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Predicting early breast cancer recurrence from
histopathological images in the Carolina Breast Cancer Study
Yifeng Shi1,8, Linnea T. Olsson2,8, Katherine A. Hoadley 3,4, Benjamin C. Calhoun 5,3, J. S. Marron 1,3,6, Joseph Geradts7,
Marc Niethammer1,9 and Melissa A. Troester 2,3,5,9✉

Approaches for rapidly identifying patients at high risk of early breast cancer recurrence are needed. Image-based methods for
prescreening hematoxylin and eosin (H&E) stained tumor slides could offer temporal and financial efficiency. We evaluated a data
set of 704 1-mm tumor core H&E images (2–4 cores per case), corresponding to 202 participants (101 who recurred; 101 non-
recurrent matched on age and follow-up time) from breast cancers diagnosed between 2008–2012 in the Carolina Breast Cancer
Study. We leveraged deep learning to extract image information and trained a model to identify recurrence. Cross-validation
accuracy for predicting recurrence was 62.4% [95% CI: 55.7, 69.1], similar to grade (65.8% [95% CI: 59.3, 72.3]) and ER status (66.3%
[95% CI: 59.8, 72.8]). Interestingly, 70% (19/27) of early-recurrent low-intermediate grade tumors were identified by our image
model. Relative to existing markers, image-based analyses provide complementary information for predicting early recurrence.
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INTRODUCTION
Early recurrence, herein defined as the return of a primary tumor
within three years of diagnosis, is an important endpoint in clinical
management of breast cancer1. Recurrences can often be
successfully managed, but they are stressful, costly, and increase
risk of mortality if not detected early2–4. Clinical risk stratification is
currently based on several clinical characteristics, including
hormone receptors, HER2 status, grade, stage, and age, and
RNA-based methods are available to identify tumors with high risk
of recurrence5–8. Clinical gene expression assays are not uniformly
performed on all patients, and are often limited to specific
subgroups of patients with low-stage and ER-positive disease.
Genomic assays are also expensive9, so histopathology-based
stratification is appealing. Currently, only combined histologic
grade—a metric that classifies breast tumors according to tubule
formation, nuclear pleomorphism, and mitotic frequency–is
routinely collected from H&E images in the clinic. Grade evaluation
is performed manually and is subject to interobserver variability.
An objective, image-based method could be valuable for
prescreening patients at higher risk of recurrence.
Recent work in computer vision has extensively explored using

deep convolutional neural networks (CNNs) to extract global
contextual information from a variety of image types. Early
applications of CNNs primarily were focused on natural images
(e.g., cars or birds)10, but more recently, methods have been
extended to medical images, including radiographic and histo-
pathologic images11–13. Machine learning methods in image
classification have been shown to predict or diagnose invasive
breast cancer incidence, using both histopathological and radio-
graphic images14–18. However, few studies have evaluated breast
cancer outcomes based on images, and most that have have been
limited in sample size, range of tumor phenotypes, or patient

diversity19–21. For example, there are several data sets (e.g., the
Camelyon challenge in the Netherlands and IBM-curated BRIGHT)
that have encouraged researchers to investigate benign and
neoplastic breast tissue using machine learning methods; how-
ever, these are largely focused on diagnostic capacity rather than
prognostic or predictive modeling. Campanella and colleagues
used WSI from multiple cancers to develop a predictive model of
invasive disease, but again, this work was focused on diagnostic
rather than prognostic applications16. Many other previous studies
have emphasized a priori hypotheses, such as associations with
spatial arrangement of immune cells22 or emphasized overall or
breast cancer-specific survival rather than recurrence. Further-
more, many data sets—even for diagnostics—do not include
diverse populations of women with breast cancer. In the US, Black
women have significantly higher recurrence rates and breast
cancer mortality, but often have lower representation in clinical
and observational research. We used data from a source that
represented both Black and non-Black women in similar propor-
tions, allowing us to investigate breast cancer recurrence in a
diverse setting.
We sought to investigate whether we could use image

