2 (3.3%)

Lobular carcinoma 5 (8.2%)

Mucinous carcinoma 1 (1.6%)

Grade 2 24 (39.3%)

3 37 (60.7%)

Receptor subtype ER−/HER2− 21 (34.4%)

ER+−/HER2+ 17 (27.9%)

ER+ /HER2− 23 (37.7%)

cT stage T1 11 (18.3%)

T2 37 (61.7%)

T3 12 (20.0%)

Missing 1

Nodal metastases Absent 23 (37.7%)

Present 38 (62.3%)

Neoadjuvant treatment Paclitaxel, trastuzumab,
carboplatin and
pertuzumab

16 (26.2%)

Doxorubicin and paclitaxel 26 (42.6)

Doxorubicin, paclitaxel and
carboplatin

18 (29.5%)

Paclitaxel and trastuzumab 1 (1.6%)

Radiologist conclusion
MRI on-treatment

Partial response 47 (77.0%)

Radiological complete
remission

9 (14.8%)

No response 4 (6.6%)

Missing 1 (1.6%)

Radiologist conclusion
MRI post-treatment NAC

Partial response 21 (34.4%)

Radiological complete
remission

36 (59.0%)

No response 2 (3.3%)

Missing 2 (3.3%)

Surgery type Mastectomy 36 (59.0%)

Lumpectomy 25 (41.0%)

Pathological complete
response

Yes
No

23 (38%)
38 (62%)

Residual Cancer Burden Median (Min, Max) 1.254 (0, 3.42)

ER estrogen receptor, HER2 Human epidermal growth factor receptor-2.
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Combined prediction models
Incorporating the post-treatment liquid biopsy model into the
post-treatment clinical-radiological model led to a higher esti-
mated LOOCV AUC compared to that from the post-treatment
clinical-radiological model alone (estimated LOOCV AUC 0.86 (95%
CI 0.76–0.94) vs. 0.82 (95% CI 0.71–0.92)).
The post-treatment only-clinical+ liquid biopsies model yielded

higher estimated LOOCV AUC compared to the post-treatment
clinical-radiological model. The on-treatment only clinical+MRI
features model also led to higher estimated LOOCV AUC than the
on-treatment and post-treatment clinical-only models. Addition-
ally, the on-treatment and post-treatment only clinical+MRI
features model showed comparable estimated LOOCV AUC as the
clinical-radiological models (Table 2).
The combination of pre-treatment and on-treatment clinical-

radiological models with liquid biopsies and computer extracted
MRI features did not indicate higher AUC’s compared to either
model alone. Adding MRI features to the post-treatment clinical-
radiological or liquid biopsy model did not lead to a higher
estimated LOOCV AUC. Furthermore, at none of the time points
did the combination of liquid biopsy and MRI features (without
clinical-radiological predictors) lead to a higher estimated LOOCV
AUC compared to either model alone.

DISCUSSION
Improving methods for the prediction of response to NAC is
essential for personalizing treatment of early breast cancer and
ultimately reducing unnecessary side-effects without negatively
affecting a patient’s outcome. The potential for an improved

prediction by combining liquid biopsies and computer extracted
features of multiparametric MRI with known clinical predictors had
not yet been established in the literature. Here, we aimed to
explore this combination in relation to response to NAC in breast
cancer in a prospective multicenter clinical study.
Our results suggest that incorporating liquid biopsies after NAC

into a clinical-radiological prediction model is informative of pCR
after NAC (estimated LOOCV AUC 0.86 (95% CI 0.76–0.94) with
liquid biopsies versus 0.82 (95%CI 0.71–0.92) without liquid
biopsies). Notably, post-treatment liquid biopsies alone were
found to have some association with pCR, but not pre-treatment
or on-treatment liquid biopsies.
The shape of the ROC curve of the post-treatment clinical-

radiological-liquid biopsy model (Fig. 1) suggests higher sensitivity
at high specificity levels compared to the clinical-radiological
model, although this should be interpreted cautiously given the
limited sample size. A high specificity (defined as the proportion of
patients with residual disease that is correctly classified as such)
and positive predictive value (the proportion of patients that the
model predicts will have pCR and who do indeed have pCR at
pathologic assessment) is essential for selecting patients for safe
de-escalation of (surgical) treatment in the future (i.e., a watch-
and-wait approach, sparing patients surgery-associated morbidity
or de-escalation of adjuvant systemic treatment). Nonetheless, if
the sensitivity of the model (defined as the proportion of patients
with pCR who are correctly classified as such) is very low, too few
patients can be selected, which will make the watch-and-wait
approach of limited value in clinical practice.
In our study, most predictive information from the liquid

biopsies seemed to come from the total amount of cfDNA and the
methylation markers, while mutation status of usual suspect
breast cancer genes and integrity of the cfDNA did not hold much
information. Specifically, in our study, an increase in methylation
of AKR1B1, HIST1H3C or TM6SF1 during treatment was found to be
correlated with a higher RCB (Supplementary Fig. 4). This finding
aligns with the findings of a previous study by Fackler et al. on

Table 2. Summary of model performance corrected for optimism by
LOOCV including naive confidence intervals.

