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Multigene profiles to guide the use of neoadjuvant
chemotherapy for breast cancer: a Copenhagen
Breast Cancer Genomics Study
M.-B. Jensen 1,9✉, C. B. Pedersen2,3,9, M.-A. Misiakou2, M.-L. M. Talman4, L. Gibson4, U. B. Tange5, H. Kledal6, I. Vejborg6, N. Kroman7,8,
F. C. Nielsen2,8, B. Ejlertsen 1,5,8 and M. Rossing2,8

Estrogen receptor (ER) and human epidermal growth factor 2 (HER2) expression guide the use of neoadjuvant chemotherapy
(NACT) in patients with early breast cancer. We evaluate the independent predictive value of adding a multigene profile (CIT256
and PAM50) to immunohistochemical (IHC) profile regarding pathological complete response (pCR) and conversion of positive to
negative axillary lymph node status. The cohort includes 458 patients who had genomic profiling performed as standard of care.
Using logistic regression, higher pCR and node conversion rates among patients with Non-luminal subtypes are shown, and
importantly the predictive value is independent of IHC profile. In patients with ER-positive and HER2-negative breast cancer an
odds ratio of 9.78 (95% CI 2.60;36.8), P < 0.001 is found for pCR among CIT256 Non-luminal vs. Luminal subtypes. The results suggest
a role for integrated use of up-front multigene subtyping for selection of a neoadjuvant approach in ER-positive HER2-negative
breast cancer.
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INTRODUCTION
The use of neoadjuvant chemotherapy (NACT) has increased
significantly among patients with operable breast cancer. Redu-
cing the risk of potential morbidity by less invasive surgery due to
downstaging or optimizing breast-contour preservation was the
primary driving force1,2. Demonstration of a prognostic impact in
achieving pathological complete response (pCR) further promoted
the use of NACT, particularly for patients with a high probability of
obtaining pCR, e.g., those with estrogen receptor (ER) negative or
human epidermal growth factor receptor-2 (HER2) positive breast
cancers3. Finally, the predictive ability to guide post-neoadjuvant
systemic therapy further promoted the concept4,5.
Compared to other subtypes, the patients with ER-positive and

HER2-negative (defined as patients with HER2 0, 1+, or 2+ and a
low ratio) cancers (approximately 70% of the population) are
considerably less likely to achieve pCR but have the same
improved outcome following pCR3,6. ER-positive and HER2-
negative disease is both clinically and biologically heterogeneous
and several characteristics including tumor size, malignancy
grade, Ki67, PR, and genomic profiles have been associated with
the ability to achieve pCR7–11. However, evidence to support the
use of multigene profiles or other factors to guide the decision of
selecting NACT is insufficient in ER-positive and HER2-negative
cancers, and the general view is that NACT should only be
considered if adjuvant chemotherapy is recommended irrespec-
tive of surgical pathology data1. Intrinsic molecular subtyping has
emerged as a predictor of breast cancer recurrence in ER-positive
and HER2-negative cancers12,13. The 50‐gene molecular classifier
(PAM50) reproduces the five originally proposed subclasses, and

the vast majority of ER-positive, HER2-negative tumors are
classified as Luminal A, Luminal B, or Normal-like. However, a
small part will be classified as HER2‐enriched or Basal-like tumors8.
Using integrative analysis of both genomic and transcriptomic
data, six stable molecular subtypes (assigned CIT256 in the
following) have more recently been derived, based on genomic
rearrangement and expression of 256 genes14,15, with the
additional subtype Luminal C (LumC) enabling the distinction
and capture of subtypes in a heterogenic background. In this six-
subtype scheme, the HER2-positive tumors primarily clustered into
the molecular Apocrine (mApo) and LumC subtypes, with
reference LumC samples having lower ESR1 expression than those
of the Normal-like (NormL), Luminal A (LumA), and Luminal B
(LumB) subtypes. NormL, LumA, and LumB were composed of
highly ER-positive tumors with Basal-like (BasL) and mApo being
at the other end of the spectrum and inversely related to
malignancy grade14.
In this study we evaluate the strength of multigene profiles

from pretreatment core needle biopsies performed as a standard
of care diagnostic pipeline, to predict pCR.

