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Radiomic predicts early response to CDK4/6 inhibitors in
hormone receptor positive metastatic breast cancer
Mohammadhadi Khorrami1,6, Vidya Sakar Viswanathan1,6, Priyanka Reddy2, Nathaniel Braman3, Siddharth Kunte4, Amit Gupta2,
Jame Abraham4, Alberto J. Montero 2 and Anant Madabhushi 1,5✉

The combination of Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) is the standard of care for
hormone receptor-positive (HR+ ), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC).
Currently, there are no robust biomarkers that can predict response to CDK4/6i, and it is not clear which patients benefit from this
therapy. Since MBC patients with liver metastases have a poorer prognosis, developing predictive biomarkers that could identify
patients likely to respond to CDK4/6i is clinically important. Here we show the ability of imaging texture biomarkers before and a
few cycles after CDK4/6i therapy, to predict early response and overall survival (OS) on 73 MBC patients with known liver metastases
who received palbociclib plus ET from two sites. The delta radiomic model was associated with OS in validation set (HR: 2.4; 95% CI,
1.06–5.6; P= 0.035; C-index= 0.77). Compared to RECIST response, delta radiomic features predicted response with area under the
curve (AUC)= 0.72, 95% confidence interval (CI) 0.67–0.88. Our study revealed that radiomics features can predict a lack of response
earlier than standard anatomic/RECIST 1.1 assessment and warrants further study and clinical validation.
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INTRODUCTION
Endocrine therapy (ET) is highly effective in the treatment of
hormone receptor-positive (HR+ ), and human epidermal growth
factor receptor 2-negative (HER2-) metastatic breast cancer (MBC)
and currently is the preferred first line treatment1,2. However,
about half of the patients who receive ET will eventually develop
therapeutic resistance within 1–2 years, and subsequently derive
limited clinical benefit3.
More recently, the addition of cyclin-dependent kinase 4/6

inhibitors (CDK4/6i) to ET have been shown to significantly delay
the development of therapeutic resistance4, and consequently, in
several phase 3 randomized trials have significantly improved
progression-free survival (PFS) compared to ET alone among
patients with advanced HR+ , HER2-negative breast cancer5–7.
Moreover, data from MONALEESA-28, MONALEESA-39, and
MONALEESA-710 trials have shown significant improvement in
median overall survival (OS) with the addition of CDK4/6i to ET.
CDK4/6i effectively blocks the cell cycle proliferation from G1

(pre-DNA synthesis) to the S phase (DNA synthesis) by blocking
the CDK4/6-cyclin D1 complex and preventing cancer cell
proliferation and treatment resistance4. Thus far, considerable
effort has been made to identify predictive and prognostic
biomarkers for CDK4/6i across all phase 3 randomized trials,
including PALOMA, MONALEESA, and MONARCH11–13.
The identification of predictive biomarkers that can reliably

identify which HR+ , HER2- MBC patients will clinically benefit
from CDK4/6i therapy has been challenging. Recently published
studies performing analysis from tissue samples from the
PALOMA-2 trial explored several biomarkers including genomic
loss of the CDK4/6 inhibitor p16, Cyclin D1 amplification, or
complete loss of Rb (the target of CDK4/6 action). Unfortunately,
none of these biomarkers showed clear promise, except for the

rare tumor with complete Rb loss, which as expected, was
resistant to CDK4/6i.14,15. Consequently, despite several phase 3
trials demonstrating the benefit of the addition of CDK4/6i to ET in
either first or second-line metastatic settings, there are no
predictive biomarkers that can identify patients likely to benefit
from CDK4/6i16.
The duration of therapy on endocrine therapy and CDK4/6i can

vary rather dramatically depending on the site of metastatic
disease. Patients with ER+MBC and bone-only disease have a
much more favorable prognosis than those with visceral
metastases—approximately 33% are progression-free on CDK4/
6i and first-line endocrine therapy at 60 months17.
By contrast, the presence of liver metastases in patients with