information extracted with a CNN (VGG1623, a CNN pre-trained
on ImageNet) together with support vector machines (SVM)24 to
create image-based classes that were predictive of recurrence
among breast cancer patients. We assessed reproducibility and
inter- and intra-individual variance by comparing validation
accuracy across and within patient specimens and compared
results to existing, established biomarkers. The Carolina Breast
Cancer Study (CBCS3) is a well-annotated image dataset for a
diverse group of women (50% Black, 50% under age 50) who were
followed for medical record-confirmed recurrence.
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RESULTS
Study population
Table 1 shows our study population and indicates that the
matched dataset (n= 101) had a similar distribution relative to the
full population represented on the tissue microarrays (TMAs,
n= 1543). However, the subset of CBCS cases included on the
TMA tended to include more large size tumors and higher-grade
tumors relative to the entirety of CBCS. Relative to participants
who experienced an early recurrence, age-matched participants
without early recurrence were significantly more likely to be early
stage (stage 1 52.5% vs 10.9% in early recurrences), grade 1 or 2
(58.4% vs 26.7% in early recurrences), and ER-positive (76.2% vs
43.6% in early recurrences).

Model prediction accuracy
First, we assessed the accuracy for detecting recurrence within
three years of diagnosis in our balanced data set, displayed in
Table 2. In cross-patient 10-fold cross validation we observed
62.4% accuracy and 63.4% sensitivity. However, using within-
patient validation, accuracy was 70.3% (67.7% sensitivity). In both
approaches, the sensitivity and specificity were well-balanced,
with within-patients (72.9%, 95% CI: 64.2, 81.6) specificity slightly
higher than sensitivity (67.7%, 95% CI: 58.6, 76.8) and cross-
patients sensitivity (63.4%, 95% CI: 54.0, 72.8) slightly higher than
specificity (61.4%, 95% CI: 51.9, 70.9). To contextualize these
accuracy estimates, we also evaluated the accuracy of standard
clinical markers. Using grade and ER status as predictors of
recurrence resulted in accuracies of 65.8% and 66.3%, respectively,
but grade had higher sensitivity (73.3%, 95% CI: 64.7, 81.9) while
ER status had higher specificity (76.2%, 95% CI: 67.9, 84.5).

In pre-screening tumors for genomic testing, sensitivity to detect
aggressive tumors is higher priority.
To investigate recurrence prediction accuracy among clinically

low or high-risk tumors, we further stratified our accuracy
assessment by grade (low/intermediate vs high) (Table 2).
Accuracy was higher in the low/intermediate grade group
compared to high grade for both the within-patients approach
(77.1% vs 65.2% in low vs. high grade) and the cross-patients
validation approach (61.6% vs. 53.4% in high-grade). The
sensitivity was lower among low/intermediate-grade tumors,
while specificity was lower for high-grade tumors. However,
sensitivity of both image-based approaches in the low/intermedi-
ate group exceeded that for ER status (70.4% for within-patients,
48.1% for cross-patients vs. 22.2% for the ER status). A total of 19
low/intermediate group patients (70% of patients with low/
intermediate grade tumors who recurred within 3 years) were
detected by image analysis that would have been missed via
grade alone.

Time-to-event analysis
To also consider time-to-event (and not just binarized early
recurrence vs. not), we evaluated both the within- and cross-
patients predictors in time-to-recurrence based on Kaplan–Meier
analysis (Fig. 1). Image-based classes from the within-patients
approach (HR 2.70; 95% CI: 1.78, 4.11) had a slightly stronger
hazard of recurrence than the cross-validation-derived classes (HR
1.73; 95% CI: 1.16, 2.57), but both were significantly associated
with time to recurrence.

Table 1. Demographic and clinical tumor characteristics for the full study population and the matched training sample, stratified by 3-year
recurrence status.

(n= 101) Full Population (n= 1543) Matched Sample (n= 101) p-value*

Recurrence No Recurrence No Recurrence

Mean Number of Cores 3.62 3.44 3.35 0.27

Age 51.5 (10.7) 52.8 (11.2) 51.6 (10.6) 0.27

Race 1

Non-Black 36 (34.7) 815 (52.8) 53 (52.5)

Black 66 (65.3) 728 (47.2) 48 (47.5)

Grade 0.91

1 6 (5.9) 343 (22.2) 22 (21.8)

2 21 (20.8) 592 (38.4) 37 (36.6)

3 74 (73.3) 608 (39.4) 42 (41.6)

Stage 0.65

1 11 (10.9) 737 (47.8) 53 (52.5)

2 52 (51.5) 646 (41.9) 38 (37.6)

3 38 (37.6) 160 (10.4) 10 (9.9)

ER 0.74

Positive 44 (43.6) 1199 (78.2) 77 (76.2)

Negative 57 (56.4) 335 (21.8) 24 (23.8)