RESULTS
Patient characteristics
Among the 3331 patients registered in CBCGS between January
2017 and December 2021, 684 were assigned to NACT while 108
had distant metastases, 234 not were eligible for surgery, 1728
were treated with surgery first, and 577 had a tumor ≤ 10mm. A
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subtype was not available for 205 of the NACT patients, and 21
had no surgery, leaving 458 eligible for this study (Fig. 1).

Multigene profiles
The CIT256 scheme resulted in the following distribution of
molecular subtypes: BasL 28%, mApo 16%, LumC 20%, LumB 20%,
LumA 10%, and NormL 6% (Table 1, Fig. 2).
A significant association with the CIT256 was seen for all

parameters, except chemotherapy and tumor size, presented in
Table 1. The association of CIT256 and ER status revealed no
patients with ER-negative tumors in the LumA or LumB subtypes
and only two patients in the NormL subtype, and similarly, few
patients in the Luminal PAM50 subtypes (Fig. 3, Supplementary
Table S1). Among 168 patients with ER-positive HER2-negative
tumors 32% present with a Non-luminal (BasL, mApo, LumC)
subtype (Table 1). From the relation between CIT256 and PAM50
very few patients are seen in discordant (Non-luminal vs. Luminal)
subgroups, except for the LumC subtype (Table 1).

pCR rate according to IHC profile and multigene subtypes
RCB class was correlated to ER and HER2 status as well as multigene
subtypes with higher response rate in subgroups with ER-negative
vs. ER-positive, HER2-positive vs. HER2-negative and Non-luminal vs.
Luminal genomic subtypes (Supplementary Table S2, Fig. 2).
Number of patients and pCR rate according to IHC profile, CIT256
and PAM50 multigene subtypes are presented in Supplementary
Table 3.
The corresponding unadjusted estimates for odds ratio are

presented and all three profiles show highly statistical significance
(P < 0.001), with low pCR rate for the ER-positive, HER2-negative
group and a low pCR rate for the Luminal multigene profile for
both CIT256 and PAM50. The independent predictive effect of the
IHC profile and multigene subtype was confirmed in the multi-
variable regression model, where both parameters remained
highly statistically significant (P < 0.001, Supplementary Table 4).
The predictive accuracy for the univariable models were 0.721
(95%CI 0.677;0.765), 0.699 (95%CI 0.663;0.734), and 0.692 (95%CI
0.652;0.732) for the IHC -, the CIT256 - and the PAM50 profile,
respectively, with a significantly better predictive performance
(P < 0.001) in the combined IHC and multigene profile; 0.780 (95%
CI 0.740;0.821) for IHC and CIT256 and 0.776 (95%CI 0.734;0.817)
for IHC and PAM50 combined (Supplementary Table 5). The test
for heterogeneity revealed no significance, implying that the
effect of the multigene profile remained within each IHC subgroup
(and vice versa). This is also evident from the odds ratio estimates
for the combined (IHC profile and multigene profile) subgroups
presented in Fig. 4 and Supplementary Fig. 1 with a very low pCR

rate of 3% in patients with concordant IHC (ER-positive, HER2-
negative) and multigene (Luminal) estrogen positive tumors. A
more detailed overview of the combination of IHC profile,
multigene subtype and pCR status is provided in Supplementary
Table S1 and odds ratio estimates for all subgroups in the IHC and
multigene profiles in Supplementary Table S3, where also the
relation between Luminal A and Luminal B is presented.
Focusing on the ER-positive, HER2-negative IHC subgroup, there

was a clear distinction in the pCR rate for patients grouped in the
CIT256 Non-luminal vs. Luminal subtypes, with an estimated odds
ratio of 9.78 (95% confidence interval (CI) 2.60;36.8), P < 0.001 (Fig. 4),
and a similar odds ratio estimate for PAM50 Non-luminal vs. Luminal
8.82 (95%CI 2.60;29.0), P < 0.001 (Supplementary Fig. 1).