ER+MBC portends a very poor prognosis with an estimated
median OS of only approximately 2 years18,19, even with CDK4/6i
plus ET20. In PALOMA-3, the liver was the most common site for
visceral metastases, affecting 62.5% of the population with PFS of
7.5 months in patients treated with ET plus CDK4/6i than with ET
alone (2.4). In addition, the median PFS was significantly longer in
patients treated with ET plus CDK4/6i than with placebo plus ET in
the presence of visceral metastases (9.2 months versus
3.4 months). In PALOMA-2, liver metastases were present in
35.0% of the population with PFS of 13.7 versus 8.4 months. The
median PFS in PALOMA-2 in patients with visceral metastases was
significantly longer in those treated with CDK4/6i plus letrozole
compared with letrozole alone (19.3 months versus 12.9 months).
Consequently, there is an urgent unmet clinical need for novel
predictive biomarkers that can rationally guide the use of CDK4/6i
to identify patients most likely to benefit from treatment and
novel prognostic biomarker to identify patient’s overall survival—
particularly in those with liver or visceral metastases that have a
much shorter median OS than patients with bone-only disease—
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avoid time on ineffective medications, as well as mitigate financial
toxicities and potential adverse effects (neutropenia, diarrhea,
transaminase elevation, diarrhea) in those unlikely to respond. This
will allow oncologists to adjust treatment options early on and
develop more successful therapeutic strategies to overcome
endocrine resistance in CDK4/6i non-responders21.
Recently, computerized feature analysis of radiographic scans or

radiomic analysis has demonstrated significant potential for
response prediction to chemo- and targeted therapy in breast
cancer22,23. These radiomic approaches can computationally
capture quantitative measurements of tumor heterogeneity and
its microenvironment in radiological images, such as computed
tomography (CT). In the metastatic setting, patients usually
undergo serial CT scans throughout treatment to monitor disease
progression. Recent evidence shows that CDK4/6i enhances tumor
antigen presentation during therapy24. These micro-architectural
changes in the tumor might precede changes in radiographic
features during CDK4/6i treatment.
In this study, we utilized a delta radiomic-based analysis of

breast cancer patients with liver metastases on pre- and a few
cycles post-treatment CT to predict early treatment response to
CDK4/6i therapy. We hypothesized that quantitative capture of
textural changes of the lesion and the surrounding microenviron-
ment in the CT scan before and a few cycles after treatment in
women with liver metastases on CDK4/6i therapy may provide a
better accurate characterization of treatment response compared
to the textural pattern on CT scan before initiating therapy.
Towards this end, we used CT scans from 73 patients with ER+ /
HER2- MBC and the presence of liver metastasis at baseline- and a
few cycles post-treatment with CDK4/6i. We sought to identify
radiomic features associated with RECIST response and OS in
ER+ /HER2- MBC patients treated with CDK4/6i by interrogating
the tumor and tumor microenvironment on CT imaging.

RESULTS
Of the 32 patients from University Hospitals/Seidman Cancer
Center (St), 65% of patients had an objective response or stable
disease and 35% had progressive disease on ET and CDK4/6
therapy at the date of the last follow-up. The median age at
diagnosis was 63 years [35–82]. In total 21 of them were White, 4
were African American, and race information was unavailable for
the remaining 7 patients. 65% of patients received palbociclib as
1st or 2nd line therapy and the remaining received a different
CDK4/6i, i.e., ribociclib or abemaciclib. A total of 5/32 of the
patients were treated with CDK4/6 inhibitors as 1st line and the
remaining 27/32 patients as 2nd line therapy. After initiating ET/
CDK4/6i therapy, 24/32 (75%) of the patients had a progression of
the disease. The median time from the start date of CDK4/6i to the
date of progression was 12 months (95% CI, 7.6–16.5), and the
median date of the last follow-up was 16 months (95% CI, 9–22.8).
In addition, the median OS for the patients in St was 18.15 months
(95% CI, 11.26–25).
Of the 41 patients from Cleveland Clinic (Sv), at the date of the

last follow-up, 22 had an objective response or stable disease and
19 had progressive disease. The median age at diagnosis was 58
[36–79] years. Out of the 41 patients, 16 were White, 3 were
African American, and the self-reported race information for the
remaining patients was not available. The median OS for the
patients in Sv was 19.43 months (95% CI, 14.93–23.93).
A univariable Cox regression analysis identified that OS did

not significantly differ for: race (White vs. African American)
(hazard ratio, HR: 0.85 (95% CI, 0.22–3.26); P= 0.81; Concor-
dance Index, C-index= 0.54), age (HR: 1 (95% CI, 0.95–1.04);
P= 0.99; C-index= 0.48), or tumor volume (before CDK4/6i/ET
therapy) (HR: 1.2; 95% CI, 0.71–2; P= 0.49; C-index= 0.56).