Pre-treatment On-treatment Post-
treatment

AUC
(95% CI)

AUC
(95% CI)

AUC
(95% CI)

Clinical-radiological 0.76
(0.62–0.88)

0.83
(0.71–0.93)

0.82
(0.71–0.92)

Liquid biopsies NA 0.51
(0.34–0.67)

0.76
(0.63–0.88)

MRI features NA 0.66
(0.51–0.81)

0.69
(0.53–0.81)

Clinical-
radiological+ liquid
biopsies

0.77
(0.64–0.88)

0.82
(0.71–0.92)

0.86
(0.76–0.94)

Clinical-radiological+MRI
features

0.77
(0.64–0.88)

0.82
(0.70–0.92)

0.83
(0.70–0.93)

Liquid biopsies+MRI
features

NA 0.64
(0.47–0.78)

0.76
(0.64–0.88)

Clinical-
radiological+ liquid
biopsies+MRI features

0.76
(0.63–0.88)

0.81
(0.70–0.91)

0.86
(0.75–0.94)

Only clinical 0.76
(0.62–0.87)

0.76
(0.62–0.87)

0.76
(0.62–0.87)

Only clinical+ liquid
biopsies

0.76
(0.63–0.87)

0.78
(0.65–0.88)

0.85
(0.74–0.94)

Only clinical+MRI
features

0.76
(0.63–0.87)

0.82
(0.71–0.91)

0.84
(0.72–0.93)

Only clinical+MRI
features+ liquid biopsies

0.76
(0.63–0.87)

0.81
(0.70–0.91)

0.85
(0.74–0.93)

CI confidence interval, AUC area under the receiver operating characteristic
curve to discriminate between pCR (RCB 0) and non-pCR, NA not applicable
(no predictors remained in the model).
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Fig. 1 Receiver operating characteristic curves of combined
prediction models at time point 3. Red dashed curve represents
the clinical-radiological+ liquid biopsy model, resulting in an
estimated LOOCV AUC of 0.86. The blue dotted curve represents
the clinical-radiological model, corresponding to an estimated
LOOCV AUC of 0.82.
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metastatic breast cancer. In that study, the researchers found that
a decrease in these markers was observed in patients who
responded to treatment, but not in patients who did not
respond19. Studies in early breast cancer have also shown the
potential of other methylation markers in blood to predict the
response to NAC20–22. Our results add to the existing evidence
that methylation could be a promising biomarker to focus on in
future research for response monitoring of neoadjuvant treatment
using liquid biopsies.
Our results also show that the estimated discriminative ability of

the post-treatment clinical+ liquid biopsies model, as measured
by the LOOCV AUC, is slightly higher compared to the post-
treatment clinical-radiological model (Table 2). This suggests that
liquid biopsies may be a reasonable alternative for evaluating
response in patients who cannot undergo MRI due to contra-
indications such as presence of metallic implants.
On-treatment and post-treatment computer-extracted MRI

features were found to be associated with response. We also
estimated higher LOOCV AUC when these computer-extracted
MRI features were combined with clinical variables, compared to
the estimated LOOCV AUC of a clinical-only model. The combined
model had a similar estimated LOOCV AUC as the on-treatment
and post-treatment clinical-radiological model (Table 2). Adding
the computer-extracted features to the clinical-radiological model
did not lead to obvious improvement of performance. An evident
benefit of these features as an addition to, or replacement of,
traditional radiological assessment was thus not observed in our
study with a limited sample size.
The combination of liquid biopsy and computer extracted MRI

features without clinical-radiological predictors did not show a
higher estimated LOOCV AUC compared to either model alone at
any of the time points. This suggests no indication for
complementary value of these two technologies in our study.
The study by Magbanua et al. suggested that functional tumor
volume (FTV) on MRI and ctDNA are correlated measures of tumor
burden23. For the time points before, halfway and after NAC,
Magbanua et al. did not find any complementary value of ctDNA
in addition to FTV for the prediction of pCR either. They did find a
non-significant increase in AUC from 0.59 to 0.69 when adding
ctDNA after 3 weeks to FTV (including IHC subtype, but no other
clinical variables) for the prediction of pCR, whereas in this study
no prediction was made after 3 weeks16.
Our study is limited by its sample size, which was smaller than