BRCA mutation
Pathogenic BRCA1 and BRCA2 germline mutations were identi-
fied in 28 and 17 patients, respectively, 332 had no BRCA1/2
mutation while 81 were not tested. Twenty-six (58%) of the
patients with a BRCA mutation were classified in the CIT256 BasL
subtype (Table 1). Type of surgery following chemotherapy for
the subgroup of patients with no BRCA mutation detected, is
presented in Supplementary Table S6. In total 54% of the
patients had breast conserving surgery (BCS).

Axillary status following NACT
Conversion of axillary status is presented in Supplementary Table
S7 for the ER-positive, HER2-negative IHC subgroup. Among
patients classified with a positive nodal status at diagnosis based
on fine needle aspiration, a very low number of the patients in the
Luminal subgroup have a negative nodal status following NACT
with 3 (7%) in the CIT256 profile and 5 (10%) in the PAM50
Luminal group. These figures are higher for the Non-luminal
subgroup with 9 (36%) and 7 (32%) for CIT256 and PAM50,
respectively, both with statistical significance (P= 0.002 and
P= 0.03) comparing Non-luminal with Luminal. This is in line
with the pattern seen for pCR.

DISCUSSION
Our study confirmed the association of estrogen receptor and
HER2 expression with pCR as previously suggested by the pooled
analysis of NACT trials published in 20143. Furthermore, we
demonstrated that the multigene profiles CIT256 and PAM50 add
significant predictive information for pCR and RCB class in patients
with a tumor size >10mm as well as for conversion of cytologically
verified positive axillary nodes. This is especially important for
women with ER-positive and HER2-negative breast cancer where

Fig. 1 Flow diagram of patient cohort in CBCSG. ER Estrogen receptor, HER2 Human epidermal growth factor receptor-2.
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Table 1. Patient and tumor characteristics by genomic subtype CIT256.

Characteristics Study
population

Genomic subtype CIT256

BasL mApo LumC LumB LumA NormL

N (%) N (%) N (%) N (%) N (%) N (%) N (%) P

458 130 (28) 74 (16) 93 (20) 91 (20) 44 (10) 26 (6)

Age <0.001

<40 Years 84 (18) 45 (35) 10 (14) 12 (13) 13 (14) 1 (2) 3 (12)

40–49 163 (36) 41 (32) 25 (34) 34 (37) 32 (35) 18 (41) 13 (50)

50–59 112 (24) 26 (20) 16 (22) 29 (31) 23 (25) 11 (25) 7 (27)

≥60 99 (22) 18 (14) 23 (31) 18 (19) 23 (25) 14 (32) 3 (12)

Node status 0.002

Negative 264 (58) 88 (68) 33 (45) 49 (53) 46 (51) 27 (61) 21 (81)

Positive 194 (42) 42 (32) 41 (55) 44 (47) 45 (49) 17 (39) 5 (19)

Tumor size UL 0.09

≤20mm 76 (16) 26 (20) 16 (22) 11 (12) 17 (19) 3 (7) 3 (12)

21–50mm 302 (66) 87 (67) 45 (61) 66 (71) 58 (64) 32 (73) 14 (54)

>50mm 75 (16) 14 (11) 13 (18) 15 (16) 15 (16) 9 (20) 9 (35)

Unknown 5 (2) 3 (2) 0 (0) 1 (1) 1 (1) 0 (0) 0 (0)

Histologic type 0.004

Ductal 409 (89) 113 (87) 62 (84) 86 (92) 88 (97) 38 (86) 22 (85)

Lobular 14 (3) 0 (0) 3 (4) 2 (2) 1 (1) 4 (9) 4 (15)

Other 35 (8) 17 (13) 9 (12) 5 (5) 2 (2) 2 (5) 0 (0)

Malignancy grade <0.001

Grade I 46 (10) 0 (0) 2 (3) 12 (13) 9 (10) 15 (34) 8 (31)

Grade II 212 (46) 35 (27) 38 (51) 48 (52) 53 (58) 23 (52) 15 (58)

Grade III 160 (35) 83 (64) 28 (38) 25 (27) 21 (23) 2 (5) 1 (4)

Unknown 40 (9) 12 (9) 6 (8) 8 (9) 8 (9) 4 (9) 2 (8)

