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Calcifications in triple-negative breast cancer: Molecular
features and treatment strategies
Cai-Jin Lin 1,2, Wen-Xuan Xiao1,2, Tong Fu1,2, Xi Jin 1✉, Zhi-Ming Shao 1✉ and Gen-Hong Di 1✉

Despite the high prevalence of mammographic calcifications, our understanding remains limited regarding the clinical and
molecular features of calcifications within triple-negative breast cancer (TNBC). To investigate the clinical relevance and biological
basis of TNBC with calcifications of high suspicion for malignancy, we established a study cohort (N= 312) by integrating
mammographic records with clinical data and genomic, transcriptomic, and metabolomic profiling. Despite similar
clinicopathological features, patients with highly suspicious calcifications exhibited a worse overall survival than those without. In
addition, TNBC with highly suspicious calcifications was characterized by a higher frequency of PIK3CA mutation, lower infiltration
of immune cells, and increased abnormality of lipid metabolism. Overall, our study systematically revealed clinical and molecular
heterogeneity between TNBC with or without calcifications of high suspicion for malignancy. These data might help to understand
the clinical relevance and biological basis of mammographic calcifications.
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INTRODUCTION
Triple-negative breast cancer (TNBC), accounting for approxi-
mately 15% of breast malignancies, is both clinically and
biologically heterogeneous and characterized by aggressive
behavior and a paucity of effective treatments, leading to TNBC
being the subtype with the least favorable prognosis1,2. Impressive
progress in cataloging the molecular basis of TNBC has been
achieved from the perspectives of transcriptomics, immunoge-
nomics, and metabolomics3–8. The new appreciation of the
molecular biology of TNBC revolutionizes the therapeutic land-
scape and provides new therapeutic options, such as immune
checkpoint blockade (ICB), PARP inhibitors, and PI3K inhibitors2,9.
Although the new therapeutic scenario has full potential to
improve outcomes, treatment response varies, and thus, a better
understanding of the intrinsic and extrinsic features of TNBC is
required to extend the clinical benefit.
Mammography has been established as one of the periodical

screening modalities since it demonstrates higher sensitivity
toward breast cancers primarily manifesting as calcifications10,11.
Several studies suggest an association of malignant calcifications
with clinicopathological features and patient prognosis12–17. It was
also reported that mammographic calcifications were more
prevalent in non-TNBC tumors18–21. However, approximately
10–30 percent of TNBCs present calcifications20–24. In addition,
the presence of calcifications was associated with increased
mortality rates and decreased chemotherapy responsiveness for
TNBC patients25–28, indicating the necessity to explore the
biological basis of TNBC with calcifications. Despite a growing
focus, elaborating the heterogeneity regarding the molecular
biology, clinical outcomes, and potential therapeutic response
between TNBC with or without malignant calcifications has lagged
behind. This could be partially attributed to the paucity of studies
linking mammographic features to multiomics profiling data,
contributing to the malignant calcifications in TNBC being a
prevalent yet poorly understood clinical issue.

These challenges necessitated the broader interpretation of the
molecular basis for TNBC with malignant calcifications. To address
this issue, we established the largest mammographic multiomics
cohort by integrating mammographic images with genomic,
transcriptomic, and metabolomic profiling as well as detailed
health records to shed new light on the clinical and biological
heterogeneity between TNBC with or without calcifications of high
suspicion for malignancy, and thus, help inform treatment
decisions.

RESULTS
Study cohort and clinical data
The FUSCC-Mammography cohort included a total of 312
patients diagnosed with TNBC with a median follow-up of
86.4 months (interquartile range: 68.7–101.6 months; Fig. 1a).
Clinical records (N= 312) and mammographic images (N= 312)
were collected in detail, coupled with hematoxylin and eosin
(H&E) and immunohistochemical (IHC) staining slides (N= 159),
whole exome sequencing (WES; N= 198), OncoScan (N= 265),
transcriptomics (N= 249), lipidomics and polar metabolomics
(N= 216) data.
We reviewed their mammographic images and determined the

status of mammographic calcifications based on the Breast
Imaging Reporting and Data System (BI-RADS)29,30. Based on the
BI-RADS categories, we divided patients with calcifications
(calcification-positive) into three groups representing different
suspicions for malignancy: patients with mammographic calcifica-
tions assessed as BI-RADS 4C-5 were categorized as high suspicion
for malignancy; patients with calcifications assessed as BI-RADS
4A-4B were categorized as low-moderate suspicion; patients with
calcifications assessed as BI-RADS 2-3 were categorized as
probably benign. Patients without calcifications were categorized
as calcification-negative. Due to the limited sample size of patients
with low-moderately suspicious calcifications, we mainly focused
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on the difference between highly suspicious and probably benign
calcifications or between highly suspicious calcifications and
calcification-negative tumors.
We first compared clinicopathological characteristics and