PR 0.89

Positive 30 (29.7) 1051 (68.8) 70 (70.0)

Negative 71 (70.3) 477 (31.2) 30 (30.0)

HER2

Positive 17 (16.8) 219 (14.3) 11 (10.9) 0.43

Negative 84 (83.2) 1317 (85.7) 90 (89.1)

*P-value for chi-squared test (categorical variables) or t-test (continuous variables) between non-recurrent participants in the full population and matched
sample.
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Comparison with genomic assays
When comparing image-based classes to existing molecular
metrics that represent risk of recurrence, specifically research-
based versions of PAM50-derived ROR-PT and OncotypeDX scores,
we observed that the image-based “high-risk” class was substan-
tially enriched for individuals whose tumors had also been
classified as high-risk by either ROR-PT or OncotypeDX (Table 3).
The cross-patients approach resulted in an image-based high-risk
class with the highest proportion of molecularly high-risk

individuals [OncotypeDX RFD (95% CI): 15.0% (8.6, 21.3), ROR-PT
RFD (95% CI): 21.5% (14.2, 28.5)], though the high-risk class
resulting from the within-patients approach was still substantially
associated with high-risk molecular features [OncotypeDX RFD
(95% CI): 11.7% (5.3, 18.1), ROR-PT RFD (95% CI): 17.4% (10.0,
24.5)].

DISCUSSION
We applied convolutional neural networks to detect early
recurrence in the diverse, clinically well-annotated Carolina Breast
Cancer Study. We found that image-based features predict
survivorship with accuracy, sensitivity, and specificity that are
comparable to those for standard clinical markers such as
estrogen receptor status and grade. The performance character-
istics of image-based classifiers differed within strata defined by
grade, suggesting that future optimization should consider
training separate within strata of grade. However, these image-
based classifiers predicted recurrence with significant hazard
ratios, and showed associations with risk-based genomic signa-
tures. Since genomic signatures were not used in training, the
association with genomic data suggests promise for rapid, low-
cost pre-screening of tumors that may need further genomic
testing. The importance of image-based pre-screening may also
be of increasing importance as the proportion of neoadjuvant-
treated breast cancer cases increases25, because in neoadjuvant
cases tissue for diagnostic purposes is limited to biopsy materials.
It may also be advantageous that the image-based methods use
the same data collected for diagnosis and do not require any
additional laboratory steps.
Our analysis is unique in that we trained on recurrence rather

than other genomic or clinical data. Previous machine learning
studies have predicted breast cancer recurrence and survival, most
commonly using clinical and demographic data as inputs to ML
algorithms26–29. Lou et al. compared an array of computational
methods on a registry data consisting of 1140 patients, using
collected medical records as inputs to the machine learned
classifier26. Our approach used a much smaller image dataset for
training but does not assume that the clinical data are mediators
of the recurrence outcomes, allowing us to discover features that
may not be captured in other clinical data. The promising results
obtained with a small sample size suggest that future, larger
studies with more images may improve accuracy further.
Our recurrence-trained classifier also recapitulated genomic risk

subtypes, with high image-based risk groups being more likely to
have high genomic ROR-PT and OncotypeDX scores. Other
researchers have predicted genomic scores from images. Whitney
et al. used 178 breast tumor H&E images to predict RNA-based

Table 2. Recurrence prediction accuracy comparison between image-based classes and other tumor characteristics (ER, grade).

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Grade 65.8 (59.3, 72.3) 73.3 (64.7, 81.9) 58.4 (48.8, 68.0)

ER 66.3 (59.8, 72.8) 56.4 (46.7, 66.1) 76.2 (67.9, 84.5)

Within-Patients (Image Features) 70.3 (64.0, 76.6) 67.7 (58.6, 76.8) 72.9 (64.2, 81.6)

Cross-Patients (Image Features) 62.4 (55.7, 69.1) 63.4 (54.0, 72.8) 61.4 (51.9, 70.9)

Among High Grade Tumors Only

ER 63.8 (55.0, 72.6) 68.9 (58.3, 79.5) 54.8 (39.6, 70.0)

Within-Patients (Image Features) 65.2 (56.5, 73.9) 66.7 (55.9, 77.5) 63 (48.2, 77.8)

Cross-Patients (Image Features) 53.4 (44.2, 62,6) 63.5 (52.5, 74.5) 35.7 (21.0, 50.4)