ER status <0.001

Positivea 291 (64) 29 (22) 20 (27) 83 (89) 91 (100) 44 (100) 24 (92)

Negative 167 (36) 101 (78) 54 (73) 10 (11) 0 (0) 0 (0) 2 (8)

HER2 status <0.001

Negative 274 (60) 118 (91) 15 (20) 24 (26) 55 (60) 38 (86) 24 (92)

Positive 184 (40) 12 (9) 59 (80) 69 (74) 36 (40) 6 (14) 2 (8)

IHC profile <0.001

ER- HER2- 106 (23) 91 (70) 13 (18) 0 (0) 0 (0) 0 (0) 2 (8)

ER- HER2+ 61 (13) 10 (8) 41 (55) 10 (11) 0 (0) 0 (0) 0 (0)

ER+HER2− 168 (37) 27 (21) 2 (3) 24 (26) 55 (60) 38 (86) 22 (85)

ER+HER2+ 123 (27) 2 (2) 18 (24) 59 (63) 36 (40) 6 (14) 2 (8)

PAM50 <0.001

Basal-like 160 (35) 130 (100) 16 (22) 8 (9) 6 (7) 0 (0) 0 (0)

HER2-enriched 110 (24) 0 (0) 54 (73) 52 (56) 4 (4) 0 (0) 0 (0)

Luminal A 66 (14) 0 (0) 0 (0) 9 (10) 15 (16) 28 (64) 14 (54)

Luminal B 85 (19) 0 (0) 0 (0) 13 (13) 63 (69) 10 (23) 0 (0)

Normal-like 37 (8) 0 (0) 4 (5) 12 (13) 3 (3) 6 (14) 12 (46)

BRCA mutation <0.001

No 332 (72) 96 (74) 58 (78) 64 (69) 60 (66) 31 (70) 23 (88)

BRCA1 28 (6) 20 (15) 3 (4) 2 (2) 3 (3) 0 (0) 0 (0)

BRCA2 17 (4) 6 (5) 2 (3) 1 (1) 6 (6) 2 (5) 0 (0)

Not tested 81 (18) 8 (6) 11 (15) 26 (28) 22 (24) 11 (25) 3 (12)

Chemotherapy 0.15

3CE+ 3TAX 240 (52) 80 (33) 30 13) 47 (29) 47 (20) 24 (10) 12 (5)

4CE+ 4TAX 131 (29) 35 (27) 24 (18) 24 (18) 25 (19) 14 (11) 9 (7)

≤6 cyclesb 56 (12) 7 (13) 15 (27) 13 (23) 11 (20) 5 (9) 5 (9)

7-8 cyclesc 31 (7) 8 (26) 5 (16) 9 (29) 8 (26) 1 (3) 0 (0)
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less than 10% overall obtained a pCR but by using multigene
profiles they could be separated into two distinct subgroups;
those with luminal subtypes having only a 3% chance of achieving
pCR compared with a >20% probability of pCR among those with
non-luminal subtypes. In the patients with ER-positive, HER2-
negative status and a Luminal CIT256 multigene profile, only 3
patients (7%) were converted to a node-negative status following
NACT compared to 36% among those with a Non-luminal profile.
For patients with clinically positive nodes, downstaging may
obviate extensive axillary surgery and thereby reduce the risk of
lymphedema, pain, and dysesthesias16.
Gene expression signatures provide prognostic information