expected due to enrollment issues, limiting the power. The sample
size enabled only observations of large effects, thus limiting the
detection of features with smaller effects which still can be
clinically relevant. In follow-up studies, a larger sample size would
be beneficial. We found very few mutations overall, which may be
due to the use of a generic panel (instead of a personalized tissue-
based panel). This could have led to an underestimation of the
predictive value of ctDNA mutations. However, most somatic
mutations (except p53 and PIK3CA) are infrequent in early stage
breast cancer because of the significant molecular heterogene-
ity24, so even with a tissue based panel, the number of detected
mutations could have been limited. We decided that a simpler
generic panel would require less resources and allow easier
translation into the clinical workflow. Another limitation in our
study is the lack of external validation, which may hamper
translation of our models to other patient cohorts. To mitigate this
issue, we used rigorous cross-validation with an inner and outer
loop and employed L1-penalized maximum likelihood estimation
(LASSO) to obtain the most parsimonious model with the least
number of parameters. External validation of our results in
independent larger cohorts is, however, still required. Larger
follow-up studies should further investigate the potential of
methylation in liquid biopsies as a biomarker to rule out residual
disease after NAC, thus ultimately designing trials on omitting
surgery safely. Trials on omission of surgery based on pCR in tissue

biopsy have been proposed, and the results of one small study
seem promising25,26. However, the invasive nature of multiple
tissue biopsies may make liquid biopsies the more patient-friendly
option, which is why we opted for this approach. A disadvantage
is, however, that liquid biopsy analysis is typically not yet
implemented in daily clinical practice and may, therefore, not be
readily available, as opposed to tissue biopsy. This could make the
translation into daily practice more challenging.
Our findings could motivate future research on liquid biopsies

as an alternative to MRI for response evaluation in patients with
contra-indications for MRI. Future research should also focus on
new methods to improve response prediction before and during
neoadjuvant treatment, in order to eventually be able to guide de-
escalation of systemic therapy.
In conclusion, our results suggest that adding liquid-biopsy

derived amount of cfDNA and methylation markers to clinical-
radiological prediction models is informative of pCR after NAC.
Our results also suggest a positive contribution of liquid biopsies
towards assessment of tumor response compared to radiological
assessment of MRI in combination with a post-treatment clinical
model. Furthermore, a model combining computer-extracted MRI
features and clinical variables performed equally well compared to
a model with radiological assessment of MRI combined with
clinical variables during and after NAC. We were not able to detect
increased association with response by combining computer
extracted MRI features and liquid biopsies.

METHODS
Study design
The LIMA study is a prospective multicenter observational study in
patients with breast cancer undergoing NAC, following the
protocol previously described27. In short, patients undergoing
NAC were monitored using longitudinal multiparametric MRI and
liquid biopsies (blood).
All patients signed informed consent before enrollment. The

study was conducted in accordance with the Declaration of
Helsinki and approved by the Medical Ethics Review Committee of
the University Medical Center Utrecht (19–396, NL67308.041.19).
Inclusion criteria were: Female patients aged 18 years or older,

histologically proven invasive breast carcinoma and planned to
receive NAC. Exclusion criteria were: patients with estrogen
receptor (ER)-positive and HER2-negative breast cancer tumors
that were also Bloom and Richardson grade 1, patients with
inflammatory breast cancer, distant metastases on positron
emission tomography/computed tomography (PET/CT), prior
ipsilateral breast cancer (contralateral breast cancer >5 years ago
allowed), other active malignant diseases in the past 5 years
(excluding squamous cell or basal cell carcinoma of the skin),
pregnancy or lactation, contra-indications for MRI according to
standard hospital guidelines, contra-indications for gadolinium-
based contrast-agent, including known prior allergic reaction to
any contrast-agent, and renal failure, defined by a glomerular
filtration rate <30mL/min/1.73 m2.
All patients underwent NAC according to Dutch guidelines8.

Treatment consisted of 4 cycles adriamycin and cyclophospha-
mide followed by 12 times weekly paclitaxel (AC-P) with or
without carboplatin for patients with HER2-negative tumors. For
HER2-positive tumors treatment consisted of 9 cycles of pertuzu-
mab, trastuzumab, carboplatin and paclitaxel (PTCP), or, if low-risk
disease, the Tolaney schedule consisting of 12 cycles of weekly
paclitaxel and trastuzumab28.

Study procedures and endpoint
An overview of the study procedures is shown in Fig. 2. All
patients had a PET/CT scan before start of NAC to exclude distant
metastases. An experienced breast pathologist (PvD) who was

L.M. Janssen et al.
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unaware of non-pathologic predictors of response conducted a
central revision of the diagnostic biopsy and surgical specimen.
RCB29, the primary outcome measure, was determined according
to the guidelines using the calculator provided by the MD
Anderson website30. pCR was defined as RCB= 0. For MRI revision
and liquid biopsy assessment, blinding to the outcome and
predictors was maintained.