Among Low/Intermediate Grade Tumors Only

ER 69.8 (60.2, 79.4) 22.2 (6.8, 37.6) 91.5 (84.4, 98.6)

Within-Patients (Image Features) 77.1 (68.3, 85.9) 70.4 (53.5, 87.3) 80.4 (70.4, 90.4)

Cross-Patients (Image Features) 61.6 (51.4, 71.8) 48.1 (29.6, 66.6) 67.8 (56.0, 79.6)

Fig. 1 Kaplan-Meier plots for the cumulative incidence of
recurrence. These plots were generated using (a) the cross-
patients validation method and (b) the within-patients validation
method. Cox proportional HR (95% CI) for cross-patients method:
1.73 (1.16, 2.57); HR (95% CI) for within-patients method: 2.70
(1.78, 4.11).
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OncotypeDX scores13. Accuracy in that study was 74% for low-
intermediate vs high OncotypeDX score. We did not compare to
Oncotype DX, which limits our ability to directly compare our
accuracy for a PAM50-based risk of recurrence score, but our
results suggest that training on recurrence rather than recurrence
score is a viable strategy. Also, within the CBCS, our group
demonstrated that ML methods could be utilized to predict tumor
features such as ER status, grade, and subtype using images and
data from CBCS312. Accuracy in that analysis for prediction of high
vs low-medium ROR-PT score was 75%, which is slightly higher
than our results for recurrence. However, the training set for that
analysis was much larger than the recurrence vs. non-recurrence
dataset used here and the outcome was more common. Thus,
future analyses with larger datasets should evaluate the optimal
method for identifying high risk specimens.
Application of breast tumor tissue core images to predict the

binary recurrence outcomes is a difficult problem because of a few
key challenges. First, the input data from CNN (512 times the
number of samples) is much more high-dimensional than
researcher-selected features like grade, stage, and other clinical
characteristics. Second, early recurrence rates in breast cancer are
fortunately relatively low, but this results in recurrence data from
breast cancer cohorts being highly imbalanced. Using a matching
scheme to match each recurrent case with a non-recurrent
participant allowed us to overcome some of the challenges of
using machine learning techniques while working with such a
strongly imbalanced data set.
Higher sensitivity when training within-patients suggests some

similarity of the images in training was being leveraged in testing
and raises the intriguing hypothesis that repeated samples of
images from patients have some individuality or ‘identifiability’.
Whether this identifiability is clinically meaningful merits further
investigation. On the molecular level, Perou et al. suggested that
tumors are individuals and that this individuality may be
targetable for precision medicine30; if tumors are similarly
individual on a histological level, perhaps machine-learning
techniques to evaluate histologic distinctions across a tumor
could be used to identify subgroups or to study tumor evolution
between biopsies and excisions/mastectomies. In any case,
establishing the reproducibility of classification across samples
from a given tumor is an important future direction if histologic
biomarkers are to be used for risk prediction.
In summary, our proposed image-based approaches achieve

competitive prediction accuracies on the order of established
biological and clinical markers (i.e., grade and ER status), with
balanced sensitivity and specificity. Among patients in the low/
intermediate grade subgroup, both approaches were more
sensitive than ER status. This analysis underscores the promise

of training histopathologic predictors directly on recurrence rather
than clinical surrogates, and emphasizes the need for larger,
collaborative analysis of breast cancer outcome where sufficient
event sizes and inter-study comparisons can be made. The
benefits of a histologic approach for risk stratification could be
significant, particularly for low-grade patients where the current
markers (grade and ER) are not sensitively capturing risk of
recurrence.

METHODS
Study population
CBCS3 is a prospective, population-based cohort of 2998 women
with incident invasive breast cancer recruited from 44 counties in
North Carolina between 2008 and 2013. First, primary breast
cancer cases were identified using rapid case ascertainment in
collaboration with the North Carolina Central Cancer Registry.
Eligible women were between 20 and 74 years old. Black and
young (<50 years old) women were oversampled to each
represent 50% of the population. The study was approved by
the University of North Carolina Institutional Review Board in
accordance with U.S. Common Rule. All study participants
provided written informed consent prior to study entry. This
study complied with all relevant ethical regulations, including the
Declaration of Helsinki.
Breast cancer recurrence was ascertained by patient self-report