beyond standard clinicopathological factors. Large clinical trials
have utilized multigene subtyping to improve the treatment
choice for patients with luminal breast cancer, more specifically by
defining which patients should be offered chemotherapy, and
which patients can be adequately treated with endocrine therapy
alone17,18. The results of three large clinical trials with focus on
precision medicine in women with hormone receptor positive and
HER2-negative breast cancer showed that postmenopausal
women with high-risk features defined by standard clinical factors
(tumor size, nodal status, malignancy grade), but at low risk of
recurrence according to genomic assays, could safely be allocated
to endocrine therapy alone, whereas a benefit of chemotherapy in
premenopausal women was shown consistently17,19. Additionally,
the publications by Farrugia et al. and Bhargava et al. have
demonstrated the strong predictive power of Magee Equation 3,
which is based on ER, PR, HER2, and Ki-67 in prediction of pCR
among ER-positive and HER2-negative breast cancer patients
treated with NACT11,20. Furthermore, secondary analyses investi-
gated the integrated use of clinical risk factors and information
from the gene scores on both prognosis and the predictive effect
of adding chemotherapy to endocrine treatment. Clinical risk
stratification added prognostic information beyond the genomic
scores and thereby confirmed that the integrated use of both
provide a more accurate estimation of risk of recurrence, whereas
the clinical risk factors were not complementary to the predictive
information of the assay18.
The heterogeneity in pCR according to PAM50 subtypes

confirms the observations made by Ohara and colleagues who,
by using PAM50, classified 124 patients with ER-positive breast
cancer as Luminal A (52), Luminal B (32), HER2-Enriched (24), or
Basal-like (16). The pCR rate was 4.8% in patients with luminal
compared to 20.0% in patients with Non-luminal cancers9.
However, the Ohara study included 31 HER2-positive patients
which even in the absence of HER2 targeting treatment may

explain the difference. Parker et al. included 133 patients with
both ER-positive and -negative status, as well as HER2-negative
and -positive status, and both Basal-like, HER2-enriched and
Luminal B, showed odds ratios of 2–3 as compared to Luminal A
subtype8, whereas the pCR rate was not reported. In a study
including ER-positive and HER2-negative breast cancers only a few
patients were classified by PAM50 as non-luminal and primarily
compared pCR rates according to Luminal A vs. Luminal B21 based
on very sparse data. In a recent abstract Ma et al. presented data
on 93 ER-positive and HER2-negative breast cancer patients who
participated in the ALTERNATE trial which suggested a higher pCR
rate of 16.7% in patients with non-luminal cancers compared to
4.0% in patients with Luminal A or Luminal B subtypes22.
Furthermore, other assays such as BluePrint and MammaPrint

were investigated23,24 with similar outcomes, but a poor
concordance of only 59% comparing BluePrint and PAM50 was
shown25. Several smaller studies have shown a significant
association between the Recurrence Score (RS) and pCR following
NACT26–30 while a few have not31,32, and a significant association
with pCR after NACT was shown for a high RS (OR 4.87, 95% CI
2.01, 1.82) in 898 ER-positive and HER2-negative breast cancer
patients10. Response-predictive subtyping were investigated in
the I-SPY2 neoadjuvant platform trial including 987 patients, and
also reported low pCR rates in the patients with ER-positive, HER2-
negative tumors. Treatment allocation based on subtyping
schemas showed increased pCR rates, and the improved patient
selection was highest in group of patients with hormone-receptor
positive disease33.
The strengths of the present study include the prospective

identification and multigene testing of eligible patients within a
single institution. Furthermore, both treatment and outcome of
the diagnostic procedure were prospectively registered in an
independent clinical database of a cooperative group, allowing a
high level of completeness. The concordance between the
findings of CIT256 and PAM50 makes the results applicable for
open-source platforms. Although both dichotomized CIT256- and
PAM50-based subtyping status was significantly associated with
the rate of pCR, we did observe slightly different odds ratios for
the two subtyping schemes. Perhaps this can be explained by the
fact that assignment of patients to the LumC subtype of the
CIT256 scheme provides important information for NACT
response. This subtype is considered part of the good-response
Non-luminal class, but 36% of the patients assigned to this
subtype are assigned to the Luminal subtypes for the
PAM50 scheme.