3T-MRI acquisition and analysis
MRI of the breast was performed pre-treatment, on-treatment and
post-treatment (before surgery). MR imaging was performed on
3 T scanners (Philips Achieva, Ingenia or Ingenia Elition X or
Siemens MAGNETOM Avanto, Spectra, Skyra or Vida) with
dedicated double breast coils. A multi-parametric MRI protocol
consisting of four sequences was used: (1) T2-weighted sequence,
(2) High-Temporal-Resolution Dynamic Contrast-Enhanced MRI
(DCE-MRI) sequence, (3) High-Spatial-Resolution DCE-MRI
sequence, (4) diffusion-weighted imaging sequence. Central
revision of MRI scans with assessment of tumor size (i.e., the
largest diameter among sagittal, coronal and transverse view
planes in mm) was performed by an experienced breast
radiologist (EW).
For automated analysis of the MRI series, tumors were first

automatically segmented using the method described by ref. 31. A
set of multiparametric MRI features previously used for computer-
aided diagnosis by ref. 32 were then extracted. One hundred one
features were calculated for each lesion. These features included
the total number of lesions, the absence/presence of enhancing
lesions, 27 features were related to T2 intensity, 4 features
described contrast-uptake kinetics on the perfusion sequence, 6
features were related to diameter, 9 to volume, 4 described the
shape, 8 were related to heterogeneity of contrast uptake, 15
described slow contrast dynamics, 13 described the margin, and
13 described the apparent diffusion coefficient (ADC) values. If
more than one lesion was present in the breast, the mean and
standard deviation of the feature values across the lesions were
used in the case of volumetric, diameter, shape and margin
features, while for T2-weighted, perfusion kinetics and ADC
features, the feature described the whole segmented region
as one.

Liquid biopsy collection and cell-free DNA extraction
Blood samples for liquid biopsy assessment were collected in
Streck Cell-Free DNA BCT® tubes before every chemotherapy
cycle, and after completion of NAC prior to surgery. For patients
treated with AC-P this meant a blood sample was taken before

Fig. 2 Schematic overview of the study procedures. All patients underwent a 3 T MRI of the breast and a whole body positron emission
tomography/CT before treatment. MRI scans were also performed during and after treatment. Blood samples were collected before every
chemotherapy cycle and before surgery. The exact moment of blood collection varied depending on the treatment schedule as described in
the methods. This image has been designed using images from Flaticon.com.

Fig. 3 Overview of workflow blood samples after second
centrifuging step. cfDNA was extracted from 2 plasma samples,
after with the extracts were pooled. The extract was split, one part
used for determining the cfDNA integrity index and the other for the
LiquidIQ® Panel, followed by the mutation and methylation analysis.
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every AC cycle and before the first, fourth, seventh and tenth
weekly paclitaxel cycle and before surgery. For patients treated
with PTCP, a blood sample was taken before every carboplatin
cycle. For patients treated with 12 times weekly trastuzumab and
paclitaxel, a blood sample was taken every 2 weeks. Within
1–5 days after blood collection, plasma was isolated after
centrifuging whole blood at 1600 × g for 10 min. Plasma was
stored at −80 °C until further processing. All technicians were
blinded to primary and secondary outcome measures, as well as
predictors.
Plasma samples were visually inspected for hemolysis, samples

with severe hemolysis were excluded from further processing.
Samples were centrifuged a second time for 10 min at 16,000 × g
at 4 °C. cfDNA was isolated from 1–5ml plasma using the QIAamp
Circulating Nucleic Acids Kit (Qiagen GmbH), eluted in 50 µl AVE
buffer (Qiagen GmbH). The eluates of matching plasma samples
were pooled and stored in DNA LoBind tubes (Eppendorf AG) at
−20 °C, resulting in 100 µl for downstream analysis. The extracted
cfDNA was then assessed for quality and quantity as well as used
for mutation and methylation analysis (Fig. 3).
The quality and quantity of each cfDNA sample was assessed in

duplicate using 1.5 µL extracted cfDNA with the iPLEX Pro
LiquidIQ® Panel (Agena Bioscience, San Diego, USA) with the
MassARRAY® System (Agena Bioscience) as described previously33.
Briefly, this returns the number of amplifiable cfDNA copies,
detects long DNA fragments (>340 bp) originating from cell
necrosis, and an estimate of the level of white blood cell (WBC)
contamination. cfDNA fragmentation was assessed with cfDNA
integrity index qPCR. This index is based on the ratio of long
fragmented DNA (assay 1) and short fragmented DNA (assay 2),
thereby indicating potential contamination of the DNA sample
with genomic DNA (long fragments)34.
For quality evaluation and decisions about sample exclusion,

the results of the iPLEX Pro LiquidIQ® Panel were decisive.
Samples with amplifiable copy number representing <2 ng/max.
assay volume were excluded from both UltraSEEK® Breast Panel
(Agena Bioscience, San Diego, USA) and the Breast Methylation
Panel (Agena Bioscience). Samples with a WBC contamination
>50% and >75% were excluded from UltraSEEK® Breast Panel and
the Breast Methylation Panel, respectively.