observed similar distribution, except a higher proportion of
architectural distortion within highly suspicious calcifications
group (Supplementary Table 1). Despite clinicopathological
homogeneity, we observed that the association of calcifications
with overall survival (OS) trended toward significance (Fig. 1b).
Further analysis revealed a significant association between highly
suspicious calcifications and OS but not distant metastasis-free
survival (DMFS) or relapse-free survival (RFS) (Fig. 1c). These data
suggest a potential biological basis underlying the prognostic
difference and necessitate further investigation.
Overall, we established a mammographic multiomics cohort

and found an association of clinical outcomes with highly
suspicious calcifications, suggesting further investigation of the
underlying biological basis.

Molecular landscape of the FUSCCTNBC-Mammography
cohort
Here, we presented a well-annotated landscape of the FUSCCTNBC-
Mammography cohort (Fig. 2a–c). Across the FUSCCTNBC-
Mammography cohort with WES data, 14,974 protein-altering and
splice site variants were identified, comprising 13,925 single
nucleotide variants (SNV) and 1049 insertions or deletions (INDEL),
and a median of 53 SNVs and 3 INDELs were found per tumor.
Genes most frequently mutated or amplified/deleted are presented
in Fig. 2b, c.
We first investigated the difference in mutational profiling and

found that PIK3CA was mutated more frequently in patients with
calcifications of high suspicion for malignancy (29.6% in high
suspicion vs. 16.3% in probably benign vs. 15.6% in calcification-
negative; Fig. 2d). We then deciphered underlying mutational
processes across different calcification groups. We observed
subtle variations in the mutational spectra of somatic substitu-
tions (Supplementary Fig. 1a–d). Tumors with highly suspicious

Fig. 1 Schematic overview of the study design. a Omics platforms and analysis workflow of the study. b Prognostic value of mammographic
calcifications. c Prognostic value of calcification of high suspicion for malignancy. Error bars represent confidence intervals of the
corresponding hazard ratios for different clinical outcomes. Cox regression models were used to estimate the hazard ratios and corresponding
confidence intervals.
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Fig. 2 Molecular landscape of the FUSCCTNBC-mammography cohort. a Three hundred and twelve TNBC samples annotated with clinical
and molecular features. Samples are ordered by calcification status. b Somatic mutations of the top mutated genes. Genes are ordered by the
total mutation frequencies. c Copy number alteration of cancer-related genes. Only amplifications (GISTIC+ 2) and deep deletions (GISTIC -2)
are presented. d Gene-level mutation frequencies across different calcification groups. “**” denotes a P-value of < 0.01. e Region-level SCNA
frequency across different calcification groups. “**” denotes a P-value of < 0.01 and “*” denotes a P-values of < 0.05. Logistics regression
models using the binomial family were performed to obtain P values for the comparison analyses of mutations and SCNAs between different
calcification groups.
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calcifications were characterized by decreased C > G (Supple-
mentary Fig. 1e). We then deconvoluted breast cancer-specific
mutational signatures and found that tumors with highly
suspicious calcifications exhibited increased activity of the
single-base substitution (SBS) signature SBS17 (Supplementary
Fig. 1f). For SBS17, the etiology remains unknown but may be

associated with reactive oxygen species damage in some cases31

or signatures of mismatch repair defects32. This might suggest
distinct mutagenesis across different calcification groups but
cautious interpretation and further validation are needed.
Overall, our study established the connection between highly
suspicious calcifications and PIK3CA mutation, which should be
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considered when administering PI3K inhibitors to potential
candidates.

The association of highly suspicious calcifications with
recurrent copy number alterations
Given that somatic copy number alterations (SCNA) are prevalent
in TNBC, we concentrated on the association between SCNAs and
calcifications. We ran GISTIC2 to estimate the recurrently amplified
and deleted regions of interest (ROIs) and observed slightly
different global SCNA patterns between different calcification
groups (Supplementary Figure 2). However, differences existed in
specific recurrent ROIs, especially in copy number losses and
deletions (Fig. 2e). For example, we found a lower gained/
amplified frequency of 1p12 (NOTCH2) in highly suspicious
calcifications than in probably benign calcifications and
calcification-negative tumors (33.3% in highly suspicious vs.
50.0% in probably benign vs. 52.4% in calcification-negative).
Similarly, we also found a lower frequency of 4q31.3 (FBXW7)
losses/deletions in highly suspicious calcifications (43.5% in highly
suspicious vs. 65.5% in probably benign vs. 62.1% in calcification-
negative). Both the oncogene of NOTCH2 amplification and the
tumor suppressor of FBXW7 deletion are involved in the NOTCH
oncogenic pathway and indicate a possible involvement of
NOTCH signaling in TNBC with highly suspicious calcifications33.
In addition, we observed that TNBC with highly suspicious
calcifications exhibited a higher deletion of 9p21.3 (CDKN2A/B;
50.7% in highly suspicious vs. 37.9% in probably benign vs. 34.7%
in calcification-negative), revealing potential activation of the cell
cycle pathway33. The association of highly suspicious calcifications
and recurrent CNAs with involvement of specific pathways was
speculated and should be interpreted cautiously since no
experimental validation was performed.
Afterward, we examined SCNA signatures and found signifi-