Table 1 continued

Characteristics Study
population

Genomic subtype CIT256

BasL mApo LumC LumB LumA NormL

N (%) N (%) N (%) N (%) N (%) N (%) N (%) P

Anti-HER2 therapy (N= 184 HER2-positive)

T (trastuzumab) 13 (7) 1 (8) 1 (8) 7 (54) 3 (23) 1 (8) 0 (0)

T and P (pertuzumab) 5 (3) 1 (20) 1 (20) 3 (60) 0 (0) 0 (0) 0 (0)

TP→ T/T-DM1d 166 (90) 10 (6) 57 (34) 59 (36) 33 (20) 5 (3) 2 (1)

a23 patients with ER 1–9%, 10 were HER2-positive (1 BasL, 7 mApo and 2 LumC) and 13 HER2-negative (12 BasL and 1 mApo).
bIncludes patients with TAX alone (N= 3), with CE alone (N= 3), and with combinations other than 3+ 3 (N= 26 less than 6).
cIncludes patients with TAX alone (N= 1) and with combinations other than 4+ 4 (N= 17 less than 8).
dTP preoperatively, T/T-DM1 post-surgery. N= 93 HER2-positive and no pCR; hereof 20 treated with T-DM1 post-surgery.
P-value refer to χ2-test or Fisher’s exact test.
UL Ultrasound localization, IHC Immunohistochemistry, ER+ Estrogen receptor positive, ER− ER-negative, HER2− Human epidermal growth factor receptor-2-
negative, HER2+ HER2-positive, CE Cyclophosphamide and Epirubicin, TAX paclitaxel (or docetaxel), T Trastuzumab, P Pertuzumab, T-DM1 Trastuzumab
emtansine, BasL Basal-like, mApo molecular Apocrine, LumA Luminal A, LumB Luminal B, LumC Luminal C, NormL Normal-like.
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The current study has some potential limitations. Although the
study cohort is of a reasonable size, subgrouping according to
both IHC profile and multigene profile resulted in small sample
sizes for each of the subtypes. In order to increase the statistical
power and avoid multiple testing of multigene subtypes, two
subsets were constructed according to ESR1 profiling, proliferation
and luminal type. In patients with HER2-positive breast cancer the
pCR rate observed in patients with a luminal subtype may not be
sufficiently low to clinically impact the decision to offer NACT. For
patients with ER-negative and HER2-negative breast cancers,
multigene subtyping is also unlikely to impact the decision to offer
NACT as all but two patients were assigned to a non-luminal
subtype. It is important to note that the patients of this study were
assigned to NACT without consideration of the multigene subtype
and it can prove difficult to ensure availability of the test result
before initiation of treatment. However, with the implementation

of molecular subtyping in the clinical workflow, a multigene
subtyping result can be at hand within seven days34. In
conclusion, this study demonstrates that molecular subtyping
may be used as guidance in the selection of a neoadjuvant
approach when chemotherapy is indicated for patients with ER-
positive and HER2-negative breast cancers.

MATERIALS AND METHODS
Study population
The Copenhagen Breast Cancer Genomics Study (CBCGS) pro-
spectively enrolled patients age 18 or older who were diagnosed
with invasive breast cancer at Copenhagen University Hospital,
Rigshospitalet between January 2014 and December 2021.
Detailed information on diagnosis, genomic profiling, treatment
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Fig. 2 Principal component analysis of the 458 samples. a The distribution of the six subtypes based on the 375 probe sets of the CIT256
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Fig. 3 Sankey plot between IHC subtypes and multigene profiles. a CIT256 profile, b PAM50 profile. ER Estrogen receptor, HER2 Human
epidermal growth factor receptor-2, ER+ ER-positive, ER− ER-negative, HER2+ Her2-positive, HER2− HER2−negative, BasL Basal-like, mApo
molecular Apocrine, LumA Luminal A, LumB Luminal B, LumC Luminal C, NormL Normal-like.

M.-B. Jensen et al.

5

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2023)    47 



and follow-up was registered in the clinical Danish Breast Cancer
Group (DBCG) database. Eligible for the present study were
patients free of distant metastasis, had a tumor size >10mm, and
were recommended NACT. Molecular subtyping was part of the
routine diagnostic work-up. NACT consisted of 3-weekly epirubicin
and cyclophosphamide for three or four cycles followed by weekly
paclitaxel for 9–12 cycles. HER2-positive patients received 3 or 4
cycles of trastuzumab and pertuzumab in conjunction with the
taxane and continued HER2 targeted therapy postoperatively.
Following NACT, surgery was according to national guidelines;
patients with a clinically negative axilla at time of diagnosis were
recommended sentinel lymph node biopsy, and axillary lymph
node dissection was recommended for all patients with lymph
node metastases. Residual Cancer Burden (RCB) was calculated
using the Residual Cancer Burden Calculator from MD Anderson
Cancer Center35.
This register-based study was conducted with approval of the