Delta Radiomic features from pre- and post-treatment CT scans
were associated with OS in patients treated with CDK4/6i
Within St, 7 radiomic features were obtained from 1110 radiomic
features after feature pruning from the LASSO model. The LASSO
model selected 7 radiomic features with a lambda value of 0.18
(see Fig. 1a). Details of the selected features and their coefficients
have been listed in Fig. 1b. Of the 7 radiomic features, 3 were
picked from the peritumoral region and 4 were selected from the
intra-tumoral region. The RRS ranged from −1.58 to 2.87 and the
optimum cut-off value (the median) was found to be −0.119.
Based on this value, patients were divided into high- and low-risk
groups. A univariable Cox regression analysis developed using
radiomic features indicated that RRS was significantly associated
with OS in St (HR: 2.9 (95% CI, 1.6–5.5); P= 0.0006; C-index = 0.82)
and Sv (HR: 2.4 (95% CI, 1.06–5.6); P= 0.035; C-index= 0.77).
Median survival time in high and low-risk groups was 12.58 and
23.17 months, respectively (P= 5.7e-04). In a multivariable analysis
using a combination of clinical and radiomic features, the RRS
alone was found to be significantly associated with OS in St (risk-
score: HR= 2.65 (95% CI: 1.47–4.8), P= 0.0012; age: HR= 1, 95%
CI: 0.95–1.06, P= 0.8; race: HR= 0.56, 95% CI: 0.07–4.2, P= 0.57;
baseline tumor vol: HR= 1.8 (95% CI: 0.72–4.4), P= 0.2; C-index =
0.83) and Sv (risk-score: HR= 2.4 (95% CI: 1.02–5.6), P= 0.044;
tumor vol: HR= 1.2 (95% CI: 0.78–1.86), P= 0.4; C-index = 0.78).
The corresponding Kaplan–Meier survival curves showed a
significant difference in OS between patients with low and high
RRS both in St and Sv (P < 0.05). Kaplan–Meier survival curves for St
and Sv are shown in Fig. 1c, d, respectively.
A radiomics nomogram model incorporating the radiomics

signature with clinical biomarkers was the model that best
predicted OS with a C-index of 0.83 (95% CI, 0.73–0.91) in St
compared to the clinical or radiomics model alone (Fig. 2a). In Sv,
the C-index was 0.79 (95% CI, 0.71–0.86). The clinical model alone
had a lower prognostic performance (compared to radiomics
alone) in predicting OS with a C-index of 0.57 (95% CI, 0.40–0.75)
in St.
The calibration plot (Fig. 2b) demonstrated a good fit between

nomogram-predicted and observed OS. The Hosmer-Lemeshow
test yielded a p-value of 0.47, suggesting no significant difference
between predicted and observed OS. The DCA was used to
demonstrate the clinical decision utility of the nomogram.
Figure 2c shows DCA for three models (clinical model, radiomic
model, and integrated clinical plus radiomics model). The
integrated model had the highest net benefit in the prediction
of high-risk patients (those with poor OS) to receive more
intensive treatment (e.g., chemotherapy) than the clinical model
or radiomics model alone.

Tumor volumetric changes during CDK4/6i therapy were not
associated with OS
The median tumor volume in St was 2.57 mL (range,
0.23–33.32 mL) before CDK4/6i administration and 3.9 mL (range,
0.121–20.84 mL) after therapy. The tumor change size during
therapy was not statistically associated with OS, neither in St (HR:
0.82 (95% CI, 0.43–1.58); P= 0.56; C-index= 0.46), nor in Sv (HR: 0.7
(95% CI, 0.34–1.42); P= 0.32; C-index= 0.49).

Delta radiomic features predict response to ET/CDK4/6i
therapy
Figure 3a, b illustrate the change of the intratumoral Haralick
entropy feature for representative non-responder and responder
patients before and a few cycles after CDK4/6i therapy. We
observed an elevated expression of Haralick entropy post-therapy
in the non-responders as compared to the responders. Moreover,
the LDA classifier trained with identified prognostic features
yielded an AUC of 0.74 (95% CI, 0.61–0.98) on St. Prediction

M. Khorrami et al.

2

npj Breast Cancer (2023)    67 Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



accuracy was slightly different between patients with thin slice
thickness (1 mm) and thick slice thickness (3 and 5mm), but it was
not statistically significant (AUC on thin slice thickness was 0.75 vs.
0.73 on thick slice thickness, P > 0.05). Within Sv, the classifier
yielded an AUC of 0.72 (95% CI, 0.67–0.88), with an accuracy of 0.7,
sensitivity of 0.67, and specificity of 0.86 for response prediction.