cantly higher activity of signature CN6 in tumors with highly
suspicious calcifications when compared with probably benign
calcifications and calcification-negative tumors (Supplementary
Fig. 1f). CN6 is associated with chromothripsis before genome
doubling and patients with the CN6 signature exhibited poorer
prognosis34, further supporting unfavorable outcomes in TNBC
with highly suspicious calcifications. Taken together, tumors with
different statuses of calcifications presented distinct SCNA
patterns.

The role of calcifications in microenvironment phenotypes
We further investigated the association between calcifications and
microenvironment compositions. Pathway enrichment analysis
demonstrated downregulation of multiple immune-related path-
ways in tumors with calcifications of high suspicion for malignancy
(Fig. 3a). For example, interferon (IFN) signaling was significantly
downregulated (Fig. 3b). Consistently, TNBC with highly suspicious
calcifications harbored fewer immunomodulatory or inflamed
subtypes but more immune-excluded or immune desert subtypes
(Fig. 3c, d), which was also validated by decreased levels of
stromal tumor-infiltrating lymphocytes (sTILs) and intra-tumoral

TILs (iTILs) (Fig. 3e). We also found that tumors with highly
suspicious calcifications presented globally lower scores of several
literature-defined immune signatures (Fig. 3e), further supporting
an immunosuppressive microenvironment in TNBC with calcifica-
tions of high suspicion for malignancy.
We then investigated the extrinsic mechanisms of immune

escape in tumors with different calcification statuses35. Pathway
enrichment analysis revealed inactivation of innate immune
immunity (Fig. 3a). Similarly, several sensors of nucleic acids that
initiate innate immunity, such as cGAS-STING proteins and RIG-like
and NOD-like receptors, were also downregulated (Fig. 3e). Lower
expression of IFNG (Supplementary Figure 3a) and downstream
IFN-responsive genes, including CXCL9/10/11 (Supplementary
Figure 3b–d), also supported these findings. Lower expression of
these molecules might disrupt the chemotaxis of innate and
adaptive immune cells within tumors with highly suspicious
calcifications. The inferred immune cell fraction also supported a
lower immune infiltration within tumors with highly suspicious
calcifications, including CD4+ , CD8+ T cells, and NK cells (Fig. 3f).
Likewise, we also explored the potential intrinsic immune

evasion mechanisms, which refers to tumor cells facilitating
immune escape themselves. Tumor immunogenicity and immune
checkpoint molecule expression comprise two main mechan-
isms35. To assess tumor immunogenicity, we compared germline
HLA homogeneity (Supplementary Figure 3e), tumor HLA-I status
(Supplementary Figure 3f), intra-tumoral heterogeneity level
(Supplementary Figure 3g), tumor mutation burden (Supplemen-
tary Figure 3h), chromosome instability score (Supplementary
Figure 3i), and neoantigen load (Supplementary Figure 3j), but did
not observe any evident disparities, indicating no significant
difference in neoantigen source. However, the expression levels of
the MHC-I and MHC-II families were significantly lower in tumors
with highly suspicious calcifications (Fig. 3e), suggesting the
potential inability to present antigens for tumors with highly
suspicious calcifications.
To investigate the potential response to immune checkpoint

blockade (ICB) for tumors with highly suspicious calcifications, we
compared the expression levels of several immune checkpoints
and immune-related signatures derived from the I-SPY2 trial36. We
observed lower expression of PDCD1, CD274, CTLA4, and LAG3
within the highly suspicious calcification group (Fig. 3g).
Consistently, tumors with highly suspicious calcifications also
scored lower on multiple immunotherapy-response signatures,
such as TIS_sig and STAT1_sig (Fig. 3e). For the immunotherapy-
resistance signature in the I-SPY2 trial, namely Mast_cells, tumors
with highly suspicious calcifications scored higher than
calcification-negative tumors. These data might suggest worse
efficacy of immunotherapy for patients with calcifications of high
suspicion for malignancy.
Altogether, we identified the potential extrinsic and intrinsic

mechanisms of immune evasion for TNBC with calcifications of
high suspicion for malignancy and estimated a potentially worse
response to ICB treatment.