Danish Data Protection Agency (jr. no.: 2012-58-0004, 30-1504 I-
Suite 03845) and the Danish Breast Cancer Group (jr. no.: DBCG-
2015-14). All participants provided written, informed consent
before clinical and biomarker study data was entered into the
DBCG database. As the study did not include any contact with
patients nor additional use of biological material, the need to
obtain a re-consent from participants for this sub-analysis, was
waived by the Ethical Committee of the Capital Region of
Denmark.

Assessment of ER, HER2, BRCA status, and RNA extraction
Standard histopathological diagnosis was performed from for-
malin-fixed, paraffin-embedded tissue blocks, on breast core
needle biopsies, according to the WHO-classification recommen-
dations36, including immunohistochemical staining for ER and
HER2, at time of diagnosis. These analyses were repeated on the
surgical specimens following NACT in case of non-pCR, using
tissue microarray technique, with two cores of 2 mm from the
invasive front of each tumor. Areas suitable for these cores, were
marked on hematoxylin and eosin stained slides by an experi-
enced breast pathologist37. In case of very small tumor size, whole
mount slides replaced the TMA technique. A cutoff point of ≥1%
for ER-positive tumors was used. Scoring of HER2 was performed

following the ASCO/CAP guidelines38. Pretreatment core biopsies
for gene expression profiling were collected in RNAlater stabiliza-
tion solution (Thermo Fisher Scientific, Waltham, MA, USA), and
total RNA was isolated, and used as the starting material for gene
expression quantification with the Human Genome U133 Plus 2.0
Array (Afymetrix, Santa Clara, CA, USA), as previously described39.
Mutation screening was done using the breast cancer-

predisposing gene panel, as previously described40. BRCA1 and
BRCA2 likely pathogenic (class 4) and pathogenic (class 5) variants
were considered as positive status.

NGS library preparation
For RNA sequencing, 200 ng input RNA was used for preparing
RNA sequencing libraries, which was done using TruSeq Stranded
Total RNA Library Prep Kit (Illumina) following manufacturer’s
instructions. Briefly, RNA was denatured and ribosomal RNA (rRNA)
was removed using Ribominus Gold (Illumina). After cleanup, RNA
was fragmented, and 1st and 2nd strand synthesis performed.
Finally, libraries were adaptor ligated and amplified. AMPure XP
beads were used for cleaning up the prepared sequencing
libraries and quantification was done using a Qubit fluorometer
(Termo Fisher Scientific, Waltham, MA, USA). Sequencing libraries
were paired-end sequenced (2 × 125 bp) on the Illumina
HiSeq2500 platform.

Data preprocessing and molecular subtyping scheme
For each microarray sample, the raw intensity.CEL file was
preprocessed together with 30 existing breast cancer samples
from Rigshospitalet by quantile normalization, and probe sum-
maries were extracted via robust multi-array average (RMA) using
the affy package in R v. 4.0.041. Subsequently, ComBat42 from the
sva package43 was applied for batch correction of 12 of the
reference samples and the sample of interest together with the
CIT25615 core set, as presented previously34. Sample origin was
used as batch and initially predicted CIT256 subtypes (determined
using the citbcmst R-package) acted as covariates.
For RNA-seq, the reads from each sample were used as input for

two independent computational pipelines. In the first pipeline,
samples were processed according to the method presented by