Comparison of delta radiomics with baseline radiomic
features
An LDA classifier trained with a combination of 7 baseline
radiomic feature in St yielded an AUC of 0.7 (95% CI, 0.65–0.77) as
compared to delta radiomics (AUC 0.74; P= 0.02) and correspond-
ing AUCs of 0.69 on Sv, respectively. The risk score generated by
baseline texture features was associated with OS in St (HR: 2.1(95%
CI, 1.23–4.4); P= 0.005; C-index= 0.73) and Sv (HR: 1.98 (95% CI,
1.01–3.16); P= 0.046; C-index= 0.69).

DISCUSSION
The use of CDK4/6i with ET has revolutionized the management of
HR+ HER2- metastatic breast cancer due to their favorable toxicity
profiles and their relevant antitumor activity5,7,25. The US Food and
Drug Administration (FDA) and European Medicines Agency (EMA)
have approved the clinical use of CDK4/6i such as palbociclib,
ribociclib, and abemaciclib in metastatic breast cancer patients

with HR+ /HER2- in the first line setting as well as the second line
in combination with ET. In clinical trials, all FDA approved CDK4/6i
when combined with ET have demonstrated a significant
prolongation of PFS compared with ET alone4,7.
Approximately half of all patients with metastatic breast cancer

develop liver metastases and 5–12% of patients exhibit liver
metastases as the primary site of breast cancer recurrence26,27. If
untreated, liver metastases are associated with a dismal prognosis
and even with treatment with ET and CDK4/6i the median OS is
only 24 months18,19,28. In addition, ER+MBC patients with visceral
metastases compared to patients with the bone predominant
disease have a significantly shorter median PFS to ET ± CDK4/6i17,29.
Hence, there is an urgent need for clinically useful predictive
biomarkers that can identify patients with liver metastases likely to
benefit from ET/CDK4/6i.
Many previous studies have investigated the role of molecular

alterations in the tumor such as pRB, RB1 mutations, CCDN1am-
plifications, and CCNE1 overexpression as potential biomarkers for
CDK4/6i response but these investigations have not yielded any
identification of a clinically useful predictive biomarker so
far15,30,31. A growing body of research suggests that loss of the
retinoblastoma tumor suppressor gene (Rb), leads to accelerated
angiogenesis and tumor progression which is one of the most
important biomarkers associated with acquired resistance and
lower PFS to CDK4/6i32,33.

Fig. 1 Radiomic risk score and its association with OS. a The lambda value of 0.18 minimizes Mean Squared Error (MSE) within 100-fold cross
validation in training set. b Most prognostic radiomic features with their corresponding coefficients. c Kaplan–Meier survival curves for the
patients in the training set. d Kaplan–Meier survival curves for the patients in the validation set. A significant association of the radiomic risk
score with the OS was shown in the training and validation sets. A log-rank test was employed to compare survival curves between two
groups.
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In this study, we investigated the role of delta radiomic features
on the baseline and the first ET and CDK4/6i treatment assessment
CT scan in HR+ /HER2- MBC patients with liver metastasis to predict
response and OS. From a practical perspective, the development of
a radiomic score that could identify patients less likely to respond to
CDK4/6i therapy based on baseline CT would be of interest with
regard to adoption in clinical practice. In this study, we showed that
feature variations before and a few cycles after therapy can predict
response even more accurately compared to baseline CT images. A
nomogram model that integrated radiomic scores with clinical
biomarkers was developed in this study. Our nomogram model
showed that radiomic scores had a better prognostic performance
for predicting OS compared to clinical biomarkers alone. Moreover,
the decision curve analysis (DCA) showed that the radiomic score
had a better overall net benefit compared to clinical biomarkers for
predicting high-risk patients suitable to receive more aggressive
therapy across several threshold probability values. Age was
included in our nomogram, as it has previously been shown to be
an independent adverse prognostic factor in women with metastatic
breast cancer and liver metastases18.
To the best of our knowledge, this work is the first study that

has explored radiomic feature analysis to predict the response of
ET plus CDK4/6i in ER+MBC patients as well as overall prognosis.