Fig. 3 Tumor microenvironment phenotypes across different calcification groups. a An overview of gene circuits downregulated in tumors
with calcifications of high suspicion for malignancy by mRNA abundance. Nodes represent pathways and edges represent shared genes
between pathways. b GSEA showing the downregulated interferon-related pathways within tumors with calcifications of high suspicion for
malignancy. c, d The association of mammographic calcifications with the TNBC mRNA subtype (c) and immune subtype (d). “ns” denotes a P-
value of > 0.05. e Comparison of the sTILs, iTILs, literature-defined immune signatures, and immunotherapy-response signatures across
different calcification groups. f Inferred immune cell infiltrates across tumors with different statuses of calcifications. The center lines represent
median values; the bounds of the boxplot represent the interquartile ranges; the whiskers show the range of the data. “***” denotes a P-values
of < 0.001; “**” denotes a P-value of < 0.01; “*” denotes a P-values of < 0.05; “ns” denotes a P-value of > 0.05. g Comparison of the expression of
PDCD1, CD274, CTLA4, and LAG3 across different calcification groups. “ns” denotes a P-value of > 0.05. The center lines represent median values;
the bounds of the boxplot represent the interquartile ranges; the whiskers show the range of the data. All P values were obtained based on
logistics regression models with the binomial family used for categorical data (c, d) and the gaussian family used for continuous data (e–g).
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Metabolomic analyses suggest an enrichment of lipid
metabolism in tumors with calcifications
Since metabolic reprogramming is an established cancer hallmark,
we then characterized the metabolic heterogeneity between
tumors with and without calcifications of high suspicion for
malignancy. Enrichment analysis demonstrated upregulation of
pathways related to lipid metabolism in tumors with highly

suspicious calcifications (Fig. 4a, b). Consistently, for the
metabolite-based subtype, TNBC with highly suspicious calcifica-
tions harbored a more lipid-dysregulated subtype (Fig. 4c). When
focusing on metabolic pathways, we also observed that most
dysregulated metabolic processes were associated with lipid
metabolism (Fig. 4d), further supporting the association of lipid
metabolism with highly suspicious calcifications. We then
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presented the activity of 15 KEGG lipid-related pathways and
observed a globally higher score for the highly suspicious group
(Fig. 4e). Furthermore, KEGG metabolic pathway-based differential
abundance (DA) analysis was conducted between tumors with
highly suspicious calcifications and the rest of tumors to
determine the dysregulation of metabolic pathways in terms of
metabolites. Likewise, tumors with highly suspicious calcifications
obtained a higher DA score of pathways involved in fatty acid,
sphingolipid, and glycerolipid metabolism (Fig. 4f), indicating an
upregulated metabolism of the corresponding metabolites. When
focusing on lipid subclasses, we observed an increased metabo-
lism of triradylglycerols, fatty esters, fatty acids, ceramides, and
neutral glycosphingolipids (Fig. 4g). Collectively, tumors with
calcifications of high suspicion for malignancy displayed distinct
metabolic patterns and were characterized by lipid dysregulation,
indicating the potential benefits from lipid regulators.

DISCUSSION
To shed light on the clinical and molecular heterogeneity between
TNBC with or without calcifications of high suspicion for
malignancy, we established a large-scale mammographic multio-
mics cohort thus far and summarized the corresponding
molecular characteristics (Fig. 5). Despite similar clinicopathologi-
cal features, we found that patients with calcifications of high
suspicion for malignancy exhibited a worse prognosis, further
supporting the investigation of the biological basis. In addition,
tumors with highly suspicious calcifications were also character-
ized by a higher likelihood of PIK3CA mutation, lower immune
infiltration and inability of antigen presentation, and increased
lipid metabolism, indicating potential resistance to ICB and benefit
from PI3K inhibitors or lipid regulators.
We first concentrated on the clinicopathological features and

prognosis. In contrast to previous findings37,38, we found a similar
distribution of conventional clinicopathological characteristics
between TNBC with or without highly suspicious calcifications,
except for higher architectural distortion. However, despite the
similar clinicopathological features, patients with highly suspicious
calcifications presented worse prognosis than those without,
suggesting a more aggressive behavior, which is also reported in
other publications12–16,26,39. All these findings indicate the
potential clinical homogeneity between TNBC with and without
calcifications of high suspicion for malignancy, thus necessitating
a focus on molecular heterogeneity, which is an emphasis in our
study to account for the prognostic difference.
In our study, we found that TNBC with highly suspicious

calcifications exhibited increased PIK3CA mutations, which was
significantly higher than the rest of TNBC and the frequency in the
general TNBC population reported by previous studies3. To the
best of our knowledge, this is the first study that associated highly
suspicious calcification with increased likelihood of PIK3CA
mutation. In addition, we also found that TNBC with highly
suspicious calcifications constituted a higher fraction of the