Detection of somatic mutations
Somatic mutations were detected using the UltraSEEK® panel on
the MassARRAY® (Agena Bioscience, San Diego, USA), which was
previously described and evaluated35–38. The core UltraSEEK®
Breast Panel v1.0, as described previously39, was extended with
the Custom GATA3 and FOXA1 Panel (Table 3). Proprietary
reagents were used. Starting from two global multiplex polymer-
ase chain reactions (PCR), the panel tests 52 mutations across 7
oncogenes (core: AKT1, ERBB2, ESR1, PIK3CA, and TP53; extended:
FOXA1, GATA3) in 12 multiplex assays. PCR was performed using
on average 13 ng of cfDNA according to the manufacturer’s

instructions. Amplified products were treated with shrimp alkaline
phosphatase (SAP) and the PCR/SAP product was aliquoted in a
new 96-well plate for downstream extension and termination
reaction according to the manufacturer’s instructions. The single-
base extended oligonucleotides were captured by streptavidin-
coated magnetic beads and biotin-labeled following manufac-
turer’s instructions. The products were then transferred to the
MassARRAY System with Chip Prep Module 96 (CPM96) that
automatically performs desalting (resin), transfer of analyte and
calibrant to the SpectroCHIP® Arrays and loading of SpectroCHIP®
Arrays. Data were automatically acquired via matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectro-
metry using the MassARRAY Analyzer. Data analysis was
performed using Typer Analyzer software version 5.0.6 and the
Somatic Variant Report version 1.0 (Agena Bioscience). Variant
allele frequency was calculated for the signal intensity of the
mutant allele, which had been normalized against the 5 capture
control peaks found in the spectrum and an assay specific
correction coefficient. The capture control peaks are biotin-
labeled, nonreactive oligos, which are added to the extension
reaction and used as an internal control for the streptavidin-bead
capture and elution of the mutant extension product steps. In
preparatory work, the analytical sensitivity of this panel (defined
as the minimum percentage of mutant allele frequency in
reference material which was measured as positive with
probability ≥90%) was 100% at 1% mutation allele frequency
(MAF) and 44% at 0.2% MAF. Additionally, HER2 amplification and
PIK3CA hotspot mutations (p.E542K (c.1624G > A), p.E545K
(c.1633G > A), p.H1047R (c.3140 A > G)) were evaluated by six-
color Crystal Digital PCR™ with Sapphire Chips on the naica®
system (Stilla Technologies, Villejuif, France), using sets of primers,
TaqMan® hydrolysis probes (Table 4) (Eurogentec, Seraing,
Belgique) and the naica® multiplex PCR MIX (Stilla Technologies,
Villejuif, France). Detection of HER2 amplification is based on a
ratio of ERBB2 and TSN concentrations, TSN being considered as a
housekeeping reference gene. MRM1 is located on the same
chromosome as ERBB2 and is used as a control for chr17
polysomy. The total DNA sample concentration is measured by
calculating the mean of the three wild-type (WT) targets PIK3CA,
MRM1 and TSN. The LIMA BC panel also enables quantification of
a synthetic DNA (PhiX) PCR control added to the PCR after
extraction but prior to amplification. The 6-color experiments were
performed by Crystal Digital PCR™ with Sapphire Chips on the
naica® system (Stilla Technologies, Villejuif, France). Samples were
partitioned into 2D-droplets monolayers and thermocycled using
the naica® Geode instrument. Cycling conditions were 95 °C for
3 min, followed by 50 cycles of 95 °C for 15 s and 62 °C for 30 s.
Sapphire Chips were imaged on the naica® Prism6 instrument.
Droplet identification and fluorescence measurements in each
detection channel were performed using Crystal Reader and
Crystal Miner software v3.0.6.2. After the automatic application of
a spillover compensation matrix to the raw fluorescence data40, a
threshold was applied to discriminate the positive droplets from

Table 3. LIMA UltraSEEK Breast Panel variant list.