at annual telephone follow-ups and then confirmed by medical
record. Formalin-fixed, paraffin-embedded (FFPE) tumor blocks
were obtained from participating medical centers for participants
with available tissue. Tumor blocks were obtained for 1743 of the
women enrolled in the study and were reviewed by the study
pathologist (JG). From tumor-enriched regions selected by the
pathologist, between one and four 1-mm tumor cores were
sampled and embedded in tissue microarrays (TMAs) at the
Translational Pathology Laboratory at UNC-Chapel Hill. TMA slides
were sectioned (5-μm thickness) and top and bottom sections
were stained with hematoxylin and eosin (H&E) and scanned at
20x magnification. In the balanced dataset, the 202 participants
corresponded with 704 H&E core images of approximately
3000 × 3000 pixels and each participant had between two and
four 1-mm tumor cores.
Tumor grade was determined centrally by the study patholo-

gist, except where whole slide images were unavailable for
secondary review and the originally reported (“clinical”) tumor
grade was used (n= 7) or where both slides and clinical grade
were missing (n= 39). From 1743 women with TMA images,
participants were excluded if missing grade or if tissue was

Table 3. Relative frequency differences (RFDs) for RNA-based risk of recurrence classifiers.

Image-based Low Risk N (%) Image-based High Risk N (%) RFD (95% CI)

Cross-Patients Method

OncotypeDX Low-Intermediate 290 (58.5) 206 (41.5) Ref

OncotypeDX High 197 (44.7) 244 (55.3) 13.8% (7.4, 20.1)

ROR-PT Low-Intermediate 524 (56.2) 408 (43.8) Ref

ROR-PT High 74 (34.7) 139 (65.3) 21.5% (14.2, 28.5)

Within-Patients Method

OncotypeDX Low-Intermediate 280 (56.5) 216 (43.5) Ref

OncotypeDX High 199 (45.1) 242 (54.9) 11.3% (4.9, 17.7)

ROR-PT Low-Intermediate 525 (56.3) 407 (43.7) Ref

ROR-PT High 83 (39.0) 130 (61.0) 17.4% (10.0, 24.5)

Our image-based high-risk groups were significantly enriched for individuals who were categorized as high-risk based on RNA-based risk of recurrence
classifiers.
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insufficient for VGG16 CNN (i.e., core damaged or section folded,
tumor was depleted, n= 30). Because this study was aimed at
evaluating recurrence, women with metastatic disease at diag-
nosis were excluded (n= 40), resulting in a final eligible
population of 1644 women, corresponding to a total of 5969
core images. Approximately 7% of the study population experi-
enced an early recurrence (n= 101), defined as recurrence within
three years of diagnosis. To construct a balanced dataset of
recurrent and non-recurrent cases, we matched recurrent cases to
non-recurrent participants 1:1 on age (defined in 5-year bins).

Gene expression assays
Where available, additional FFPE specimens from CBCS3 partici-
pants were obtained for RNA extraction. RNA was isolated using
RNeasy FFPE Kits (Qiagen) and Nanostring gene expression assays
were performed at UNC Chapel Hill in the Translational Genomics
Lab. Gene expression data were cleaned and normalized as
described previously31. Of the 1543 women included in the study,
1145 women had data on genes required for the PAM50 predictor,
a research-only version of the Prosigna clinical assay. These genes
were used to calculate a PAM50 risk-of-recurrence (ROR) score. For
this study, the ROR-PT score was used, which additionally
incorporates information on the PAM50 subtype, proliferation
score (P), and tumor size (T)7. These scores were then categorized
into low-intermediate and high risk. Data on the 21 genes
included in the OncotypeDX score assay were available for 937 of
the 1543 women on study. These genes were used to approximate
OncotypeDX scores for these patients, which were then categor-
ized into low-intermediate (<26) and high (26+) risk.

Model specification and validation
Image preprocessing and feature extraction. The appearance of
core images was standardized in each color channel to have mean
equal to zero and standard deviation equal to one. We used a
CNN32 to extract feature representations of core images (n= 704
cores from 202 participants). The CNN first applies convolutional
filters followed by pooling operations. Lower-level layers learn
generic image features such as edges and shapes, intermediate
level layers capture increasingly complex properties like shape
and texture, and higher-level layers learn global concepts that
describe the semantic meaning of the images32,33. The parameters
of such a network are the weights of the convolutional filters and
are learned from the data in an adaptive manner, creating a
hierarchically set of features of increasing abstraction.
We used the VGG1623 network that was pre-trained on the