luminal androgen receptor subtype, which was reported to exhibit
the highest PIK3CA mutation frequency among the TNBC
subtypes3,40. All these data suggested that calcifications of high
suspicion for malignancy might serve as a predictive biomarker for
PIK3CA mutation and treatment response to PI3K inhibitors.
The association of mammographic calcifications with micro-

environment compositions was further explored and we found
that tumors with calcifications of high suspicion for malignancy
exhibited an inhibitory immune microenvironment. Very few
studies have investigated the association of mammographic
calcifications with the tumor microenvironment. Shin et al.
revealed that immune and inflammatory responses were down-
regulated in breast cancers with calcifications39. However, this
study focused only on the differentially expressed genes and
observed an enrichment of immune-related pathways. In our
study, we further investigated the association of highly suspicious
calcifications with the microenvironment from both extrinsic and
intrinsic perspectives and validated the finding through patholo-
gically evaluated TILs infiltration. We observed globally decreased
expression levels of immune-related molecules involved in IFN
signaling, chemotaxis of immune cells, and antigen presentation
as well as lower scores for immunotherapy-response signatures.
Collectively, these data might suggest that mammographic
calcifications should be considered when determining immu-
notherapy candidates since tumors with highly suspicious
calcifications might exhibit potential resistance to immune
checkpoint blockade.
Since the metabolic features of breast cancer have been

extensively investigated5–7, we also concentrated on the impact of
calcifications of high suspicion for malignancy on metabolic
profiles. Among the ten KEGG metabolic pathways, we observed a
dysregulation of lipid metabolism in tumors with highly suspicious
calcifications. Further analysis revealed that tumors with highly
suspicious calcifications presented an improved metabolism of
fatty acids, glycerolipids, and sphingolipids. While the role of
PIK3CA mutations in lipid metabolism has also been confirmed in
prior work41–43, the upregulated lipid metabolism might be
potentially attributed to the increased PIK3CA mutation in TNBC
with highly suspicious calcifications. More specifically, we asso-
ciated the highly suspicious calcifications with the metabolism of
different lipid subclasses, including ceramides, triradylglycerols,
and fatty esters. Such an association has never been reported
previously and the underlying biological basis requires further
investigation.
Our research comprehensively investigates the role of calcifica-

tions of high suspicion for malignancy in genome instability,
immune evasion, and metabolic reprogramming based on
multiomics data. Nevertheless, our work has several limitations.
First, due to the limited sample size and non-randomized nature
of the study cohort, potential selection bias and other unmea-
sured confounding bias might exist. Further external validation is
required in larger prospective mammographic cohorts. In addi-
tion, experiments are needed to validate several observations and

Fig. 4 Association of mammographic calcifications with metabolic dysregulation. a An overview of gene circuits upregulated in tumors
with calcifications of high suspicion for malignancy by mRNA abundance. Nodes represent pathways, and edges represent shared genes
between pathways. b GSEA showing the upregulated pathways involving lipid metabolism within tumors with calcifications of high suspicion
for malignancy. c Association of mammographic calcifications with the TNBC metabolite subtype. P values were obtained based on logistics
regression models using the binomial family. d The number of metabolic pathways that were significantly upregulated or downregulated
across different calcification groups. e Comparison of the signatures involving lipid metabolism across different calcification groups. P-values
were obtained based on logistics regression models using the gaussian family. f A pathway-based analysis of metabolomic changes across
different calcification groups using Mann–Whitney U tests. The DA score represents the average and gross changes for all metabolites within a
single pathway. A score of 1 indicates that all profiled metabolites of the pathway are upregulated in the calcification-positive group
compared to the calcification-negative group, and a score of −1 indicates that all profiled metabolites of a pathway are downregulated. Only
pathways with no less than three profiled metabolites were used for DA score calculation. g Log2 fold changes in the abundances of lipids
subclasses in tumors with different calcification statuses. The center lines represent median values; the bounds of the boxplot represent the
interquartile ranges; the whiskers show the range of the data.
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hypotheses, for instance, lipid dysregulation and immunoinhibi-
tory microenvironment within tumors with highly suspicious
calcifications. Finally, it has been reported that TNBC often lacks
mammographic calcifications and other mammographic features,
which might contribute to the subtle difference between tumors
with and without calcifications in some aspects in our study. We
acknowledge the value and have planned further studies in ER-
positive and/or HER2-positive breast cancers, which would
possibly generate more significant differences and provide clearer
insight into the biological basis of mammographic calcifications.
Collectively, we found that TNBC with or without calcifications

of high suspicion for malignancy exhibited potential clinical
homogeneity but molecular heterogeneity. We identified the
association of highly suspicious calcifications with genome
instability, immune evasion, and metabolic reprogramming.