Gene Coverage Panel # of Variants

AKT1 E17K, L52R Core 2

ERBB2 (HER2) G309A, G309E, S310F, L755R, L755S, L755_T759del, D769H, D769Y, V777L, L869R Core 10

ESR1 A283V, K303R, E380Q, V392I, S463P, V534E, L536R, L536Q, Y537N, Y537S, Y537C, D538G, S576L Core 13

FOXA1 E24K, I176M, I176V, D226N, S250F, F266L Extended 6

GATA3 S93F, S137L, M294K, D336fs17, R365G, P409fs37 Extended 6

PIK3CA N345K, C420R, E542K, E545A, E545K, E545Q, H1047L, H1047R Core 8

TP53 R175H, R213*, Y220C, R248W, R248Q, R273C, R273H Core 7

Total Variants 52
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the negative droplets, using the automated tool of the Crystal
Miner software. This panel for the naica® system was designed
and validated using reference materials purchased from commer-
cial providers (WT human genomic DNA (ENZ-GEN117-0100, Enzo
Life Sciences, Farmingdale New York USA), mutated synthetic DNA
(Ultramer™ DNA oligonucleotides, IDT, Coralville Iowa USA) and
PCR control PhiX DNA (phiX174 RF1 DNA SD0031, Thermo-Fischer,
Waltham Massachusetts USA). Clinical validations were performed
on cfDNA from healthy donors with the NucleoSnap cfDNA kit
(740300.10, Macherey-Nagel, Dueren Germany). Technical perfor-
mances were evaluated including the Limit of Blank (LoB), Limit of
Detection (LoD), linearity and repeatability. LoB of each mutant
target were measured on 30 cfDNA extracted from healthy donors
and LoD of each mutant target were theoretically extrapolated
from the LoB. LoB and LoD characterization method is described

on the Stilla website41. The LoB and LoD for PIK3CA mutations in
the LIMA BC panel were 0.07 and 0.16 copies/µL, respectively,
corresponding to a LoB of 0.21 pg/µl and a LoD of 0.48 pg/µL. The
control ratio (ERBB2/TSN) for HER2 amplification was measured on
33 cfDNA from healthy donors. Linearity and sensitivity was
assayed on six serial dilutions (three replicates per point) of
mutated DNA, each bearing one of the following mutations:
PIK3CA p.E542K (c.1624G > A), p.E545K (c.1633G > A), p.H1047R
(c.3140 A > G). A clinical validation was performed on cfDNA
extracted from breast cancer patients plasma. Data analysis was
performed on 424 cfDNA samples with the naica® system and the
digital PCR breast cancer panel. Each sample was analyzed with
three technical replicates using on average 21.5 ng cfDNA in total,
with inclusion of a WT control and a positive control for each run.
After the Crystal Digital PCR™ and the imaging of the Sapphire
Chips, an analysis template was used to automatically calculate
the cfDNA concentrations and mutational status of each sample.
For the quantification of PIK3CA mutations, the MAF (mutation
allele frequency) was calculated by dividing the concentration of
PIK3CA mutated DNA by the average of the three WT targets
(PIK3CA WT, TSN, MRM1).

Methylation
For the detection of methylation, a custom 14-gene Breast
Methylation Panel v1.0 and proprietary reagents (Agena
Bioscience) were used (Table 5). The assay, of which the workflow
has been described previously42, uses methylation-sensitive
restriction enzymes to eliminate the non-tumor, unmethylated
fraction of the DNA. The panel contained assays for digestion
quality control and total cfDNA quantification to enable down-
stream data analysis. 2–15 ng of cfDNA were used in the digestion
reaction. PCR was performed according to the manufacturer’s
instructions (Agena Bioscience, San Diego, USA). The undigested
methylated ctDNA fraction was co-amplified in the presence of a
synthetic oligonucleotide to permit competitive PCR amplification.
PCR products were treated with protease enzyme and aliquots
were transferred in a new 96-well plate for treatment with shrimp
alkaline phosphatase (SAP) and downstream single base extension

Table 4. Breast cancer panel oligonucleotides description.

Oligo name Type 5′ to 3′ Sequence Modifications (5′ - 3′)