We found that higher intratumoral Haralick entropy that
captures tumor heterogeneity was associated with non-response
to CDK4/6i/ET and poor OS. It is important to acknowledge that
both the training and validation cohorts have a median OS of
approximately 2 years which is much shorter than what is
observed in patients with bone-only disease, which represents a
different biology, as well as the reported overall OS in all phase 3
CDK4/6 trials. As previously discussed, a median OS of 24 months
is consistent with the published literature in ER+MBC with liver
metastases. Our selection of a very poor prognosis subset of
ER+MBC was intentional and represents a limitation of the study.
Previous studies have shown that tumor heterogeneity incre-

ment is indicative of genomic heterogeneity and is associated
with a worse prognosis in non-small cell lung cancer patients
treated with immunotherapy or chemotherapy34–36. By contrast,
decrement in intratumoral heterogeneity is associated with a
favorable response to therapy and prolonged PFS. A previous
study by Wander et al. showed that genomic alterations in RB1,
AURKA, and CCNE2 expression enhance resistance to CDK4/6i
therapy. In other words, heterogeneity may be a radiomic feature
that is likely correlated with increased resistance to CDK4/6i
therapy33. While entropy has not directly been compared to

Fig. 2 Radiomics nomogram model and calibration curve for predicting survival probability. a A nomogram that quantifies the probability
of 3-year survival in ER+MBC patients treated with CDK4/6i plus ET. b Calibration curve for survival. The blue dotted line shows an ideal
agreement between actual and predicted probabilities of survival. Dots correspond to apparent predictive accuracy. c Decision curve analysis
(DCA) for three models (clinical, radiomic, and integrated radiomic+clinical). The integrated model has the highest net benefit in predicting
which high-risk patients should receive more aggressive treatment, as compared with radiomic model and a clinical model alone; and simple
strategies such as treating all patients or no patients.
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genomic clonal evaluation, it could potentially help better define
tumor heterogeneity.
Angiogenesis is another hallmark of cancer proliferation and

tumor metastases37. Architectural disorder of the tumor-
associated vascular network has recently been shown to be a
marker of therapeutic response to several treatment strategies in
breast cancer38. We found that peritumoral Laws texture increase
during therapy may capture angiogenesis and tumor microenvir-
onment heterogeneity increase, which is associated with poor
therapeutic response and OS32,33,39.
In addition, p16 (tumor suppressor) downregulation leads to

increased HIF-α which in turn causes tumor hypoxia, which is
known to confer therapeutic resistance40. Prior evidence suggests
that a hypoxic tumor environment might be captured by radiomic
texture analysis of lesions extracted from CT images34.
Moreover, there is also some evidence suggesting that CDK4/6i

can elicit their therapeutic response by enhancing the activation
of T-cells41. It can be postulated that peri-tumoral Gabor texture
increase during therapy might be capturing the presence of
immune T-cells around the tumor, caused by CDK4/6i therapy and
might be an indicator of better response to therapy.
We have identified a new imaging-based biomarker to monitor

response in patients undergoing CDK4/6i therapy. The ability to
determine response during a few cycles of treatment will allow
early adjustment of treatment regimens. In the future, such
validated image-based radiomic biomarkers can potentially
identify non-responders and will enable oncologists to predict
residual endocrine sensitivity and reduce ineffective treatment,
toxicity, and side effects associated with CDK4/6i therapy and
timely change to other effective target therapies, including
subsequent CDK4/6 and PI3K/AKT/mTOR inhibitors42. Such
validated biomarkers can also identify those patients that would
benefit from CDK4/6i versus those patients that would benefit
from ET.
We acknowledge that our study has several limitations. While

we used two independent cohorts of patients for building and

validating our model, the cohort size in this study is relatively
small but it is quite challenging to assemble large cohorts for this
problem due to a small number of patients treated with this
relatively new therapy. The second limitation is the retrospective
nature of our study, not a prospective study. To tackle this
limitation, validation on a large multi-site prospective cohort is
required. Also, there are questions on variability in scanning
differences between scanners such as convolution kernels,
reconstruction algorithms, and slice thickness, that hinder the
widespread applicability of radiomic features, although some
studies have shown novel radiomic features that are relatively
immune to differences in image-related variabilities43,44. Also,
further work needs to be done to perform extensive stratified
analyses to explore the relationship between the molecular and
mutational status of the tumors and radiomics in this patient
population. Moreover, we need more prospective studies with
multiparametric evaluation, including known prognostic factors
such as performance status and time to relapse to develop and
validate the signature as a prognostic biomarker.
We hope to address these limitations in future work. In addition,