ImageNet dataset, without alteration. We explored using other
networks (e.g., Resnet), but VGG16 resulted in better cross-
validation and test set accuracy. ImageNet34 contains 1.2 million
images, all of which belong to one of 1000 ImageNet object
categories35, and although the extant categories are different from
histology images, the pre-trained weights transfer well to feature
extraction from tissue sections. To use the pre-trained VGG16
network to extract features of the core images, we feed the core
images as input into the VGG16 network. Each layer transforms
the features obtained from the previous layer based on its
parameters and learns concepts like shape and texture that are
complex enough for generalization but not too specific to images
in ImageNet as to be inapplicable to histology images. In principle,
one can use the features at any layer as the feature representation
of the input image. Similar to the approach used by Couture12, we
evaluated performance of the features extracted from different
layers of the pre-trained VGG16 network. We ran a grid search
over the feature extraction layers on 90% of the data (training set)
and evaluated the performance on the remaining 10% (validation
set). The 7th layer had highest validation accuracy and was
therefore selected for model development. A total of 704 cores
across 202 participants were used to extract a 512 × 64 × 64-

dimensional matrix of image features. Spatial mean pooling was
used to calculate to produce a feature vector of length 512 for
each tumor core for use in prediction analysis.
We first attempted to use fully connected layers, but this

resulted in overfitting. Therefore, we used a support vector
machine (SVM) to classify the patient-level features that predict
binary recurrence. An SVM24 is a classification algorithm that finds
a linear decision boundary to separate the two classes (here,
recurrent vs non-recurrent). The foundational idea of SVM is that if
one interprets the margin between a data point and the decision
boundary as the difficulty of classifying that data point (i.e., the
smaller the margin is, the more difficult it is to classify that data
point), we seek an optimal decision boundary that maximizes the
margin, thereby minimizing the classification difficulty. After
locating the decision boundary, an SVM predicts the class
assignments of the data points based on which side of the
decision boundary those points are on. We used those predicted
class assignments for further analysis of the recurrence prediction.
We also explored training a neural classifier for predicting early

recurrence in an end-to-end fashion; however, due to the small
sample size of our balanced data set, the trained deep network
overfit the training data and poorly distinguished recurrences in
the test set.

Validation datasets. Ideally, data is split into training, validation,
and test sets to evaluate the accuracy of ML algorithms; however,
the balanced data set (n= 202) was small, and therefore, we
assessed performance via two methods. First, our goal was to have
a single feature vector to represent each patient. To this end, we
performed a cross-patient validation (Fig. 2), in which we averaged
the feature vectors of multiple core images per patient to create a
single patient-specific feature vector. We then performed ten-fold
cross-validation to train and evaluate the model for predicting
recurrence, with one-tenth held back for testing in each iteration.
We confirmed that as we added additional folds for k-fold
validation (i.e., as we increased k), we increased our accuracy from
56% at 2-fold to 62% at 10-fold. Second, we performed a within-
patient validation (Fig. 2). In this method, we took advantage of
multiple tumor cores for each patient and trained the model using
the feature vectors on half of each patients’ cores, testing the
model on the second half. This latter method assumes that the
core images belonging to each patient are independent, which is
unlikely given that the correlation between image features within
a patient (average cosine similarity within individual patients’
image features= 0.91) was higher than correlations between
patients (average cosine similarity between patients’ image
features= 0.84). However, we were interested in estimating how
‘individuality’ of a given tumor contributes to predictive accuracy,
and thus, we considered within-patient methods as an optimistic
estimation of model performance and compared the results to
those obtained by cross-validation.

Statistical analysis
The predictive value of image-based classes was assessed using
sensitivity, specificity, and overall accuracy of prediction. 95%
confidence intervals were produced for these measures using the
normal approximation of a binomial proportion. Following
development of a binary classification scheme, we performed
time-to-event analyses to assess relationships between the SVM-
derived image classes and recurrence within the full cohort. Cox
proportional hazards models were used to estimate hazard ratios
and 95% confidence intervals. Relationships between image-
based classes and recurrence were visualized with Kaplan–Meier
curves. Generalized linear models with identity link and binomial
family were used to estimate relative frequency differences (RFDs)
and 95% confidence intervals to describe associations between
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image classes and molecular risk scores (OncotypeDX and
ROR-PT).
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(https://unclineberger.org/cbcs/). Restrictions apply to the availability of these data,
which were used under data use agreements for this study. Data is not publicly
available; however, investigators may submit a letter of intent to gain access upon
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