ERBB2 F Primer ACG-GAC-GTG-GGA-TCC-TGC-A /

ERBB2 R Primer CTT-CTC-ACA-CCG-CTG-TGT-TCC-AT /

ERBB2 Probe Taq Probe ACA-ACC-AAG-AGG-TGA-CAG-CAG-A 6-FAM - BHQ1

PIK3CA H1047 F Primer GCT-TTG-GAG-TAT-TTC-ATG-AAA-CA /

PIK3CA H1047 R Primer AGA-TCC-AAT-CCA-TTT-TTG-TTG-TC /

PIK3CA H1047 WT Probe Taq Probe CCA-CCA-TGA-TGT-GCA-T YY - MGB Eclipse

PIK3CA H1047R Probe Taq Probe CAC-CAT-GAC-GTG-CAT ROX - MGB Eclipse

PIK3CA E542E545 F Primer CTC-AAA-GCA-ATT-TCT-ACA-CGA-G /

PIK3CA E542E545 R Primer TTA-CCT-GTG-ACT-CCA-TAG-AAA-ATC /

PIK3CA E542K Probe Taq Probe CCT-CTC-TCT-AAA-ATC-ACT-G ROX - MGB Eclipse

PIK3CA E545K Probe Taq Probe TTC-TCC-TGC-TTA-GTG-ATT-T ROX - MGB Eclipse

MRM1 F Primer GTG-GAT-AAG-GTC-ATC-ACC-A /

MRM1 R Primer CAA-GGT-GCT-TAG-GAA-CTC-G /

MRM1 Probe Taq Probe ACG-TCC-CTC-ATT-CTC-TAT-GTG-CC Cy3 - BHQ2

TSN F Primer CAG-CGT-GAC-TGC-TGG-AGA-CTA-CT /

TSN R Primer ACC-GGA-ATC-CAG-CTC-ATT-GAT /

TSN Probe Taq Probe ACC-CCT-CCA-CAT-CTC-CAC-CTT Cy5 - BHQ3

PhiX174 F Primer TCT-TTC-CAA-GCA-ACA-GCA-G /

PhiX174 R Primer AAT-ACT-GAC-CAG-CCG-TTT-GA /

PhiX174 Probe Taq Probe TCC-GAG-ATT-ATG-CGC-CAA-ATG-C Atto700 - BHQ3

Table 5. Marker list methylation panel.

Gene Genomic Location Reference

AKR1B1 chr7:134459123 Fackler19

APC chr5:112737754 Radpour47

ARHGEF7 chr13:111115541 Fackler19

BRCA1 chr17:43125416 Radpour47

COL6A2 chr21:46098888 Fackler19

GPX7 chr14:37592244 Fackler19

HIST1H3C chr1:52602513 Fackler19

MDGI chr17:48578124 Liggett48

RASGRF2 chr1:31373414 Fackler19

RASSF1A chr5:80960894 Fackler19

TM6SF1 chr3:50340798 Fackler19

FOXA1 chr5:180591531 Nunes49

SCGB3A1 chr15:83107646 Nunes49

TMEFF2 chr2:192194694 Fackler19
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and termination reaction according to the manufacturers instruc-
tions. The products were transferred to and analyzed on the
MassARRAY® System as described above.
Data analysis was performed using an MS Excel macro-based

analysis tool to normalize signal and calculate a methylation score
per sample. Normalization is performed to make the detected
methylation levels comparable between samples.
Based on the methylation signal assessed for the six genes with

highest significance (AKR1B1, GPX7, HIST1H3C, SCGB3A1, TM6SF1,
TMEFF2) a methylation score per sample was calculated. The
methylation score is the sum of the methylation copies (normal-
ized to 10 ng DNA input) for the six genes listed above. A positive
methylation score is considered for z-score ≥3 with the z-score
being calculated as the average methylation score of a normal
sample cohort divided by the standard deviation for that cohort.
Methylation score values below the cutoff were set to the cutoff
divided by two to reduce noise.

Statistical analysis
Statistical analysis consisted of data pre-processing (i.e, transforma-
tions, dimensionality reduction by principle component analysis
(PCA) of specific feature-sets (e.g., T2 MRI features), and single
imputation of missing values) followed by model development and
model evaluation using internal cross-validation. The model devel-
opment steps were incorporated in the cross-validation procedure.
By contrast, the pre-processing steps were not incorporated in the
cross-validation, in part because these were deemed to have at most
minor potential to increase overfitting. The data pre-processing steps
were unsupervised, ultimately resulting in a complete data set of
reduced dimensionality compared to the original dataset. First, liquid
biopsy and MRI-based (continuous) variables were transformed—
using a log transformation and Box-Cox procedure, respectively—
into variables with normal-shaped distributions. Second, to accom-
modate for incomplete patient data in the model development and
evaluation, we imputed missing values. Specifically, each missing
value of a variable with repeated measurements was imputed using
linear interpolation between the last and next observations. In the
absence of either a last or a next observation, the missing value was
imputed with the next or last observation, respectively. If neither a
last nor next observation was available, we used the mean value
across patients. Third, the liquid biopsy variables with repeated
measurements were aggregated into nine bins corresponding with
the fraction of chemotherapy that was completed at the measure-
ment time. The value associated with the first bin was defined by this
fraction being zero (i.e., start of chemotherapy); the other bins were
formed by dividing the interval (0,1] into eight intervals of the same
length. Measurements associated with each bin were averaged per