METHODS
Patient samples and study cohorts
We established a cohort, termed FUSCC-Mammography, to
include females diagnosed with TNBC, along with preoperative
mammography, samples from primary tumors, adjacent tumor
tissues, and paired blood samples obtained from Fudan University
Shanghai Cancer Center (FUSCC) (Supplementary Table 2). The
clinical data, including demographics, postoperative pathology,
treatment regimen, and follow-up, were recorded in detail. All
women underwent surgery between 2007 and 2014. We then
updated the follow-up data on June 30, 2021. All tissue samples
included in this study were obtained after the approval of our
research by the FUSCC Ethics Committee, and each patient
provided written informed consent prior to participation.
Mammographic images as well as H&E- and IHC-stained slides

were collected. Detailed information on biospecimen collection,
and data generation of WES, OncoScan, transcriptomics, lipido-
mics, and polar metabolomics were described in previous
studies3,5.

Annotation of somatic oncogenic alterations
We applied oncokb-annotator to annotate the oncogenic muta-
tions and SCNAs curated in the OncoKB database44. A MAF file
containing the mutations annotated by Ensembl Variant Effect
Predictor (VEP) and an all-thresholded-by-genes file from GISTIC
2.0 were used as the inputs.

Generation of mutational matrices
Mutational matrices of SBS96, DBS78, and ID83 based on the
somatic mutations and their immediate sequence context were
first created using SigProfilerMatrixGenerator with default
parameters45.

Mutational signature analysis
We employed SigProfiler46, a well-established computational
algorithm based on nonnegative matrix factorization (NMF), to
extract mutational signatures across tumor samples in the
FUSCCTNBC-Mammography cohort with default parameters.
Mutational signatures of single base substitutions (SBS), doublet
base substitutions (DBS), and small insertions and deletions (ID)
were deciphered separately. Specifically, mutational matrices of
SBS96, DBS78, and ID83 based on the somatic mutations and their
immediate sequence context were first created using SigProfiler-
MatrixGenerator with default parameters. The mutational matrices
were then utilized as the inputs of SigProfilerExtractor for de novo
extraction of mutational signatures. NMF was employed with
factorizations between k= 1 and k= 25 and the number of
iteration for each factorization of 500. SigProfilerExtractor deter-
mined the optimum number of signatures automatically.
We decomposed the mutational matrices of each patient into a

known set of reference signatures using SigProfilerSingleSample46.
The breast cancer-specific reference signatures of SBS and DBS
were obtained from Signal Project32,47 while ID were downloaded
from COSMIC Portal46.

Fig. 5 Summary of the molecular characteristics across TNBC with different calcification statuses. Red (blue) circles with white up (down)
arrows denote increased (decreased) levels or potentially better (worse) response, while the blue circles with horizontal bars indicate no
significant difference.
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Detection of clustered mutations
Clustered mutations were detected by analyzing the inter-
mutational distances (IMD) between SNV-SNV mutations45.
Specifically, SigProfilerSimulator48 was first used to calculate an
IMD threshold by comparing the mutational patterns of a given
sample between real and simulated data to ensure the clustered
events are unlikely to occur by chance. We simulated all somatic
mutations in each sample for 100 times and determined the IMD
threshold with q < 0.1 that 90% of the mutations below the
threshold were clustered together, that is, not occurring by chance
solely. Subsequently, SigProfilerClusters49 with default parameters
was subsequently employed to partition the clustered mutations
from non-clustered mutations and then to further subclassify all
clustered mutations into (1) doublet-base substitutions (DBS); (2)
multi-base substitutions (MBS); (3) diffuse hypermutation (omikli),
defined as the mutational events that are greater than 1 bp but
less than the sample-specific IMD cutoff; and (4) longer events
(kataegis)45,50.

Tumor mutation burden estimation
Tumor mutation burden (TMB) was defined as the number of
nonsynonymous somatic mutations per megabase (muts/Mb)
within the coding region of the captured exome (35.618 Mb for
the kit used in our study). Likewise, the clustered TMB was
determined as the number of clustered nonsynonymous somatic
mutations per megabase within the captured coding region.
Nonsynonymous mutations were defined as missense, nonsense,
nonstop, splice site, translation start site mutations, in-frame and
frameshift insertions and deletions.

Estimation of homologous recombination deficiency (HRD)
score
We calculated the HRD score by summing three independent
scores, telomeric allelic imbalance (NtAI), LOH, and large-scale
state transition (LST), based on Allele-Specific Copy Number
Analysis of Tumors (ASCAT) according to previous studies51,52. In
brief, the NtAI score was defined as the number of subchromo-
somal regions (longer than 11Mb) with allelic imbalance
extending to the telomere. The LOH score was the number of
LOH regions longer than 15 Mb but shorter than the whole
chromosome. LOH regions located on chromosome 17 were not
included. The LST score was the number of break points between
two chromosomal regions longer than 10 Mb after smoothing
regions shorter than 3 Mb.