we need to develop and validate this signature as predictive of the
maximum benefit of CDK4/6i therapy vs. ET alone. However, this
will require a prospective trial design to determine the ability of
the radiomic signature to predict benefit to ET plus CDK4/6i
therapy.
Nonetheless, despite these limitations, our study revealed that

dynamic change of CT-based radiomic texture features between
baseline and a few cycles post-treatment of HR+ , HER2- breast
cancer patients with liver metastasis can predict early response
and OS to CDK4/6i coupled with ET.

METHODS
Study population
This multi-institutional study included HR+ metastatic breast
cancer (MBC) patients with liver metastasis, who received

Fig. 3 Delta radiomic features predict response to CDK4/6i therapy. Axial contrast enhanced CT images (top row), liver tumor
segmentations (middle row), and heatmaps (lower row) of intra-tumoral Haralick (entropy) feature in the representative pre- and post-
treatment CT scans of a non-responder a and a responder b. The time between pre- and post-treatment CT scans for the non-responder was
2.1 months and for the responder was 1.9 months. The images depict an elevated expression of Haralick entropy post-therapy in the non-
responder as compared to the responder (bottom row in a, b).
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palbociclib (palbo), ribociclib (ribo), or abemaciclib (abema) as
first- or second-line therapy in combination with ET.
Patient with HR+MBC, with liver metastasis and available

baseline and post-treatment CT abdomen/pelvis at University
Hospitals/Seidman Cancer Center (UHSCC, n= 52) and Cleveland
Clinic (CCF, n= 45) were identified from prospective registries of
patients with ER+ /HER2- MBC with overall clinical outcomes
which has previously been published45. The median time between
pre- and post-treatment CT was 3.5 months (95% CI, 3.2–3.88).
Scans of patients not suitable for feature extraction, such as

those with CT scan artifacts and poor image quality, absence of
post-treatment scans, or non-contrast CTs were excluded. This
resulted in a total of n= 32 patients from UHSCC and n= 41
patients from CCF. UHSCC was used for training (St) and CCF was
used as an independent validation cohort (Sv).
The study conformed to Health Insurance Portability and

Accountability Act (HIPAA) guidelines and was approved by the
Institutional Review Board (IRB) at University Hospitals
(STUDY20201206) and Cleveland Clinic (IRB 19–559). The IRB
waived the requirements for patient informed consent due to the
retrospective and observational nature of this study.

Clinical endpoints
The primary endpoint of this study was OS, defined as the time
from the date of ET and CDK4/6i initiation to the recorded date of
death, or censored at the last known date of follow-up. The
secondary endpoint was response status at the date of the last
follow-up, as defined by RECIST v1.1. Patients who had progressive
disease were classified as non-responders and patients who had a

complete response, partial response, or stable disease were
classified as responders.

Lesion segmentation and feature extraction
Baseline and post-treatment CTs were acquired either on Siemens,
GE Medical Systems, Philips, or Toshiba scanners according to
standard scanning protocol at CCF and UHSCC institutions. The
imaging protocol included a tube voltage of 100 to 120 kVp, slice
thickness ranging from 1 to 3mm, and standard convolution
kernel reconstruction. All patients were injected with a contrast
agent before imaging. An expert reader reviewed and annotated
liver lesions on baseline and post-treatment scans using a
freehand tool on 3D-Slicer® software46. The annotations were
verified by a board-certified radiologist (14 years of experience).
The primary lesion—noted in the radiology report and corre-
sponding to the largest post-treatment lesion—was chosen as the
region of interest for radiomic analysis. If liver lesions could not be
confidently defined on CT scans, a recent dedicated liver MRI was
utilized for confirmation of metastasis. Radiomic texture features
were extracted on a pixel level from pre-treatment and post-
treatment CT scans. For each scan, a set of intra- and peritumoral
radiomic features were considered. The peritumoral rim around
the lesion was defined via the use of quantitative morphological
operations (dilation) as a region extending radially from the lesion
boundary up to roughly 12 mm around the tumor. The choice of
peritumoral compartment rim size was defined based on the
previously described method47, including the normal appearing
liver parenchyma surrounding the metastatic lesion and excluding
regions containing peri-hepatic fat (fat has much lower