Fig. 4 Forest plot from logistic regression model of pathological complete response according to IHC profile and CIT256 profile
combined. A supplementary analysis excluding ER 1–9% from ER+ resulted in a point estimate of 9.33 for ER+ HER2- Non-luminal. The boxes
represent the weight of data in terms of sample size for each subgroup and the lines represent the 95% confidence interval of the estimated
odds ratio. ER Estrogen receptor, HER2 Human epidermal growth factor receptor-2, ER+ ER-positive, ER− ER-negative, HER2+ Her2-positive,
HER2− HER2-negative, Luminal Luminal A, Luminal B Normal-like, Non-luminal Basal-like, HER2-enriched, pCR Pathological complete response
(Residual Cancer Burden 0), OR odds ratio, IHC Immunohistochemistry.
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Pedersen et al.44. Briefly, raw fastq files were aligned to the probe
target sequences from the Affymetrix Human Genome U133 Plus
2.0 Array using kallisto v. 0.44.0, and the resulting transcript per
million values (TPM) per probe set were processed in R v. 4.0.0
together with a set of 18 existing breast cancer samples from
Rigshospitalet representative of each molecular subtype. TPM
values were quantile-normalized to the row mean values from the
CIT25615 core set using the preprocessCore package45, and the two
data sets were batch-corrected using ComBat42 from the sva
package43, considering the two sets as distinct batches. This was
followed by initial prediction of CIT256 subtypes, which were used
as covariates in a second batch correction with ComBat with the
same two batches as above.
In the second pipeline, fastq files were mapped to the human

GRCh37.p13 reference genome using STAR46 aligner v. 2.7.2b and
reads overlapping features were quantified using Subread
package’s featureCounts v. 1.6.247. Subsequently values for each
sample were merged together with the same set of 18 existing
breast cancer samples mentioned above and normalized by size
factors determined by the median ratio of gene counts relative to
geometric mean per gene using DeSeq2 R package48.
For the CIT256 scheme, one of six subtypes (BasL, mApo, LumA,

LumB, LumC, NormL) was assigned to each sample by the CIT256
tool using a distance-to-centroid approach relying on expression
of 375 probe sets15. For the PAM50 molecular subtyping scheme,
for RNA-seq samples, log2-transformed normalized expression
values were used as input for the original predictor developed by
Parker et al.8. The classifier calculates Spearman’s rank correlation
between each sample and each subtype centroid for the 50 genes
of interest and assigns the class (Luminal A, Luminal B, HER2-
enriched, Basal-like, Normal-like) of the most highly correlated
centroid to each sample. For microarray normalized expression
values the genefu R package was used for assigning a
PAM50 subtype based on the Pearson correlation to the PAM50
centroids.

Statistical analysis
The primary endpoint was pathological complete response (pCR)
corresponding to RCB class 0 and secondary endpoints were RCB
class and pCR in the axilla. Associations of genomic
CIT256 subtype and RCB class with patient and tumor character-
istics were analyzed using χ2 and Fisher’s exact tests, excluding
unknowns. Univariate logistic regression was performed to assess
odds ratios for pCR according to genomic subtype and
immunohistochemical (IHC) profile (ER-status and HER2-status
combined). Genomic subtyping was analyzed in separate sub-
types and grouped based on ESR1 profiling, proliferation and
“luminal type”. The latter was defined based on genomic subtypes:
For CIT256, high ESR1 profile/low proliferation subtypes (LumA,
LumB, NormL) were referred to as Luminal and low ESR1 profile/
high proliferation subtypes (LumC, mApo, BasL) were termed Non-
luminal. Since LumC is a boundary subtype showing the largest
genomic similarity with the mAPO-subtype, samples assigned with
LumC were also termed as Non-luminal. For PAM50, we
considered Luminal (Luminal A, Luminal B, Normal-like) vs. Non-
luminal (Basal-like, HER2-enriched). Further, IHC profile and
genomic subtype combined were analyzed. Multivariable logistic
regression was used to assess the independent effect of genomic
subtype and IHC profile by including both, applying the Wald test.
Predictive performance for the logistic regression models is
presented by the c-statistic. All tests were two-sided and a P
value < 0.05 was considered statistically significant. No adjustment
for multiple testing was done. All analyses were performed using
SAS Enterprise Guide version 7.15, SAS Institute Inc., Cary and R
version 4.1.2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The clinical data that support the findings of this study are available from the
corresponding author upon reasonable request and with permission from the host
institution but restrictions apply to the availability. Microarray data are available on
GEO (GSE231629) and RNA-seq data is available on Zenodo (https://doi.org/10.5281/
zenodo.7898803).
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