SCNA signature analysis
SigProfiler was also applied to decipher the CNA signatures34.
Specifically, CNVMatrixGenerator was first used to categorize the
CNA segments into three heterozygosity states, namely hetero-
zygous (CN= { > 0,>0}), loss of heterozygosity (CN= { > 0,0}) and
homozygous deletion (CN= {0,0}), taking into account the ploidy,
copy number, and segment size. SigProfilerSingleSample was
subsequently employed to decipher the CNA signatures.

Calculation of neoantigens
We first used POLYSOLVER53 to infer the 4-digit HLA genotype
from WES data (.bam) of paired normal samples. Then, neoanti-
gens were predicted based on NetMHCpan (v4.0)54, with the
somatic mutation data and HLA genotype data as the inputs. We
predicted neoantigens derived from protein coding single
nucleotide variants (missense mutations) and small insertions
and deletions (INDEL) (frameshift and in-frame indel) separately.
Neoantigens were defined as mutations predicted to produce
peptide with affinity < 500 nM and of which the corresponding
gene was expressed greater than Combat value 1 (evaluated

based on median expression rather than the specific sample). We
referred to pVAC-seq and made some modifications based on the
features of our dataset to construct this algorithm55.

Estimation of HLA-I status
HLA-I status comprises two aspects, namely germline homogene-
ity and HLA-I LOH. Based on the exome data of paired normal
samples from TNBC patients, POLYSOLVER was used to determine
the four-digit HLA genotype of each sample53. HLA-I germline
homogeneity was considered in patients with the same genotype
at any one of the HLA-A, HLA-B, or HLA-C loci; if not, HLA-I
germline heterogeneity was defined. We used ASCAT-adjusted
copy number values (nMajor and nMinor) at the segment level to
estimate HLA-I LOH. Copy number values in ASCAT are adjusted
by tumor purity. When one of two alleles at any of the main HLA-I
loci (HLA-A, HLA-B, and HLA-C) equaled zero, the patient was
considered HLA-I LOH; otherwise, HLA-I non-LOH.

Estimation of intra-tumoral heterogeneity (ITH)
We used ASCAT to estimate the purity and ploidy of each tumor
based on the copy number data with the data on somatic
mutations using default parameters. A modified PyClone workflow
was then adopted to estimate the cancer cell fractions (CCF) of
each sample56. The fraction of subclonal cancer cells was set as
indicators representing the ITH.

PAM50 classification
We determined the PAM50 subtype of each patient based on the
PAM50 classifier as previously described57,58. First, the mRNA-seq
data (Supplementary Data 1) were subsampled so that the
distribution of IHC subtypes of the samples was consistent with
the training set used for PAM50. Second, we adjusted the FPKM
data to the median gene expression calculated from the PAM50
gene level of the IHC balanced subset. Finally, PAM50 typing was
performed as previously described.

Gene set enrichment analysis (GSEA)
GSEA analysis was run to identify the enriched pathways and
interpret transcriptomic data59. Pathways were defined by the gene
set file Human_GOBP_AllPathways_no_GO_iea_May_05_2019_-
symbol.gmt that is regularly updated and maintained by the Bader
laboratory. GSEA was performed with the geneset size limited to a
range between 10 and 300 and 2000 permutations. Gene sets with
false discovery rate (FDR) < 0.25 and nominal P value < 0.05 were
considered significant. We then visualized the pathway network
based on the EnrichmentMap App (v.3.3) in Cytoscape (v.3.9.1).
Pathways clusters were defined and annotated using a Cytoscape
app AutoAnnotate (v.1.3.5).

Tumor microenvironment (TME) constitution
The infiltration levels of immune cells were inferred as previously
described6. First, we established a reference compendium that
included 364 genes representing 24 TME cell types. The gene set
were curated from CIBERSORT (22 immune cells) and MCP-counter
(2 stromal cells, including fibroblasts and endothelial cells). Then,
we used single-sample gene set enrichment analysis (ssGSEA,
“GSVA” function in R) to estimate the immune infiltration based on
the transcriptomic data.

Calculation of literature-defined immune signatures, I-SPY2
immunotherapy-response signatures, and metabolic
signatures
We curated literature-defined immune signatures6, I-SPY2 immu-
notherapy-response signatures36, and metabolic signatures7 to infer
the status of tumor immune microenvironment and metabolic
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signaling (Supplementary Tables 3, 4). According to a previous
study36, we then calculated the signature score based on the
following steps: (1) mean center by genes across all samples; (2)
average over genes; (3) Z-score.