variable and per patient, yielding bin averages for all downstream
analyses instead of the original liquid biopsy variables. Fourth, liquid
biopsy and MRI variables were standardized. In the fifth step, we
applied principal component (PC) dimensionality reduction to each
liquid biopsy or MRI “feature set” (groups of variables describing
similar information of a patient describing similar information of a
patient). The dimensionality reduction was accomplished by
transforming the feature set variables into equally many new
variables, the principal components, with progressively smaller
variance. The first principal component is defined as a linear
combination of the variables with the greatest variance among all
linear combinations whose squared coefficients sum to 1. The
definition of every subsequent principal component is the same
except that we additionally require the linear combinations to be
linearly independent of all previous components. For each feature
set, we selected the minimum number of principal components that
together accounted for at least 80% of the total variance. For the PC
dimensionality reduction step, repeated measurements of (i.e., time-
specific versions of) the same variables were treated as distinct
variables to account for possible clustering or time trends within
individuals. In other words, PC dimensionality reduction was applied
to the data in “wide format”.
We developed three types of models: feature set-only models,

each developed with the variables of one feature set as predictor
variables; ensemble models, which combine the predictions of all
clinical, liquid biopsy or MRI feature set-only models; and
ensemble-of-ensembles models, which combine the predictions
of different ensemble models (Table 6). Each of these models was
derived from predictor information that was available pre-
treatment, on-treatment and post-treatment. Predictors that had
been previously established in the literature and were part of the
standard diagnostic workflow were used to build the pre-
treatment clinical-radiological prediction model. This model
consisted of tumor grade, nodal status, tumor size on baseline
MRI, and receptor subtype (ER−/HER2−, ER+−/HER2+ or ER+ /
HER2−)43–45. For the on-treatment and post-treatment models,
the relative change in tumor size on MRI compared to that on
baseline MRI as measured by the radiologist was added. A clinical-
only model was also developed without tumor size on MRI.
Each model was a (main effects) linear regression model with

RCB as the dependent variable, fit using LASSO with the penalty
parameter set at the value that yielded the lowest mean squared
error in an inner-loop LOOCV scheme. To estimate the expected
out-of-sample performance of the various models in terms of
discrimination, we used an additional outer-loop LOOCV, applying
all model development steps to the training data. Discrimination
was evaluated using ROC curves and, in particular, AUC. Presented

Table 6. Prediction models that were developed with their candidate predictors.

Model name Candidate predictors used to develop model

Clinical-radiological Ensemble of tumor grade, nodal status, receptor subtype, radiologist-assessed tumor size on
baseline MRI (+/−relative change in tumor size for non-baseline time-points)

Liquid biopsies Ensemble of cfDNA load, cfDNA integrity, mutation and methylation feature sets

MRI features Ensemble of diameter, heterogeneity, kinetics, margin, shape T2, uptake and volume feature sets

Clinical-radiological+ liquid biopsies Ensemble of clinical-radiological and liquid biopsy ensembles

Clinical-radiological+MRI features Ensemble of clinical-radiological and MRI features ensembles

Liquid biopsies+MRI features Ensemble of liquid biopsy and MRI features ensembles

Clinical-radiological+ Liquid biopsies+MRI
features

Ensemble of clinical-radiological, liquid biopsy and MRI features ensembles

Only clinical Ensemble of tumor grade, nodal status, receptor subtype

Only clinical+ liquid biopsies Ensemble of only clinical and liquid biopsy ensembles

Only clinical+MRI features Ensemble of only clinical and MRI features ensembles

Only clinical+MRI features + liquid biopsies Ensemble of only clinical, liquid biopsy and MRI features ensembles.

L.M. Janssen et al.

8

npj Breast Cancer (2024)    10 Published in partnership with the Breast Cancer Research Foundation



confidence intervals are 95% pointwise confidence intervals
constructed using a percentile bootstrap approach applied
directly to the pairs of RCB values and leave-one-out predictions.
Because these confidence intervals do not capture the variability
in model parameters across datasets means that they should be
interpreted with extra caution. How to estimate accurate CIs in
studies like this is an active area of investigation46. We
recommend that the reported CIs are used at most to guide the
generation of new hypothesis rather than to reject hypotheses.
The estimation of p-values is similarly problematic, even further
augmented by multiple testing issues, which is why we refrain
from reporting these in this exploratory study.
Each patient was considered one case. One patient with a

bilateral tumor was considered one case in which the radiological
tumor size and computer extracted diameter were taken as the
sum of both tumors. In all other computer extracted MRI features
the mean of both tumors was taken. Receptor subtype and grade
were the same for both tumors. All statistical analysis were
performed in R software version 4.2.2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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