Fig. 4 Overall experimental design. The CT images of metastatic breast cancer patients before starting therapy were acquired. After a few
cycles of therapy, post-therapy images were collected. From both the baseline and post-therapy CTs, radiomic features were extracted, and
delta radiomic features were calculated. Subsequently, a machine learning classifier was trained using the delta radiomic features to predict
the response at the end of the therapy cycle. This figure was created with Biorender.com.
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attenuation compared to normal liver parenchyma at CT, with a
range of −10 to −100 HU)48.
Radiomic texture features (consisting of 13 Haralick texture

features49, 25 Laws features50, 25 Laws Laplacian (smoothing
image with Laplacian filter and then extract Laws feature), and 48
Gabor features51) were extracted from 2D contours, in a slice-by-
slice manner across all annotated slices of the lesion, on both pre-
treatment and post-treatment scans. These features capture
textural patterns, heterogeneity, and local appearance of the
tumor and its microenvironment on CT and reflect hallmarks of
tumor biology. Each texture feature was summarized by five first-
order statistics (mean, median, SD, skewness, kurtosis) separately
within the tumor and peritumoral region, resulting in a total of 555
texture feature statistics. Moreover, 24 shape features that capture
aspects of the 3D lesion structure including the size, volume, and
longest diameter of the tumor were also extracted. All radiomic
feature values were then normalized (mean= 0 and SD= 1) and
the change of feature statistics between baseline and post-
treatment scans was calculated to yield the feature set. The overall
experimental design for this study is shown in Fig. 4.

Statistical analysis
The least absolute shrinkage and selection operator (LASSO)
method was used to select the most prognostic features to OS in
St52. The top selected features along with their corresponding
coefficients were used for radiomic risk score (RRS) construction.
RRS was calculated via a linear combination of selected features
with corresponding coefficients. The value of the tuning
parameter (λ) in LASSO was selected based on a grid search of
λ on 100-fold cross-validations in a manner to minimize Mean
Squared Error (MSE) within each fold. The LASSO Cox regression
model was performed using the “glmnet” package in R.
A risk score threshold was chosen in St to stratify patients into

high and low-risk groups based on the median of RRS. The
prognostic performance of RRS was validated using Kaplan-Meier
survival analysis, log-rank test, HR, and Harrell’s concordance index
(C index). Univariate analysis of RRS and the clinical–pathological
variables was performed to evaluate the association of each
marker with OS. Multivariable Cox regression analysis was used to
investigate the independent prognostic value of the RRS relative
to clinical-pathological variables.
A prognostic nomogram was also developed on St by

combining clinical and prognostic radiomic features and validated
on Sv. To evaluate nomogram performance, C indices were
calculated from the nomogram for RRS, clinical factors alone, and
RRS plus clinical factors. The calibration plot for the nomogram
was evaluated by reviewing the plots of nomogram-predicted
survival probabilities with Kaplan-Meier estimated probabilities
along with the Hosmer-Lemeshow test, a statistical test for
goodness of fit for logistic regression models. A p-value < 0.05
implies that the model is not a good fit whereas the converse
suggests that there is no evidence of poor fit. Bootstraps with 500
resamples were employed to quantify model overfitting and for
calculating Kaplan-Meier estimates. The nomogram model was
generated by the use of R with the “rms” package (Regression
Modeling Strategies). A decision curve analysis (DCA) was
performed to evaluate the clinical efficacy of the radiomics model
by assessing the net benefits of the model across a range of
threshold probabilities53.
Additionally, a linear discriminant analysis (LDA) classifier was

used to evaluate the ability of identified prognostic features to
predict response to therapy. The LDA classifier generates linear
class boundaries (i.e., linear patterns) while assuming that the
covariance of each class is identical. The classifier performance for
predicting response was evaluated by the area under the receiver
operating characteristic (ROC) curve (AUC). In St, the classifier
performance was assessed by averaging the AUC values

computed over 100 iterations of threefold cross-validation (CV).
The trained classifier was eventually tested for response prediction
within Sv.
Finally, any differences between clinical categories were

assessed using Fisher’s exact test, where a two-sided t-test was
used for continuous variables. A bilateral P-value < 0.05 was
considered statistically significant.
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