Estimation of mRNA subtype of TNBC
To determine the optimal number of TNBC subtypes, we ran
consensus cluster analysis (“ConsensusClusterPlus” package in R)
with the expression profile. TNBC samples were classified into four
distinct subtypes using K-means clustering (“kmeans” function in
R) based on genes with top 2000 standard deviations. TNBC is
generally classified as luminal androgen receptor (LAR), immuno-
modulatory (IM), basal-like immune-suppressed (BLIS), and
mesenchymal (MES). Detailed methods of the expression-based
TNBC clustering was described previously3.

Estimation of immune subtype of TNBC
A TNBC immune subtype was estimated based on the constituent
pattern of each microenvironment cell subset. We conducted
NbClust (“NbClust” function in R, index 1⁄4 “all”) testing to identify
the optimal number of stable TNBC immune subtypes. Following
that, k-means clustering (kmeans in R) was used to separate each
TNBC immune subtype according to the putative optimal number
of microenvironment clusters based on Nbclust testing. The
detailed estimation of TNBC immune subtype was described in a
previous study6.

Estimation of metabologenomic subtype of TNBC
In this study, metabolic pathways have been downloaded from
the KEGG60. A KEGG classification system was used to group
pathways into ten major categories. We calculated GSVA
enrichment scores for each metabolic pathway using transcrip-
tomic data in each sample. To determine the optimal number of
stable metabolic pathway-based TNBC subtypes, we conducted
k-means clustering, consensus clustering, and NbClust testing.
Each sample was scaled prior to clustering in order to determine
the constituent pattern of each metabolic pathway. K-means
clustering was assessed using consensus clustering. In this study,
the number of clusters that most testing methods support was
determined by NbClust (Euclidean distance, k-means clustering,
from 2 to 8 clusters). An earlier study described detailed clustering
processes7.

Classification of polar metabolite and lipid
Using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database, we classified polar metabolites by their KEGG metabolic
pathways60. Eight classifications were determined: lipids, amino
acids, carbohydrates, nucleotides, peptides, vitamins and cofac-
tors, xenobiotics and others. Our determination of lipid categories
and main classes was based on the LIPID MAPS Structure Database
(LMSD). We detected five of eight classical lipid categories (fatty
acyls [FA], glycerolipids [GL], glycerophospholipids [GP], sphingo-
lipids [SP], sterol lipids [ST]).

DA score
DA scores reflect the tendency for pathways to have higher levels
of metabolites than control groups5,61. A nonparametric DA test
(in this study, Mann–Whitney U tests) is performed on all
metabolites in a pathway before calculating the score. Once the
metabolites have been determined as significantly increased or
decreased in abundance, the DA score is calculated as: (number of
metabolites increased - number of metabolites decreased)/
number of measured metabolites within the pathway. DA scores
range from −1 to 1. When the pathways are scored as −1, it

indicates that all metabolites decreased in abundance, while when
they are scored as 1, all increased in abundance.

Estimation of metabolite subtype of TNBC
Data from both lipids/metabolites were pre-processed before
being clustered by SNF62. Our study focused on lipids and
metabolites that showed significant tumor-normal differences
(FDR < 0.01; |log2 fold change | > 1). We further filtered these
lipids/metabolites with standard deviation (SD). To cluster down-
stream SNFs, we retained metabolites with the top 200 SDs and
lipids with the top 400 SDs. An optimal number of clusters of three
was determined using the function “estimateNumberOfClusters-
GivenGraph” in R package “SNFtools” (both Eigen-gap best and
rotation cost best). Check the previous study for method details5.

Statistical analysis
Comparative analyses were performed between patients with
and without calcifications of high suspicion for malignancy. The
Mann-Whitney Wilcoxon test and the Kruskal–Wallis test were
applied to analyze the continuous variables, while Pearson’s chi-
square test and Fisher’s exact test were utilized to compare the
categorical variables. Multivariate logistics regression was also
used to adjust confounding bias when performing the compar-
ison analysis. We adopted overall survival (defined as the interval
between surgery and death from any cause), distant metastasis-
free survival (defined as the interval between surgery and first
distant metastasis), and relapse-free survival (defined as the
interval between surgery and locoregional/distant recurrence
and death from any causes), as the main outcomes in our study.
Adjusted hazard ratio (HR) and 95% confidence interval (CI) were
estimated using the multivariate Cox proportional hazards
model. The P values were adjusted to the false discovery rate
(FDR) using the Benjamini–Hochberg procedure in multiple
comparisons. A P-value of < 0.05 suggested statistical signifi-
cance unless otherwise stated. All analyses were performed using
R version 4.1.1 (https://cran.r-project.org/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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